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ABSTRACT 

This study presents short-term electricity load forecasting for the New England area by processing initial 

data through correlation assessment and data clustering. This method is combined with artificial neural 

networks to improve accuracy and forecast performance. Data preprocessing focuses on two main issues: 

identifying correlations between variables to eliminate less relevant factors and retaining highly correlated 

variables to reduce noise, as well as reducing the data sample size before training the neural network. This 

evaluation aims to determine the factors that have a significant impact on electricity load. These factors 

can include previous load values, weather conditions, time, types of electricity usage, and others. This 

technique ensures that reducing the size in both dimensions of the large dataset does not result in the loss 

of critical information, maintaining the accuracy of computational programs and the performance of 

neural network training at high levels. The neural network is trained to classify and cluster data based on 

previously identified correlated characteristics. As a result, the forecasting model can make more accurate 

predictions about future electricity loads. Experimental results show that the proposed method achieved 

more than 97% accuracy, outperforming traditional methods in both speed and load forecasting accuracy. 

The new dataset had 63% fewer samples compared to the initial dataset. 

Keywords-load forecasting; K-means algorithm; correlation assessment; neural networks; data processing 

I. INTRODUCTION  

Data management and processing in the energy sector 
require significant investment in technology, personnel, and 
processes. Organizations must adopt advanced tools and 

techniques to overcome these challenges, ensuring that data can 
be used effectively to support load forecasting and energy 
system management. However, accurate load prediction faces 
many difficulties due to rapid development, and traditional load 
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prediction tools have become somewhat outdated and 
inadequate, necessitating newer and more advanced powerful 
tools. Widely applied traditional methods, such as the 
regression method and various data transformation techniques, 
play a crucial role in forecasting electricity loads. However, 
regression must be applied with caution, especially when 
selecting and implementing data transformations, to ensure the 
effectiveness and accuracy of the forecast [1-2]. Furthermore, 
the multiple regression method is a powerful and efficient tool 
in electricity load forecasting. In [3-4], variant models with 
unique advantages were developed, including the introduction 
of a new regression method capable of estimating nonlinear 
loads. The exponential smoothing method, where the initial 
load is based on the previous model and is used to construct the 
future model, was proposed in [5]. In [6], an improved method 
was proposed that incorporated power spectrum analysis and 
autoregressive modeling. Furthermore, various other methods 
have been proposed, such as iterative reweighted least-squares 
[7], adaptive demand forecasting [8], stochastic time series [9], 
Autoregressive Moving-Average (ARMA) [10], 
Autoregressive Integrated Moving-Average (ARIMA) [11], 
fuzzy logic [12], and so on. 

In general, each forecasting method has its own advantages. 
For example, regression is simple and quick to implement, 
fuzzy logic can handle ambiguous signals, and ARIMA is 
flexible and models data well, responding quickly to recent 
changes. However, each method also has its shortcomings, 
particularly when dealing with nonlinear input data. In this 
context, neural networks, a remarkable achievement of 
artificial intelligence, have emerged as a powerful and flexible 
tool for addressing complex problems. The ability of neural 
networks to learn from data, recognize patterns, and make 
predictions has been demonstrated in various fields. 
Specifically, in the field of load forecasting, neural networks 
offer significant advantages over traditional models. Regarding 
their self-learning abilities [13-14], neural networks can 
automatically learn and adjust from historical data without the 
need for manual intervention. This ability enables them to 
quickly adapt to new trends and handle non-linear 
relationships, which traditional methods such as linear 
regression, moving averages, and ARIMA models often 
struggle with. This ability allows neural networks to forecast 
loads with higher accuracy, especially in situations with 
significant fluctuations and heterogeneous data. 

In addition, Recurrent Neural Network (RNN) [15], 
Convolutional Neural Network (CNN) [16], and Support 
Vector Machine (SVM) [17] models have also been applied in 
load forecasting. Although ARIMA models are powerful in 
handling time-series data, they face difficulties when dealing 
with nonlinear data and anomalous transformations. Deep 
learning techniques, such as RNN and CNN, have opened new 
opportunities to improve the accuracy and efficiency of load 
forecasting. RNNs, in particular, are effective in handling 
sequential data and can retain information from long 
sequences. CNNs excel in learning spatial features and have 
been successfully applied to various complex forecasting 
problems. 

This study aims to present the advantages of applying 
neural networks in load forecasting and compare forecast 
results using improved data preprocessing with various 
network architectures. This study aims not only to provide a 
comprehensive view of the effectiveness of neural networks in 
load forecasting, but also to propose improved methods for 
optimizing training data in terms of sample size and variables. 
The effectiveness of the proposed method is demonstrated 
through the application of artificial intelligence and correlation 
algorithms to imitate intelligent or smart thoughts and actions 
of humans. All this process is performed automatically through 
computer programs and artificial intelligence software. 
Computer modeling and load forecasting were performed using 
data from the New England grid. After preprocessing steps to 
reduce variables and filter samples by clustering, simulations 
were carried out to test the effectiveness using a 
backpropagation neural network with 4 algorithms. The results 
were evaluated using the Mean Absolute Percentage Error 
(MAPE) to find the most suitable model. 

II. METHODOLOGY 

A. Data Preprocessing and Dimension Reduction 

1) Introduction to the New England Power Grid Dataset 

The data used for this study were sourced from the ISO 
New England power grid [18]. This data is openly accessible 
through the ISO New England website for quick access. The 
variables in the dataset include Hour, Temperature, Humidity, 
Electricity Consumption, Real-Time Price, and Time 
(considering weekdays/holidays). These variables form the 
basis of the neural network training dataset, initially 
comprising 5088 samples and 19 variables corresponding to the 
initial specific parameters. Figure 1 provides an overview of 
the data collection process. 

 

 
Fig. 1.  The data collection process for training a neural network on the 
ISO New England power grid data. 

2) Data Preprocessing 

Data preprocessing is a critical step in the process of 
handling and analyzing data in the fields of data science and 
machine learning [19]. Its main task is to clean, normalize, and 
transform raw data to make them logical and suitable for 
analysis or model training. Data preprocessing helps improve 
the quality and performance of analyzing large datasets and 
training models. Data preprocessing can employ various 
methods, such as normalization, which involves transforming 
data into smaller value ranges. For instance, scaling data to 
range from -1.0 to 1.0 or from 0.0 to 1.0. Data correlation is an 
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important statistical measure to evaluate the relationship 
between two variables, indicating the extent and direction of 
the variability of one variable influencing another. In data 
normalization, there are three main methods: min-max scaling, 
z-score normalization, and decimal scaling. 

3) Correlation Coefficient 

The correlation coefficient is an important statistical 
measure to assess the relationship between two variables, 
indicating the degree and direction of change in one variable 
relative to another. Correlation is typically represented by a 
coefficient ranging from -1 to 1, where specific values carry 
distinct meanings. A positive value indicates that as one 
variable increases, the other variable also tends to increase. On 
the contrary, a negative value indicates that as one variable 
increases, the other variable tends to decrease. There are two 
approaches to correlation analysis: parametric and non-
parametric. Parametric tests assume that the data follow 
standard distributions, such as normality, linearity, and 
homogeneity [20], whereas non-parametric tests do not require 
these assumptions [21]. 

Pearson's correlation is an example of parametric 
correlation. Spearman correlation provides examples of non-
parametric ordinal rank correlation without assuming any 
distribution of the data [22]. The benefits of using non-
parametric methods include that they can operate on 
incomplete data (where only ordinal information is available), 
the Spearman rank correlation equals 1 when Y is a monotonic 
increasing function of X, and Spearman is robust against 
outliers compared to Pearson correlation [23]. 

 

 
Fig. 2.  Graphical visualization of correlation. 

Pearson's correlation coefficient is given by 

���, �� � �	
��,��

��
    (1) 

where �����, �� is the covariance of � and �, and �� and �� is 
the standard deviation of �  and � , respectively. Figure 2 
illustrates three scenarios based on the covariance: 

 When ���, �� � 0 , �  and �  have a positive linear 
relationship. As � increases, � tends to increase. 

 When ���, �� � 0 , �  and �  have a negative linear 
relationship. As X increases, Y tends to decrease. 

 When ���, �� � 0, � and � have no relationship with each 
other. 

The Spearman rank correlation coefficient plays a crucial 
role in assessing the degree of association between random 
variables. It is particularly useful in cases where data do not 
follow a normal distribution or when there are multiple outliers 
present. This method provides an effective non-parametric 
approach to measure nonlinear correlations. 

� � 1 � � ∑ ��
�

����� �
    (2) 

where ρ is the Spearman correlation coefficient, !"² denotes 
the sums of squares of rank differences, and $ is the number of 
observations. The value of �  lies within the range [-1, 1], 
indicating the degree of relationship between two variables 
[24]: 

 � � 0 represents a positive monotonic correlation, where 
both variables increase or decrease together. 

 � � 0 indicates no correlation between the variables. 

 � � 0 represents a negative monotonic correlation, where 
one variable increases as the other decreases. 

B. Application of K-means Algorithm in Load Forecasting 

Data reduction is a process to reduce the size of the original 
dataset while retaining important and necessary information for 
analysis. The purpose of data reduction is to minimize the 
volume of data that needs to be processed, thereby saving 
computational resources and speeding up processing. K-means 
is a popular clustering algorithm that partitions data into % 
clusters based on similarity between data points. Each cluster is 
represented by its centroid, and the goal of K-means is to 
minimize the sum of squared distances between data points and 
their respective centroids. 

Figure 3 depicts the data processing model of the proposed 
method using the K-means algorithm with 5088 initial samples 
after filtering significant variables using Spearman correlation. 
After clustering, only clusters that meet the requirements and 
pass secondary criteria for selecting suitable training data 
clusters are retained to train the neural network. In [25], issues 
related to determining the number of clusters in the Κ-means 
algorithm were discussed. Several indices are used to 
determine the number of clusters, such as the Duda and Hart 
index, the Calinski and Harabasz index, the Davis-Bouldin 
index, the Silhouette index, and the SD index. 

 

 
Fig. 3.  Clustering and data reduction in the proposed method. 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16365-16370 16368  
 

www.etasr.com Le et al.: Applying Intelligent Algorithms In Short-Term Electrical Load Forecasting 

 

 
Fig. 4.  Proposed forecasting model combining Spearman correlation and K-means. 

After selecting important features, this study uses K-means 
for data clustering. The number of clusters is chosen to suit the 
complexity of the data and the computational capabilities of the 
model. Each cluster is represented by its centroid, which helps 
reduce the number of data samples while retaining important 
information. This process significantly reduces the size of the 
input data, improving computational efficiency for Artificial 
Neural Networks (ANNs). 

&'()*$�+ �*, -� � .∑ �*/
�
/0 � -/�1  (3) 

where &'()*$�+�*, -� is the distance from data point *  to 
cluster centroid - , */  is the value of the ' th attribute in data 
point *, and -/ is the value of the 'th attribute in cluster centroid 
-. 

III. PROPOSED LOAD FORECASTING MODEL 

This study focuses on two main data processing issues: 
finding correlations among parameters to eliminate less 
relevant factors and retaining highly correlated factors to 
reduce noise, while also reducing the data sample size. Since 
daily electricity load data can repeat on certain days within a 
month or year, using only a portion of the data can achieve 
high forecasting performance. Additionally, this study uses 
ANNs, which outperform traditional methods in terms of speed 
and accuracy in load forecasting. Currently, research on load 
forecasting achieves very high accuracy, with errors below 3%. 
Figure 4 outlines the operational process of the proposed 
forecasting model based on these objectives. The data 
processing stage consists of four steps. 

 Step 1: Data collection involves collecting 5068 samples 
and 19 variables. 

 Step 2: Using the Spearman correlation to identify 
significant variables in the data. After this step, the dataset 
consists of 5068 samples and 8 variables. The dataset with 
the representative variables is used as input and output for 
the ANN. The network structure includes six input signals, 

which are the six representative electrical parameters of the 
grid (RT_Demand: Real-time Demand, DA_Demand: Day-
Ahead Cleared Demand, DA_LMP: Day-Ahead Location 
Marginal Price, DA_CC: Congestion Component Day-
Ahead, RT_EC: Energy Component of Real-time LMP, and 
RT_LMP: Real-time Location Marginal Price), and one 
output signal, which is the load power parameter of the 
grid. 

 Step 3: The proposed method reduces the data by applying 
the K-means algorithm. The K-means algorithm divides the 
data set into smaller groups, ensuring that each group has at 
least one day of data (1440 samples) and each hour in the 
group has at least 60 samples. 

 Step 4: The training dataset is fed into the ANN. The 
ANN's effectiveness is evaluated using benchmark results. 

IV. SIMULATION RESULTS AND EVALUATION 

The initial dataset obtained from ISO New England [18] 
yielded a MAPE with values from 5088 samples and 19 feature 
values. Table I presents the results of variable reduction using 
Spearman correlation. 

TABLE I.  INFORMATION ON TYPICAL VARIABLES 
BASED ON SPEARMAN CORRELATION 

Spearman value 
Feature 

value 

Variable component 

name 

1 - 0.6 

6 

RT_Demand 
Perfect -1  1 

Strong 
-0.9  0.9 

DA_Demand 
-0 .8  0.8 
-0.7  0.7 

DA_LMP 
Moderate 

-0.6  0.6 
-0.5  0.5 

DA_CC 

Weak 
-0.4  0.4 
-0.3  0.3 

RT_EC 
-0.2  0.2 

None -0.1  0.1 RT_LMP 
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For every six variables, the sample size should be at least 
ten times the number of variables. Several studies have 
addressed this issue. In [26], it was suggested that the sample 
size should be at least 10-20 times the number of feature 
values, especially in logistic regression models. In [27], the 
importance of having enough samples was emphasized to 
ensure the stability and accuracy of the model, recommending 
at least 10-20 samples per feature. The value of 2  when 
clustering using K-means is determined based on the principle 
of six variables, each variable corresponding to 10 samples. For 
a 24-hour dataset, the minimum dataset size is 6×10×24=1440 
samples. Therefore, the clustering simulation is performed 
from 2 � 2  to 2 � 7  because when dividing into other 2 
values, no cluster meets the required number of samples. 

According to these studies, the minimum requirement is 
1440 samples for the training dataset. After clustering, the 
resulting sample sets that meet this requirement are printed in 
bold. Subsequently, each sample within the 2  clusters is 
selected hourly to ensure a minimum of 60 training samples per 
hour, as shown in Table III. Following this selection process, 
Group 1 contains 3242 samples with 2 � 2 , and Group 2 
contains 1893 samples with 2 � 4. Data groups with hourly 
sample values that do not meet the minimum of 60 samples are 
excluded. Subsequently, the ANN is trained. The ANN was 
simulated using MATLAB version 2023a, on a PC with a 12th 
Gen Intel(R) Core(TM) i5-12450H at 2.00 GHz processor and 
16 GB RAM. 

TABLE II.  INFORMATION ON TYPICAL VARIABLES 
BASED ON SPEARMAN CORRELATION 

Number of 

Clusters (K) 
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 

Number of samples 
in each group of K 

clustering value 

1846 572 340 702 1268 586 
3242 2419 1505 1357 1030 833 

  2097 1350 1687 1153 1138 
    1893 207 554 152 
      1135 888 930 
        195 281 
          1168 

 
The clustered data were filtered to create sample sets to 

train the ANN. The number of neurons in the hidden layer was 
10. Various algorithms were used for training, including 
Levenberg-Marquardt, Bayesian, Scaled Conjugate Gradient, 
and Resilient Backpropagation. The results of the networks, 
corresponding to the clustering cases, show that for Group 1 
with 3242 samples, the lowest MAPE was 0.63%, and for 
Group 2 with 1893 samples, it was 0.31%. These MAPE values 
are within the range allowed for accurate forecasting. 

TABLE III.  HOURLY SAMPLE INFORMATION FOR 
CLUSTERS IN THE CASE OF K=2 AND K=4 CLUSTERING 

Sample group/ 

Algorithm 

Group 1 = 3242 Group 2 = 1893 

Min Max MAPE Min Max MAPE 

Bayesian 0% 9.10% 0.43% 0% 8.56% 0.72% 
Lenvenberg-
Marquardt 

0.01% 7.84% 0.36% 0% 8.07% 0.31% 

Scaled Conjugate 
Gradient 

0.00% 6.32% 0.64% 0% 8.09% 0.73% 

Resilient 
Backpropagation 

0.00% 8.11% 1.44% 0% 10.82% 1.13% 

TABLE IV.  HOURLY SAMPLE FOR REPRESENTATIVE 
CLUSTERS IN THE CASE OF K = 2 AND K = 4 CLUSTERING 

K = 2 

3242 (Receive) 

K = 4 

1893 (Receive) 

1 193 1 82 
2 194 2 76 
3 200 3 66 
4 205 4 68 
5 204 5 83 
6 195 6 93 
7 151 7 98 
8 120 8 93 
9 120 9 84 
10 128 10 82 
11 124 11 76 
12 129 12 76 
13 125 13 67 
14 121 14 68 
15 117 15 62 
16 112 16 62 
17 91 17 65 
18 76 18 73 
19 66 19 68 
20 64 20 65 
21 67 21 73 
22 100 22 105 
23 160 23 123 
24 180 24 88 

 

V. CONCLUSION 

The experimental results indicate that with the initial ISO 
NewEngland dataset consisting of 5088 samples and 19 feature 
values, the proposed method achieved the best optimization 
with a MAPE of 0.31% using the Levenberg-Marquardt 
training model. The proposed method effectively reduced both 
the number of variables and the sample size, achieving a new 
dataset with a size of 1893 samples, reducing the total number 
of samples by 63% and the number of variables to 6. These 
results demonstrate that the proposed approach to data 
preprocessing using the Spearman correlation coefficient 
combined with K-means clustering is feasible and highly 
applicable for building datasets for machine learning models. 
This significantly improves the efficiency of load forecasting 
models. 
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