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ABSTRACT 

Plant diseases are a significant threat to modern agricultural productivity. Hydroponic systems are also 

affected for various reasons. Reliable and efficient detection methods are essential for early intervention 

and management of diseases in hydroponics. This study investigates the use of You Only Look Once 

(YOLO) models, namely YOLOv8 and YOLOv9, for the detection of plant diseases in a hydroponic 

environment. A diverse dataset was prepared, comprising images from a hydroponics system setup and the 

New Plant Disease Image Dataset from Kaggle. Custom annotated images were used to train and test the 

models and compare their accuracy, processing speed, and robustness in hydroponic systems. The results 

showed that YOLOv9 is slightly better than YOLOv8 in terms of detection accuracy, as it achieved 88.38% 

compared to 87.22%, respectively. YOLOv8 requires less computational resources and takes relatively less 

time than YOLOv9 for real-time plant disease detection. Therefore, it is recommended for portable 

devices. 
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I. INTRODUCTION  

Traditional farming methods, i.e., soil-based farming, are 
now hard to maintain due to changing climate patterns and 
decreasing cultivable land. Due to its dependence on natural 
phenomena, the outcome of traditional farming cannot be 
changed without using harmful chemicals to improve crop 
health. With the global population increasing and the 
availability of arable land decreasing due to urbanization, 
society is increasingly exploring innovative agricultural 
technologies such as aquaponics, aeroponics, and hydroponics. 
These approaches do not depend on soil. Hydroponics involves 
cultivating plants using nutrient-enriched solutions instead of 
traditional soil, effectively addressing challenges faced in 
conventional irrigation and agriculture, such as high water 
consumption, weed proliferation, and pest management. This 
technique has gained significant traction in commercial 
cultivation, including diverse greenhouse crops. Within a 
controlled hydroponic environment, crop production rates can 

be significantly increased, accelerating plant growth. This 
approach offers the advantage of reduced dependence on 
chemical nutrient supplements, as all essential nutrients are 
provided directly to plants through water. The hydroponics 
industry, which is rapidly expanding, has the potential to 
completely transform sustainable food production from small- 
to large-scale. [1-3]. Unlike traditional soil-based agriculture, 
hydroponic systems are less immune to diseases and pest 
attacks. However, they face unique challenges when it comes 
to protecting crops. In the absence of soil, hydroponic systems 
are not immune to pesky invaders. Aphids, spider mites, and 
whiteflies are among the usual suspects that can wreak havoc 
on hydroponic crops. Identifying these tiny foes early on is 
crucial, as their populations can multiply rapidly in the 
controlled environment of a hydroponic setup. Regular 
scouting and monitoring are the first lines of defense [4-5]. 

Although the judicious use of chemicals is an option, it 
comes with a cautionary note. Hydroponic farmers must tread 
lightly when employing chemical control methods to avoid 
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unintended consequences. Understanding the specific needs of 
crops and choosing chemicals wisely can mitigate risks and 
protect the overall health of a hydroponic garden. Vigilance is 
the cornerstone of effective pest and disease management. 
Regular monitoring of the hydroponic system for signs of 
trouble is crucial. Early detection makes it possible to act 
quickly and stop small problems from growing into big ones. 
Employing advanced tools and technologies for surveillance 
ensures that farmers are one step ahead of potential problems 
[6-9]. 

Traditional pest and disease detection methods are time-
consuming and labor-intensive. Recent advances in pest and 
disease detection have emerged from image processing, 
Computer Vision (CV), and Machine Learning (ML). 
However, these methods offer challenges in terms of large 
datasets, speed, and accuracy. Deep Learning (DL) has opened 
new avenues for automating plant disease detection through 
object detection [4, 10, 11], identifying different types of pests 
and diseases in the crop. There are various types of object 
detection models, such as RCNN, Fast RCNN, Faster RCNN, 
Mobile Net, and YOLO [12-14]. The YOLO models, 
recognized for their real-time object detection abilities, offer 
promising solutions in this domain. These models can quickly 
and accurately identify diseases in plants, allowing for prompt 
intervention and management. The benefits of using YOLO 
models in hydroponic systems include increased efficiency in 
disease detection, reduced labor costs, and improved overall 
crop health and yield. YOLO offers various versions, from 
YOLOv1 to YOLOv9, comprising tiny, small, medium, large, 
and extra-large subversions [15-19]. By incorporating 
advanced technologies such as YOLO models for disease 
detection, the hydroponics industry can further enhance crop 

production and ensure food security in the future. This study 
compared YOLOv8 and YOLOv9 for pest and disease 
detection in hydroponics systems. 

Many studies have focused on disease detection in the CV 
and ML domains. Many approaches, including DL-based and 
traditional CV algorithms, have been employed to tackle this 
challenge. Conventional methods for analyzing and diagnosing 
diseases often involve image segmentation, thresholding, and 
morphological procedures [19-20]. Leaf images exhibit 
complex textures, shapes, and structures, necessitating 
multilevel and multiscale feature extraction and representation 
methods. YOLO-based networks have recently been used in 
disease detection [12-14, 21]. YOLO uses a single deep neural 
network to simultaneously detect the bounding boxes and class 
probability of an image [22]. Unlike traditional methods that 
use region proposal algorithms, YOLO segments the image 
into a grid and then predicts the bounding boxes. This results in 
increased efficiency and faster inference times. The YOLO 
algorithm has proven to be an extremely effective technique for 
object detection, which encompasses plant recognition and 
counting. Real-time detection capabilities open many 
opportunities for agricultural research. Plant disease diagnosis, 
plant phenotyping, and precision agriculture automation have 
all shown promising results with YOLO-based techniques [23-
24]. YOLO-based approaches make detection faster and more 
efficient compared to other object detection models. Table I 
presents a review of state-of-the-art studies based on YOLO 
models for disease detection in soil- and hydroponic-based 
systems. As can be observed, YOLO versions from v5 to v9 are 
used to detect diseases in various plants, achieving accuracies 
in the range of 66 to 97%. 

TABLE I.  REVIEW OF PLANT DISEASE DETECTION USING YOLO 

Ref. Diseases detected Models used Dataset used Hydroponic/Soil Accuracy 

[16] Not specified YOLOv5 and YOLOv6 Plant leaf dataset Soil 
Not 

Specified 

[17] Blossom end rotation, splitting, sun-scaled rotation YOLOv8 
"balanceddata dataset" 

in Roboflow 
Soil 66.67% 

[18] Blossom end rotation, Splitting, sun-scaled rotation YOLOv5 and YOLOv8 
"balanceddata dataset" 

from Roboflow 
Soil 

86.6 - 

94.3% 

[25] Tomato splitting, sun scaled, and blossom end rot. YOLOv8, YOLOv9 
Tomato disease dataset 

from Roboflow 
Soil 93.6% 

[26] 

Tomato late blight, gray mold, leaf mold, leaf spot, 

cucumber powdery mildew, downy mildew anthracnose, 

eggplant brown spot. 

YOLOv8n, YOLOv8n-

FastNet, YOLOv8n-

MobileNet 

Vegetable disease 

dataset 
Soil 92.97% 

[27] Leafy green vegetables ResNet-50 and YOLOv5s 
leafy green image 

dataset 
Aquaponics  94.13% 

[28] 
Apple scab, grape leaf blight, grape black rot, potato 

healthy, soybean healthy, peanut brown spot, peanut rust 

Optimized lightweight 

YOLOv5 

PlantDoc dataset, 

peanut rust dataset 
Hydroponic 

90.26 - 

92.57% 

[29] Rust, corn leaf blight, eyespot, and gray leaf spot YOLOv5 

High-resolution corn 

leaf images taken from 

a GoPro camera 

Soil 
Not 

Specified 

[30] Wheat mosaic virus Not specified 
Classified wheat streak 

mosaic disease 
Soil 97.56% 

 
From Table I, the following research gaps can be observed: 

 Plant disease detection studies primarily focus on soil-based 
systems. 

 The accuracy of the YOLOv5 model is moderate compared 
to v8 and v9. 

 The YOLOv8 and v9 plant disease detection models 
achieved better accuracy for soil-based systems. 

 There is a need for a customized pest and disease dataset 
for hydroponic systems. 
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 There is a need for a high-performance hydroponic plant 
disease detection system using YOLOv8 and v9 models. 

The novelty of the proposed framework is as follows: 

 A Deep Water Culture (DWT) hydroponic setup is used 
with basil cultivation as a case study. TDS, pH, 
temperature, and oxygen levels in the water are controlled 
according to the requirements of basil. 

 The smart framework, based on computer vision, is 
proposed particularly for pest and disease detection for 
controlled environment-based hydroponics systems. 

 The pest and disease dataset is customized for hydroponics 
systems. 

 Comparison of YOLOv8 and YOLOv9 object detection 
models.  

II. DATASET 

Hydroponics cultivation is affected by various reasons, 
including fungal infection, and bacterial, viral, and nutrient-
related issues. Figure 1 presents an overview of each category 
and some common diseases within it. The dataset used was 
based on the New Plant Disease Image Dataset [31]. To 
enhance the dataset's diversity and relevance, it was 
supplemented with additional images captured from a 
hydroponics setup [32]. This combined dataset consists of 3676 
images for training (70 from the hydroponic setup) and 920 
images for validation (20 from the hydroponic setup). There is 
a total of 17 classes, including 16 different diseases and one 
healthy. The images were annotated using LabelImg, a 
graphical open-source image annotation tool that enables 
labeling object bounding boxes in images. Figure 3 shows a 
sample of annotated images. The annotation process involved 
identifying various diseases, such as leaf blight, rust, and 
powdery mildew, ensuring a comprehensive coverage of 
potential plant health issues.   

 

 

Fig. 1.  Taxonomy of diseases in hydroponics. 

 

Fig. 2.  Framework for DWC hydroponic-based plant disease detection system. 
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III. METHOD 

Figure 2 shows the proposed framework for the DWC 
hydroponic-based plant disease detection system using YOLO. 
The dataset was divided into 80:20 for training and testing. The 
system was developed on an Ubuntu server with an Intel 
Xeon@2.20GHz CPU, 29 GB of RAM, and a Tesla T4 GPU 
with 24 GB of video memory. Python version 3.10, PyTorch 
version 2.1.0, and CUDA 11.7 were the programming 
environments. The initial learning rate for network training was 
set to 0.0001, and the Adam optimizer was used to update 
hyperparameters with a batch size of 16, a weight decay 
coefficient of 0.0005, a momentum of 0.937, and an Epoch 
count of 150. The YOLO v8 model was converted to a 
TensorFlow Lite format to deploy it on a mobile device. Then, 
a mobile application was developed using Android Studio to 
incorporate the converted model. The application was 
optimized for real-time processing to ensure efficient detection 
on the mobile device's hardware. Finally, the application was 
installed on mobile devices, allowing real-time detection and 
diagnosis of plant diseases directly in the field. 

 

 

  

Fig. 3.  LabelImg annotated images. 

A. YOLO Model Details 

YOLOv8 and YOLOv9 were chosen due to their efficiency 
in detection accuracy and speed. YOLOv8 introduced 
substantial architectural improvements that raised the bar for 
object identification. To extract features more efficiently, it 
modified the convolutional layers in the early stages of image 
processing and added a new building block. The anchor-free 
head represents the largest change. With the predefined anchor 
boxes removed, YOLOv8 can identify objects that are different 
in size and shape with greater accuracy. With these 
architectural modifications and speed-related advancements, 
YOLOv8 has become an effective tool for real-time object 
detection applications [29]. YOLOv9 is the latest version, 
incorporating improved feature extraction and processing 
capabilities. YOLOv9 provides a significant advancement in 
real-time object detection because of the adoption of cutting-
edge techniques such as the Generalized Efficient Layer 
Aggregation Network (GELAN) and Programmable Gradient 
Information (PGI). This model achieved remarkable gains in 

accuracy, flexibility, and efficiency in the MS COCO dataset, 
setting new standards. The YOLOv9 project, which is being 
worked on by a different open-source team, demonstrates the 
collaborative nature of the AI research community, as it builds 
on the stable codebase provided by Ultralatics YOLOv5 [30]. 

B. Model Training 

The training involved fine-tuning the models on 3676 
images, while 920 images were reserved for validation. 
Hyperparameters were: lr/pg0 = .0001, lr/pg1 = 0.0001, and 
lr/pg2 = 0.0001 learning rates, batch size = 16, and epochs = 
150. lr/pg0 refers to the learning rate for the backbone weights, 
lr/pg1 refers to the learning rate for the YOLO layer's weights, 
and lr/pg2 refers to the learning rate for additional parameters, 
such as biases. 

C. Evaluation Metrics 

The performance of the YOLOv8 and YOLOv9 models 
was evaluated using several key metrics: 

 Precision: Precision evaluates the goodness of the results, 
calculated based on the ratio of True Positive (TP) to all 
positive detections, including True and False Positives (FP). 
A low FP rate indicates its high precision. 

��������� =

�

(
� � ��)
  

 Recall: The model's recall indicates its capacity to locate all 
relevant occurrences, in this case, diseased leaves. Its 
definition is the ratio of TP to all actual positive instances. 
A high recall rate suggests a low false negative rate for the 
model. 

������ =  

�

 
����
  

 mAP50 (Mean Average Precision at 50% IoU): When an 
Intersection over Union (IoU) threshold of 50% is reached, 
mAP50 assesses the precision and recall. This metric is 
frequently used in object detection tasks, as it shows how 
well the model can locate and identify items in images. The 
better the model performs in identifying and localizing 
items with at least 50% overlap with the ground truth, the 
higher the mAP50. 

��� =
�

�
∑ ���

���
���   

where ���  is the Average Precision (AP) of class � and � 
is the number of classes. 

 mAP50-95 (Mean Average Precision at IoU thresholds 
from 50% to 95%): In steps of 5%, the mAP50-95 assesses 
precision and recall across a range of IoU thresholds, from 
50% to 95%. This offers a more thorough evaluation of the 
model's performance, considering its capacity to identify 
items that differ in how much they resemble the ground 
truth. Greater overall detection performance across various 
IoU thresholds is shown by higher mAP50-95 scores. 

  Confusion Matrix: Additionally, a confusion matrix was 
employed to offer a thorough examination of the models' 
functionality. 
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IV. RESULTS AND DISCUSSION 

A. Precision and Recall 

Table II shows a precision and recall comparison for the 
YOLOv8 and YOLOv9 models. As can be observed, there is a 
marginal difference between them, as YOLOv8 achieves a 
precision score of 95.78% with a recall score of 96.43%, while 
YOLOv9 achieves a precision score of 95.93% and a recall 
score of 96.64%. Both the epoch-wise precision and recall were 
marginally greater for YOLOv9. 

TABLE II.  PRECISION AND RECALL COMPARISON 

Model Precision Recall 

YOLOv8 95.78 96.43 

YOLOv9 95.93 96.64 

 

B. F1 Score 

Table III shows a comparison of F1 scores for YOLOv8 
and YOLOv9 models, indicating a marginal difference between 
them. YOLOv8 achieved an F1-Score of 0.96 at a 0.544 
threshold, whereas YOLOv9 achieved an F1-Score of 0.96 at a 
0.536 threshold. Here, the threshold is a value applied to the 
confidence score. Predictions with a confidence score 
exceeding the threshold are considered detections. 

TABLE III.  F1-CONFIDENCE SCORE OF MODELS 

Model F1 score 

YOLOv8 0.96 at threshold 0.544 

YOLOv9 0.96 at threshold 0.536 

 

(a) 

 

(b) 

 

Fig. 4.  F1-confidence scores of YOLOv8 (a) and YOLOv9 (b) models. 

Figure 4 shows an F1 score comparison for each disease in 
the dataset for both YOLOv8 and YOLOv9. It can be clearly 
observed that both models achieve low F1 scores for Black Rot 
disease, indicating that the data for this disease are not perfect 
for training. 

C. Mean Average Precision (mAP) 

Table IV shows a comparison of mAP50-95 and mAP50 
scores for YOLOv8 and YOLOv9 models. The scores for 
YOLOv8 were 87.22 and 97.39 and for YOLOv9 were 88.38 
and 97.22, respectively. 

TABLE IV.  MAP50 AND MAP50-95 SCORES OF YOLOV8 
AND YOLOV9 MODELS 

Model mAP50-95 mAP50 

YOLOv8 87.22 97.39 

YOLOv9 88.38 97.22 

 

D. Confusion Matrices 

The confusion matrices provide insight into the model 
classification performance. Figures 5 and 6 show the confusion 
matrices for the YOLOv8 and v9 models, respectively. The 
accuracy for powdery mildew was lower compared to other 
pest diseases in both models. 

E. Number of Trainable Parameters 

The number of training parameters affects the training 
speed. There is a significant difference between the number of 
parameters in YOLOv8 and YOLOv9. The number of 
parameters in YOLOv8 is 30, 14, 553 and in YOLOv9 is 255, 
43, 881, which gives a difference of 225, 29, 328. The number 
of parameters significantly affects the processing speed and 
resources, increasing the computational complexity.  

 

 

Fig. 5.  Confusion Matrix for YOLOv8 model 
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Fig. 6.  Confusion matrix for YOLOv9 model. 

F. Resource Requirements 

Resource requirements play a vital role in real-time object 
detection tasks. It is necessary to use optimal computational 
resources for the required accuracy, as the model should be 
faster with good accuracy. Figures 7, 8, and 9 show clearly that 
YOLOv8 is faster than YOLOv9, requiring less GPU 
processing and power to train. 

 

 

Fig. 7.  Graph comparing GPU time spent accessing memory (%). 

 
Fig. 8.  Graph comparing GPU memory allocated (%). 

 

Fig. 9.  Graph comparing GPU power usage (W). 

V. CONCLUSION 

This study provides a detailed comparison between the 
YOLOv8 and YOLOv9 models for plant disease detection in a 
hydroponics setting. The results indicate that both models offer 
high accuracy and efficiency, with YOLOv8 showing superior 
performance in terms of computational resources and speed. 
Thus, it can be concluded that YOLOv8 can be used to solve 
these problems in cases where computational resources play a 
vital role in the application. Further research can explore the 
integration of these models into real-world agricultural 
applications, enhancing disease management and crop yield. 
Future research on comparative analysis of the YOLOv8 and 
YOLOv9 models for real-time plant disease detection in 
hydroponics could explore optimizing model parameters to 
balance accuracy and speed, enhancing real-time detection 
capabilities. Investigating hybrid approaches that integrate the 
strengths of both models could improve overall performance. 
Additionally, extending the study to diverse plant species and 
disease types, along with integrating IoT sensors for 
comprehensive monitoring, could further increase the precision 
and efficiency of plant health management in hydroponic 
systems. 
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