
Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 17572-17583 17572  
 

www.etasr.com Azar et al.: Cloud-Cyber Physical Systems: Enhanced Metaheuristics with Hierarchical Deep Learning … 

 

Cloud-Cyber Physical Systems: Enhanced 
Metaheuristics with Hierarchical Deep 
Learning-based Cyberattack Detection 

 

Ahmad Taher Azar 

College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia | 
Automated Systems and Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh, Saudi Arabia | 
Faculty of Computers and Artificial Intelligence, Benha University, Egypt 
aazar@psu.edu.sa 
 
Syed Umar Amin 

Automated Systems and Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh, Saudi Arabia | 
College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia  
samin@psu.edu.sa 
 
Mohammed Abdul Majeed 

Department of Cybersecurity and Cloud Computing Technical Engineering, Uruk University, Baghdad, 
Iraq  
mmajeed91@uruk.edu.iq 
 
Ahmed Al-Khayyat 

College of Technical Engineering, The Islamic University of Najaf, Iraq | College of Technical 
Engineering, The Islamic University of Al Diwaniyah, Iraq | College of Technical Engineering, The 
Islamic University of Babylon, Iraq 
ahmedalkhayyat85@gmail.com  
 
Ibraheem Kasim Ibraheem 

Department of Electrical Engineering, College of Engineering, University of Baghdad, Iraq 
ibraheemki@coeng.uobaghdad.edu.iq (corresponding author) 

Received: 3 July 2024 | Revised: 21 July 2024 | Accepted: 29 July 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8286 

ABSTRACT 

Cyber-Physical Systems (CPS) integrate several interconnected physical processes, networking units, and 

computing resources, along with monitoring the processes of the computing system. The connection 

between the cyber and physical world creates threatening security problems, particularly with the growing 

complexities of transmission networks. Despite efforts to overcome this challenge, it remains challenging to 

analyze and detect cyber-physical attacks in CPS. This study mainly focuses on the development of 

Enhanced Metaheuristics with Hierarchical Deep Learning-based Attack Detection (EMHDL-AD) method 

in a cloud-based CPS environment. The proposed EMHDL-AD method identifies various types of attacks 

to protect CPS. In the initial stage, data preprocessing is implemented to convert the input dataset into a 

useful format. Then, the Quantum Harris Hawks Optimization (QHHO) algorithm is used for feature 

selection. An Improved Salp Swarm Algorithm (ISSA) is used to optimize the hyperparameters of the HDL 

technique to recognize several attacks. The performance of the EMHDL-AD algorithm was examined 

using two benchmark intrusion datasets, and the experimental results indicated improvements over other 

existing approaches. 

Keywords-cyber-physical systems; hierarchical deep learning; attack detection; enhanced metaheuristics; 

feature selection 
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I. INTRODUCTION  

Cyber-Physical Systems (CPS) exchange real-time data and 
information between physical and virtual systems [1]. CPS play 
a crucial role in the Internet of Things (IoT) related industries 
and have considerable financial potential. CPS are considered 
to be the communication of computing, physical, and network. 
They have progressed as an Internet of cyber-physical things, 
providing various services such as smart cities, e-commerce, 
smart homes, e-health, etc. [2]. Many industrial equipment is 
controlled wirelessly by implementing CPS, aiding in handling 
large and complicated industrial structures. Interconnected CPS 
elements are highly capable of remotely processing IoT-based 
objects, sensing the surroundings, and having the flexibility to 
alter processes at runtime with real-time computing [3]. A CPS 
can also be embedded in several schemes and used in different 
domains such as military, IT, healthcare, transport, etc. CPS 
enhance production efficiency and quality while exposing 
security problems. The transmission network acts as a 
connection between physical and information systems, which 
becomes a key to system security [4]. Attack detection of 
transmission networks can potentially maintain the privacy of 
the CPS structure. However, it is essential to consider the CPS 
features when setting up targeted attack detection approaches 
[5]. The continuous operation of CPS generates large network 
traffic datasets, increasing computation overhead. Software and 
networks are prone to attackers who try to infiltrate or damage 
CPS-based systems [6]. The executing process of control 
software in cyber systems is disrupted when attackers access 
the network or hold physical systems, causing failure or other 
manipulations [7]. Such assaults on CPS can cause havoc on 
industrialized equipment and processes. 

In [8], Intrusion Detection Systems (IDSs) were studied, 
demonstrating the increased performance of Machine Learning 
(ML) methods [8]. Intrusion detection utilizes software and 
hardware to detect intrusions in networks. The deployment 
process of an established model allows for regulating security 
at the network level [9]. IDSs are of 2 types, host- and network-
based. Online data have been employed to extract features for 
classification-based identification techniques [10]. ML 
techniques, which include unsupervised and supervised 
methods, in addition to Deep Learning (DL), are frequently 
used in ID systems. This study focuses primarily on the 
development of Εnhanced Μetaheuristics with a Ηierarchical 
DL-based Αttack Δetection (EMHDL-AD) approach in a 
cloud-based CPS environment. At first, data preprocessing was 
implemented to convert the input dataset into a useful format. 
The Quantum Harris Hawks Optimization (QHHO) algorithm 
was then used for Feature Selection (FS). Lastly, an Improved 
Salp Swarm Algorithm (ISSA) was used with the HDL 
classifier to detect attacks. The performance of the proposed 
EMHDL-AD method was examined using two benchmark 
datasets. 

II. RELATED WORKS 

Artificial intelligence is rapidly revolutionizing the world 
by improving efficiency, production, and decision-making 
across industries. It automates tedious processes, allowing 
people to focus on more strategic and creative work. 

Furthermore, its ability to rapidly and precisely evaluate large 
datasets drives advances in technology, healthcare, finance, and 
other fields [11-13]. AI can offer more personalized services, 
greater safety, and a smarter society with better infrastructure 
and quality of life. ML and DL are at the heart of these 
breakthroughs, with applications in healthcare, finance, retail, 
manufacturing, and beyond [14-17]. To greatly increase 
anomaly detection rates, improve industrial CPS performance, 
and resolve challenges, a knowledge distillation method was 
proposed in [18] based on a triplet CNN. A robust system loss 
function was considered during training to increase the training 
stability of the model, along with k-fold cross-validation to 
increase the performance of anomaly detection. In [19], an 
industrial CPS IDS was proposed based on the diffusion model 
(IDD). In [20], an ideal DBN-based distributed IDS (ODBN-
IDSs) was presented to secure a CPS platform [20]. This study 
used a Binary Flower Pollination Algorithm (BFPA) to select 
features, which were then used in a DBN to detect intrusions. 
The hyperparameters of the DBN were fine-tuned using the 
Equilibrium Optimizer Algorithm (EOA). In [21], an AI-based 
Multi-Modal Fusion-based IDS (AIMMF-IDS) was proposed 
for industrial CPS, using an enhanced Fish Swarm Optimizer 
FS (IFSO-FS). Using the Levy Flight (LF) idea as the orthodox 
FSO process search method, this system could avoid getting 
stuck in local optima. 

In [22], an IDS approach was presented based on cognitive 
computing to improve security in industrial CPS. Preprocessing 
was used to remove noise from the data. Next, a Binary 
Bacterial Foraging Optimizer (BBFO) was used for FS, and 
GRU was applied to detect intrusions. Lastly, the NADAM 
optimizer was used to fine-tune the hyperparameters of GRU 
and improve detection rates. In [23], a strong AD technique 
was devised based on a semi-supervised ML algorithm that 
enables near real-time attack detection. A DNN model was 
employed to detect anomalies based on reconstructed errors. In 
[24], DeepFed was proposed to detect cyber threats in CPS. A 
new DL-based identification model was designed for industrial 
CPS using a CNN and a GRU, and an FL structure was 
developed, building a complete detection method in a privacy-
preserving way. DL and ML methods on cyber-physical attacks 
were investigated in [1, 5, 6, 9, 25-28], while works on 
intrusion detection in CPSs can be found in [3, 7, 8, 10, 29, 30]. 
In [31], a survey on security and privacy issues was presented. 
The application of swarm optimization algorithms in the 
detection of cyberattacks in cloud-cyber physical systems was 
studied in [28, 32-38]. Table I summarizes key studies. 

TABLE I.  SUMMARY OF KEY STUDIES REVIEWED 

Study Methodology Findings 

Forest-
PA 

Utilizes the forest algorithm 
with PA rules 

Effective for certain types of 
attacks but prone to local optima 

WISARD 
Employs WISARD weightless 

neural network 
Good initial results but lacks 

scalability 

AE-RF 
Combines autoencoder with 

random forest 

Improved detection accuracy but 
suffers from low population 

diversity 

LIB-
SVM 

Uses Support Vector Machine 
with LIBRARY optimizations 

High accuracy with optimized 
hyperparameters but limited by 

static settings 

FURIA 
Fuzzy Unordered Rule 
Induction Algorithm 

Flexible rule-based system but 
suboptimal feature selection 
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This study describes a novel cloud-based CPS intrusion 
detection method, called EMHDL-AD, to identify attacks on 
various platforms. Data preparation employs the QHHO 
method to select features. ISSA is used to optimize the hybrid 
deep-learning approach parameters for intrusion detection. 
Benchmark tests demonstrated that EMHDL-AD outperformed 
previous models in accuracy, recall, and F1 score, obtaining 
results up to 99.55%. The proposed approach showed better 
results with greater TRAC/VDAC but lower TRLS and VDLS. 
Most impressively, ISSA improved global search/classification 
performance while preventing local optima and increasing 
population diversity. This shows the potential of EMHDL-AD 
as a weapon against cyber attacks in CPS contexts, such as 
cloud-based systems. 

III. MOTIVATION FOR EMHDL-AD 

A. Limitations and Challenges of Existing Approaches 

Existing approaches for attack detection on cloud-based 
CPS platforms, such as Forest-PA, WISARD, AE-RF, LIB-
SVM, and FURIA models, exhibit several limitations that the 
proposed EMHDL-AD method aims to address: 

 Local Optima Problem: Many traditional algorithms, such 
as Forest-PA and WISARD, often get trapped in local 
optima, reducing their effectiveness in finding the global 
optimum solution. EMHDL-AD incorporates chaotic 
sequences in the ISSA iterative mapping to enhance global 
search ability and avoid local optima. 

 Population Diversity: Techniques such as AE-RF and LIB-
SVM may suffer from low population diversity, which can 
limit their ability to effectively explore the search space. 
EMHDL-AD improves population diversity by using ISSA-
based hyperparameter optimization, ensuring a more robust 
search process and better overall performance. 

 Hyperparameter Optimization: Existing models like FURIA 
often rely on static or poorly optimized hyperparameters, 
which can limit their classification accuracy. EMHDL-AD 
employs ISSA for dynamic hyperparameter optimization, 
significantly enhancing attack detection performance. 

 Feature Selection (FS): Many traditional methods do not 
efficiently select the most relevant features, leading to 
suboptimal performance. EMHDL-AD uses the QHHO 
algorithm for effective FS, which helps to identify the best 
subset of features for improved attack detection. 

 Scalability: Traditional approaches may struggle with 
scalability when applied to large datasets. Advanced 
preprocessing and FS mechanisms ensure that it can handle 
large datasets more effectively. 

By addressing these specific limitations and challenges, the 
proposed EMHDL-AD method offers a more robust and 
efficient solution for attack detection on cloud-based CPS 
platforms, showcasing superior performance compared to 
existing techniques. 

B. Novelty and Contributions of EMHDL-AD  

The proposed EMHDL-AD method introduces several 
novel contributions to the field of attack detection on cloud-
based CPS platforms: 

 Enhanced Population Diversity with ISSA: EMHDL-AD 
employs ISSA, which incorporates chaotic sequences into 
the iterative mapping process. This enhancement 
significantly improves global search ability and population 
diversity, preventing the algorithm from getting trapped in 
local optima. 

 Dynamic Hyperparameter Optimization: Unlike existing 
methods that rely on static or poorly optimized 
hyperparameters, EMHDL-AD uses ISSA for dynamic 
hyperparameter optimization. This approach ensures that 
the hyperparameters are continuously optimized during the 
training process, leading to superior attack detection 
performance. 

 Effective FS with QHHO: Integrating the QHHO algorithm 
for FS allows the method to efficiently identify the most 
relevant features, reducing data dimensionality and 
enhancing the accuracy and efficiency of the detection 
process. 

 Scalability to Large Datasets: Advanced preprocessing and 
feature selection mechanisms ensure scalability when 
applied to large datasets. This ability is demonstrated by the 
EMHDL-AD method's performance on benchmark datasets 
such as CICIDS2017 and NSLKDD2015, where it exhibits 
superior detection results compared to existing approaches. 

 Robust Performance Metrics: Comprehensive experimental 
results show that EMHDL-AD consistently outperformed 
traditional models, such as Forest-PA, WISARD, AE-RF, 
LIB-SVM, and FURIA, in terms of accuracy, precision, 
recall, and F1-score. This robust performance across 
various metrics highlights the efficacy of the proposed 
method in real-world attack detection scenarios. 

C. Potential Impact and Real-World Applications of EMHDL-
AD 

The EMHDL-AD method has a significant potential impact 
and wide-ranging real-world applications in securing CPS 
environments. Some key areas of impact and application are: 

 Industrial Control Systems (ICSs): The EMHDL-AD 
method can be applied to detect cyber-attacks in ICSs such 
as SCADA (Supervisory Control and Data Acquisition) and 
DCS (Distributed Control Systems). By ensuring real-time 
monitoring and detection of malicious activities, it helps 
prevent disruptions in critical infrastructure sectors such as 
power generation, water treatment, and manufacturing. 

 Smart Grids: With the integration of advanced metering 
infrastructure and distributed energy resources, smart grids 
are highly susceptible to cyber-attacks. EMHDL-AD can 
enhance the security of smart grids by identifying and 
mitigating potential threats, ensuring the stability and 
reliability of the power supply. 
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 Healthcare Systems: The increasing adoption of CPS in 
healthcare, such as IoT-enabled medical devices and 
telemedicine platforms, requires robust security measures. 
EMHDL-AD can be employed to protect sensitive patient 
data and ensure the safe operation of medical devices, thus 
enhancing the overall security of healthcare systems. 

 Transportation Systems: Modern transportation systems, 
including autonomous vehicles and intelligent 
transportation infrastructure, rely heavily on CPSs. 
EMHDL-AD can provide advanced threat detection 
capabilities to protect against cyber-attacks that could 
disrupt transportation services or compromise passenger 
safety. 

 Smart Cities: As cities become smarter with the deployment 
of IoT devices and CPS for services such as traffic 
management, public safety, and utility management, 
EMHDL-AD can be instrumental in securing these systems 
against cyber threats, ensuring seamless and secure 
operation of smart city services. 

 Cloud-Based CPS Platforms: EMHDL-AD is particularly 
suited for cloud-based CPS platforms, where scalability and 
efficient processing of large datasets are crucial. By 
providing robust attack detection mechanisms, it enhances 
the security of cloud-hosted CPS applications across 
various domains. 

The practical relevance and importance of the EMHDL-AD 
method are underscored by its ability to provide a 
comprehensive and scalable solution to protect CPS 
environments against evolving cyber threats. This method not 
only improves detection accuracy and efficiency but also 
ensures the reliability and safety of critical systems in real-
world applications. 

IV. THE PROPOSED SYSTEM 

This study proposes the EMHDL-AD method for cloud-
based CPS platform attack detection consisting of four stages 
of operations, namely data preprocessing, QHHO-based FS, 
HDL-based attack detection, and ISSA-based hyperparameter 
optimization. Figure 1 represents the working process of the 
EMHDL-AD algorithm.  

A. Data Preprocessing 

Data preprocessing was performed to convert the input 
dataset into a useful format. The proposed method converts the 
input dataset to a suitable form using the min-max data 
normalization to scale feature ranges between 0 and 1. 

�� = �����	�
�	����	    (1) 

where ��� and ����  denote the maximum and minimum 
values of � and � and �� represent its original and normalized 
values. 

 
Fig. 1.  The overall process of EMHDL-AD. 

B. Feature Selection Using the QHHO Algorithm 

QHHO is used to generate the best feature subset. The 
hunting habits of Harris hawks are used to mimic the HHO 
algorithm [39]. HHO uses two distinct strategies, exploration 
and exploitation, to simulate cooperative hunting. 

� = 2�� �1 − ���    (2) 

where �  denotes the prey's escape energy, and HHO 
understands the transition from the exploration to the 
exploitation stage based on it. ��  indicates the prey's 
fundamental energy state, which varies arbitrarily in [−1, 1] at 
each iteration. The mathematical equation is �� = 2 ∗  ��! −1 , where  ��!  represents a uniformly distributed random 
integer in the range of zero and one, and " and # specify the 
existing and the maximum amount of iterations. 

1) Exploration Phase 

If |�| ≥ 1, hawks enter the exploration stage. They might 
monitor and stalk prey with their companions, or they might 
randomly perch in tall trees in search of prey. Assume that the 
location choice can be made between the two following 
approaches with equivalent probability: 
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&�'(�,) = *&�+
�,,) −  (|&�+
�,,) − 2 -&��,)| . ≥ 0.5(&�3+45,) − &�
�,)) −  7[89) +  ;(<9) − 89))] . < 0.5      (3) 

where &��,) and &�'(�,)  denote the present location of the th hawk 
at the ?th parameter and the location at the following iteration, 
respectively,  ∈ [1,  A3B3],  ? ∈ [1, C�] . A3B3  indicates the 
overall amount of hawks, and C� denotes the dimension of 
the respective problem. &�+
�,,) and &�3+45,) denote the location 
of the hawk and the prey that are chosen randomly at the ?th 
variable, correspondingly.  (,   -,   7,   ; , and .  denote five 
dissimilar random integers ranging from zero to one. 89)  and <9)  indicate the lower and upper boundaries of the search 
range at the  ? th parameter, and &�
�,)  indicates the present 
average location of hawks at the ?th variable as follows: 

&�
�,) = (DEFE ∑ &��,)D�H(     (4) 

C. Exploitation Phase 

If |�| < 1, then hawks are in the exploitation stage. Here, 
they perform a raid, hunting on the observed prey observed. 
However, in the hunting process, the prey tries to escape from 
the hunt. Hence, Harris hawk adopts various pursuit methods 
for the escaping behavior of the prey. HHO develops a four-
hunting tactic for stimulating the hunting and chasing 
behaviors, which exploits the escape probability   and the 
escape energy � for determining which strategy to adopt. The 
integration of escape probability �  and escape energy   in 
EMHDL-AD involves a synergistic approach that leverages 
both parameters to enhance the overall optimization strategy: 

 Early stages: At the early stages of the optimization, high � 
and   values promote extensive exploration, allowing the 
algorithm to search a wide array of potential solutions. This 
phase is crucial for identifying diverse regions of the search 
space that may contain global optima. 

 Middle stages: As the process continues, �  and   are 
gradually adjusted based on the convergence rate and the 
quality of solutions. This adjustment ensures a balanced 
approach where the algorithm can still explore new 
solutions while beginning to exploit promising areas. 

 Final stages: In the final stages, lower �  and   values 
concentrate the search around the most promising solutions, 
ensuring thorough exploitation and fine-tuning. This phase 
is essential for achieving high precision and accuracy in the 
final solution. 

By adopting this strategy, EMHDL-AD effectively 
balances exploration and exploitation, leading to improved 
performance in FS and cyberattack detection. The dynamic 
adjustment of � and   ensures that the optimization process is 
both comprehensive and efficient, ultimately enhancing the 
robustness and reliability of the proposed method. 

If both |�|  and   are less than 0.5, the prey will have 
enough energy to hop away at random, but not before the 
hawks have surrounded it. The hawk now employs gentle 
besiege to successfully hunt by taking advantage of the prey's 

physical strength. This tactic may be represented 
mathematically using: 

&�'(�,) = I&�) − � × KLM�N&�3+45,) − &��,)K  (5) 

I&�) = &�3+45,) − &��,)    (6) LM�N = 2(1 −  O)    (7) 

where I&�)  denotes the distance between the prey's present 
location at the ?th parameter and the existing location of the th 
hawks,  O shows the randomly produced number within [0, 1], 
and LM�N  signifies random jump concentration that differs 
randomly within [0, 2] at every iteration. 

If |�| < 0.5  and  ≥ 0.5 , then they don't have adequate 
energy to escape. The hawk has surrounded the prey and 
chooses a hard besiege and faster raid hunt. The process 
description of this strategy is given below: 

&�'(�,) = &�3+45,) − � × KI&�)K   (8) 

If |�| ≥ 0.5 and   <  0.5, the prey has enough energy to 
escape the siege and moves in a zigzag pattern. Now, the Harris 
hawk continues to consume the energy of the prey and 
establishes a complete encircle. 

&�'(�,) = *P�'(�,)  Q Q(P�'(�,) ) < Q(&��,))R�'(�,)  Q Q(R�'(�,) ) < Q(&��,))  (9) 

P�'(�,) = &�3+45,) − � × KSM�N&�3+45,) − &��,)K (10) 

R�'(�,) = P�'(�,) + T) × 8)     (11) 8) ∼ 8V(W ) , X) , Y))    (12) 

where T)  denotes a random integer, and 8V(∙)  indicates the 
Lévy flight function: 

8V(M) , X) , Y)) = 0.01 × [\×]
|^\| _̀a   (13) 

b = ( c(('d)×efg�hì �
c�_j`i �×d×-k`l_i m)_̀     (14) 

where M  and X  are random values within (0, 1, M ∼ A(0, n-), X ∼ A(0,1)) default Y = 1.5. 
If |�| < 0.5  and  < 0.5 , then the prey does not have 

adequate energy to escape. However, the hawks don't fully 
encircle them. Hence, they select these strategies to shorten and 
accelerate the average location distance between them. This 
model can be expressed as follows: 

&�'(�,) = *P�'(�,) Q Q(P�'(�,) ) < Q(&��,))R�'(�,) Q Q(R�'(�,) ) < Q(&��,))  (15) 

P�'(�,) = &�3+45,) − � × KLM�N&�3+45,) − &�
�,)K (16) 

R�'(�,) = P�'(�,) + T) × 8)     (17) 
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The QHHO technique can be derived using the quantum 
computing concept to increase the performance of the HHO 
technique. Quantum computing uses concepts of quantum 
mechanisms such as entanglement, quantum gate, and state 
superposition. The building block in quantum computation is a o‐bit that ranges within |1 >,  |0 >, or superposition state |0 > 
and  |1  > . It is formulated by the incorporation of states |0 > ��! 1 >: |o >= q|0 > +Y|1 > such that |q|- + |Y|- = 1 (18) 

where q and Y are complex numbers. 

A Fitness Function (FF) is used to balance the classification 
accuracy (maximal) attained and the FS counts (minimal) in 
every solution (minimal). Equation (19) represents the FF used 
to estimate the solution. 

r"�stt = quv(C) + Y |v||w|   (19) 

where uv(C) indicates the classification error rate, |x| denotes 
the cardinality of the subset chosen, |y|  shows the total 
quantity of features in the given data, and q and Y represent the 
two parameters respective to the importance of classification 
quality and subset length. � ∈  [1,0] and Y = 1 − q. 
D. Optimal HDL-based Attack Detection 

ISSA with HDL was used for attack detection. BiLSTM 
encompasses forward and backward LSTM [40]. The backward 
and forward LSTM hidden layers are used for backward and 
forward feature extraction. BiLSTM considers the effect of all 
the attributes before and after the sequence dataset. Therefore, 
wide-ranging feature data can be attained. The state of 
BiLSTM at " time involves backward and forward outputs. 

ℎ�{B+|
+, = 8T#}{B+|
+,(ℎ��(, �� , y��() (20) 

ℎ�~
����
+, = 8T#}~
��|
+,(ℎ��(, �� , y��() (21) 

�� = �ℎ�{B�
+,, ℎ�~
��
+,�   (22) 

BiLSTM and CNN are representatives of DL. CNN feature 
extraction works in the spatial dimension. BiLSTM can 
preserve the context of past data for a longer time and realize 
the extraction of data features. The study integrated CNN with 
Bi-LSTM to extract features and create a deep hierarchical 
network system. 

Simultaneously, temporal and spatial features are extracted 
by generating a hierarchical network structure that integrates 
CNN with BiLSTM. Since BiLSTM and CNN inputs have 
various types, the spatial feature extracted was tuned to the 
output of CNN to fulfill the Bi-LSTM input. The input size is 
set to 64, and the time step is fixed to 2 while being fed as an 
input layer of the BiLSTM. The output of the fully connected 
layer of CNN is 1×128. Both layers of the BiLSTM unit 
implement temporal feature extraction. The initial hidden layer 
uses 128 neurons and the following uses 64. The sigmoid 
activation function is applied to implement the nonlinear 
operation. The outcome of every recursive operation of the Bi-
LSTM is a combination of each current and the previous 
features. One fully connected layer was interconnected after the 
output layer of Bi-LSTM, the formerly extracted feature was 

incorporated, and the output value of the final fully connected 
layer was distributed to softmax for classification. 

E. Hyperparameter Tuning 

Lastly, ISSA was used to optimize the hyperparameter of 
the HDL technique to recognize several attacks. Salps live in 
groups of smaller pelagic gelatinous chordates critical for 
greenhouse gas supply to the ocean [41], and a billion clusters 
collectively form a group called a salp chain. SSA mimics the 
swarm behaviors of salps. The leader and followers have two 
different roles in the salp chain. The leader leads the whole 
population, whereas the follower follows consecutively. This 
leadership strategy can be represented by 

�)( �r) + �( ��M�) − ��)��- + ��)� �7 ≥ 0.5
r) − �( ��M�) − ��)��- + ��)� �7 ≤ 0.5 (23) 

where &)(  denotes the ? th parameter of the leader, r)  specifies 
the food source, and M�)  and ��) indicate the upper and lower 
boundaries from the ? th parameter. Moreover, �- ∈ [0,1], �7 ∈ [0,1] , and �(  are the key parameters to maintain the 
balance. This is expressed as 

�( = 2s�( ���� ��� ���)i
    (24) 

where r�t represents the existing amount of calculations and }��r�t  denotes the maximal amount of calculations. The 
followers can be represented as 

&)� = ��\al_'�\a�-     (25) 

SSA is a metaheuristic approach that implements random 
initialization and can mitigate local optima problems, enhance 
the diversity of the population, make the algorithm find the 
optimum solution more rapidly, and improve global search 
ability. Chaotic sequences have randomness and outstanding 
ergodicity. Furthermore, their pseudo-randomness provides 
stronger uniformity and is equally distributed all over the 
search space. Therefore, as a form of a chaotic graph, in ISSA, 
Iterative Mapping (IM) is used in the initial phase of SSA to 
generate random solutions to improve global search ability and 
population diversity to avoid local optima. The IM definition 
can be given by 

&�'( = t� �~�� �    (26) 

where �  is randomly generated within [0,1] . Figure 2 
demonstrates the steps included in ISSA. 

Algorithm 1: Salp Swarm Algorithm AN: population size 
Initialize the location of the population; 

Calculate the fitness of all individuals; 

Set the better agent as FoodPosition (r) 
and the better fitness as FoodFitness; 

While r�t ≤ }��r�t 
  Evaluate �(; 
  For  = 1: AN 
    If  ≤ AN/2 
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      Arbitrarily compute  ( and  -; 
      Evaluate the leader; 

    Else if  < AN + 1 &&  > AN/2 
      Evaluate the followers; 

    End if 

  End for 

  Compute if the individuals are beyond  

  the upper and lower boundaries; 

  Assess the fitness of the population; 

  Upgrade FoodPosition (F) and 

  FoodFitness; 

End while 

Return r 
 

 
Fig. 2.  Steps involved in ISSA. 

ISSA not only derives a fitness function to obtain a higher 
classification performance but also describes a positive integer 
to symbolize better outcomes for the solution candidate. The 
decline of the classifier error rate is taken as the fitness 
function. Q"�stt(��) = y��ttQs �  � x�"s(��)  

    = �[�~4+ B{ �����
���{�4, �
�3�4��B�
� �[�~4+ B{ �
�3�4� ∗ 100  (27) 

V. EXPERIMENTAL VALIDATION 

The attack detection performance of the EMHDL-AD 
algorithm was examined using two datasets, as shown in Table 
I. The NSLKDD2015 dataset comprises 67,343 normal 
instances and 58,630 abnormal instances. Likewise, the 
CICIDS2017 dataset includes 50,000 normal and 50,000 
abnormal instances.  

TABLE II.  DATASET DETAILS 

Class 
Number of Instances 

NSLKDD 2015 CICIDS 2017 

Normal 67343 50000 
Anomaly 58630 50000 

Total 125973 100000 

 

Figure 3 and Table II show the attack detection results on 
the NSLKDD2015 dataset. The experimental results indicate 
that EMHDL-AD achieved enhanced performance in all 
aspects. On the total dataset, the EMHDL-AD approach 
attained average ���M~
�  of 99.51%, N s��  of 99.50%,  s���  
of 99.51%, r��B+4  of 99.51%, and �<y��B+4  of 99.51%. 
Meanwhile, on 70% of the training set (TR), EMHDL-AD 
achieved average ���M~
�  of 99.49%, N s�� of 99.49%,  s��� 
of 99.49%, r��B+4  of 99.49%, and �<y��B+4  of 99.49%. On 
30% of the test set (TS), EMHDL-AD achieved an average 
���M~
�  of 99.55%, N s�� of 99.55%,  s��� of 99.55%, r��B+4 
of 99.55%, and �<y��B+4  of 99.55%. Figure 4 shows the 
EMHDL-AD approach's training accuracy (TRAC) and 
validation accuracy (VDAC) on the same dataset. Due to the 
higher TRAC and VDAC values, the results indicate that 
EMHDL-AD provides a better solution. Figure 5 shows the 
training loss (TRLS) and validation loss (VDLS) of EMHDL-
AD on the same dataset, indicating how the proposed method 
achieves superior results with reduced TRLS and VDLS 
values. Figure 6 shows a clear precision-recall (PR) assessment 
of the proposed method on the NSLKDD2015, indicating PR 
values that were at their maximum across all classes.  

 

(a) 

 

(b) 

 

(c) 

 

Fig. 3.  Confusion matrices of EMHDL-AD on NSLKDD2015: (a) Entire, 
(b) 70% of TR set, and (c) 30% of TS set.  
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Fig. 4.  EMHDL-AD results for TRAC and VDAC on NSLKDD2015. 

 
Fig. 5.  EMHDL-AD results for TRLS and VDLS on NSLKDD2015. 

 
Fig. 6.  PR analysis of EMHDL-AD on the NSLKDD2015. 

Figure 7 shows the attack detection results achieved on the 
CICIDS2017 dataset. The confusion matrices show that the 
EMHDL-AD algorithm correctly recognized the normal and 
anomaly instances on the CICIDS2017 dataset. Table IV shows 
the EMHDL-AD method's classification results on the 
CICIDS2017 dataset, indicating that it performed better in all 
aspects. On the total database, EMHDL-AD accomplished 
average ���M~
�  of 99.21%, N s��  of 99.21%,  s���  of 
99.21%, r��B+4  of 99.21%, and �<y��B+4  of 99.21%. 
Meanwhile, on 70% of the TR set, EMHDL-AD attained 

average ���M~
�  of 99.18%, N s��  of 99.18%,  s���  of 
99.18%, r��B+4  of 99.18%, and �<y��B+4  of 99.18%. 
Furthermore, on 30% of the TS set, EMHDL-AD accomplished 
average ���M~
�  of 99.27%, N s��  of 99.27%,  s���  of 
99.27%, r��B+4 of 99.27%, and �<y��B+4  of 99.27%. 

TABLE III.  EMHDL-AD RESULTS ON NSLKDD2015 

Class  ��� ¡ ¢£¤�¥ ¦¤�§¨ ©ª�«£¤ �¬ª�«£¤ 

Entire Dataset 

Normal 99.51 99.57 99.51 99.54 99.51 
Anomaly 99.50 99.44 99.50 99.47 99.51 
Average 99.51 99.50 99.51 99.51 99.51 

Training Phase (70%) 
Normal 99.51 99.54 99.51 99.52 99.49 

Anomaly 99.47 99.43 99.47 99.45 99.49 
Average 99.49 99.49 99.49 99.49 99.49 

Testing Phase (30%) 
Normal 99.53 99.63 99.53 99.58 99.55 

Anomaly 99.57 99.47 99.57 99.52 99.55 
Average 99.55 99.55 99.55 99.55 99.55 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 7.  Confusion matrices of EMHDL-AD on CICIDS2017: (a) Entire, 
(b) 70% of TR set, and (c) 30% of TS set.  
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TABLE IV.  EMHDL-AD RESULTS ON CICIDS2017 

Class  ��� ¡ ¢£¤�¥ ¦¤�§¥ ©ª�«£¤ �¬ª�«£¤ 

Entire Dataset 

Normal 99.07 99.34 99.07 99.21 99.21 
Anomaly 99.35 99.07 99.35 99.21 99.21 
Average 99.21 99.21 99.21 99.21 99.21 

Training Phase (70%) 
Normal 99.03 99.32 99.03 99.18 99.18 

Anomaly 99.33 99.04 99.33 99.18 99.18 
Average 99.18 99.18 99.18 99.18 99.18 

Testing Phase (30%) 
Normal 99.15 99.40 99.15 99.28 99.27 

Anomaly 99.39 99.13 99.39 99.26 99.27 
Average 99.27 99.27 99.27 99.27 99.27 

 
Figure 8 describes the TRAC and VDAC of EMHDL-AD 

on CICIDS2017, showing high values. Figure 9 shows the 
TRLS and VDLS of the EMHDL-AD method on the same 
dataset, indicating higher performance with reduced TRLS and 
VDLS values. Figure 10 shows a clear PR examination of the 
proposed approach on the same dataset, showing increased PR 
values for the two classes. 

 

 
Fig. 8.  TRAC and VDAC results of EMHDL-AD on CICIDS2017. 

 
Fig. 9.  TRLS and VDLS results of EMHDL-AD on CICIDS2017. 

The superior performance of EMHDL-AD can be 
illustrated by the comparison in Table IV and Figure 11 [42]. 
This comparison shows the least efficiency of the Forest-PA 
and WISARD techniques. The AE-RF, LIB-SVM, and FURIA 

models achieve reasonably closer attack detection results. 
However, EMHDL-AD achieved superior outcomes over 
existing techniques with maximum N s�� of 99.55%,  s��� of 
99.55%, ���M5 of 99.55%, and r1��B+4  of 99.55%.  

 

 
Fig. 10.  PR results of EMHDL-AD on CICIDS2017. 

TABLE V.  COMPARISON OF EMHDL-AD WITH OTHER 
RECENT METHODS 

Methods ¢£¤�¥ ¦¤�§¨ ��� ¡ ©®ª�«£¤ 

EMHDL-AD 99.55 99.55 99.55 99.55 
FURIA Model 97.51 97.35 99.21 98.95 
GSAE Model 96.69 99.48 97.93 97.45 
AE-RF Model 97.59 98.92 97.43 97.85 

LIB-SVM Model 97.53 98.09 97.21 98.15 
Forest-PA Model 97.75 97.06 96.47 98.61 
WISARD Model 97.39 96.95 96.09 99.48 

 

 
Fig. 11.  ���M5 comparison of EMHDL-AD with other recent techniques. 

VI. FUTURE TRENDS AND RESEARCH DIRECTIONS 
IN CPS SECURITY 

The field of CPS security is rapidly evolving, driven by the 
increasing integration of CPSs into various sectors and the 
corresponding increase in cyber threats. Future research on 
CPS security is expected to focus on several key areas: 

 AI and ML: The application of AI and ML techniques for 
real-time threat detection and response will continue to be a 
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major trend. Advances in DL, reinforcement learning, and 
anomaly detection will enhance the capability of CPSs to 
autonomously detect and mitigate threats. 

 Blockchain Technology: Blockchain offers a decentralized 
and tamperproof solution to secure data transactions in 
CPSs. Future research will likely explore the integration of 
blockchain with CPS to ensure data integrity, 
authentication, and secure communication. 

 Quantum Computing: As quantum computing becomes 
more accessible, its impact on CPS security will be 
significant. Research should focus on developing quantum-
resistant cryptographic algorithms and leveraging quantum 
computing for enhanced security measures. 

 Edge and Fog Computing: The shift towards edge and fog 
computing in CPS aims to reduce latency and improve real-
time processing. Future research should address the security 
challenges associated with decentralized data processing 
and develop robust security frameworks for such computing 
environments. 

 IoT Security: The proliferation of IoT devices within CPS 
requires comprehensive security solutions. Future trends 
should involve the development of lightweight encryption 
algorithms, secure boot mechanisms, and robust device 
authentication protocols. 

 Standardization and Policy Development: As CPSs become 
more ubiquitous, the need for standardized security 
protocols and policies will grow. Research should focus on 
creating universally accepted security standards and 
guidelines to ensure consistent protection across different 
CPS implementations. 

 Human Factors and Usability: Understanding human 
factors in CPS security, including user behavior, awareness, 
and training, is crucial. Research should aim to develop 
user-friendly security mechanisms that do not compromise 
usability while ensuring robust protection. 

 Cross-Domain Security Solutions: CPSs are often part of 
larger, interconnected systems spanning multiple domains 
(e.g., smart cities, healthcare, transportation). Future 
research should focus on developing cross-domain security 
solutions that provide holistic protection for integrated CPS 
environments. 

These emerging trends and research directions will shape 
the future of CPS security, ensuring that systems remain 
resilient against evolving cyber threats while maintaining 
operational efficiency and reliability. 

VII. CONCLUSION 

This study proposed the EMHDL-AD method for securing 
cloud-based CPS. The proposed method combines data 
preprocessing, QHHO for FS, and ISSA with a hierarchical DL 
classifier for effective cyberattack detection. The proposed 
EMHDL-AD method was evaluated using two benchmark 
intrusion datasets, and the results demonstrated significant 
improvements over existing approaches. The method achieved 
high accuracy, precision, recall, and F1-score, indicating its 

robustness and effectiveness in detecting various types of 
cyberattacks. Despite the promising results, the study has 
certain limitations: 

 Dataset Diversity: Evaluation was carried out using specific 
benchmark datasets, which may not cover all possible 
attack scenarios. Future research should include a broader 
range of datasets to validate the method's generalizability. 

 Computational Complexity: The proposed method involves 
complex computations for FS and hyperparameter 
optimization, which can result in increased processing time 
and resource consumption. Optimizing the computational 
efficiency of the method is a potential area for future work. 

 Real-world Deployment: The method was tested in a 
controlled experimental environment. Real-world 
deployment may present additional challenges, such as 
handling noisy data, adapting to evolving attack patterns, 
and integrating with existing security infrastructure. 

The findings of this study have several important 
implications for the security of CPS: 

 Enhanced Security Measures: The improved detection 
capabilities of the EMHDL-AD method can significantly 
enhance the security of CPS in various domains, including 
industrial control systems, smart grids, healthcare systems, 
and smart cities. 

 Adaptive Detection: The dynamic hyperparameter 
optimization and effective FS mechanisms make the 
method adaptable to different attack types, ensuring robust 
and reliable security in CPS environments. 

 Scalability: The method's ability to handle large datasets 
efficiently makes it suitable for deployment in cloud-based 
CPS platforms, where scalability is crucial. 

Future research should focus on addressing the identified 
limitations and exploring the following areas: 

 Expand Dataset Coverage: Incorporate more diverse 
datasets to test the method's performance across different 
attack scenarios and CPS environments. 

 Optimize Computational Efficiency: Develop techniques to 
reduce computational complexity and improve processing 
speed. 

 Real-world Applications: Implement and test the proposed 
method in real-world CPS environments to evaluate its 
practical applicability and effectiveness. 

In conclusion, the EMHDL-AD method presents a 
promising approach to enhance the security of cloud-based 
CPS, offering robust detection capabilities and adaptability to 
various attack scenarios. Continued research and development 
in this domain could further strengthen the security and 
reliability of CPS in the face of evolving cyber threats. 
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