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ABSTRACT 

The global energy demand of buildings is on the rise, driven by factors such as rapid population growth, 

increasing comfort, technological advances, and ongoing developments in building construction. This 

escalating energy consumption in buildings is a major contributor to the energy crisis and climate change. 

Accurate prediction of building energy consumption is essential for gaining insight into energy utilization, 

reducing waste, and enhancing comfort conditions. This study aimed to introduce a reliable technique for 

predicting and optimizing the energy consumption of residential buildings, with a focus on a case study in 

Kuwait. A robust Artificial Neural Network (ANN) was developed, meticulously trained, and rigorously 

tested to provide accurate energy consumption predictions. Subsequently, an innovative variant of the 

Velocity Pausing Particle Swarm Optimization (VPPSO) algorithm was employed to identify optimal 

energy consumption solutions. This novel optimization technique can achieve significant reductions in 

building energy consumption, with potential savings of up to 43%. Additionally, a sensitivity analysis was 

performed using the Garson method to assess the impact of input parameters on energy utilization. The 

results reveal that the insulation and cooling setpoint exert the greatest influence on the objective function, 

followed by the outdoor airflow. The proposed model, which combines the power of ANN with VPPSO, can 

be applied to similar buildings, offering precise predictions and optimizing energy consumption. This 
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approach holds promise in addressing the pressing challenges of energy efficiency in building 

environments. 

Keywords-building energy consumption; Artificial Neural Network (ANN); VPPSO; optimization; sensitivity 

analysis 

I. INTRODUCTION  

The energy demand of buildings is a pressing global 
concern that has attracted significant attention due to its far-
reaching environmental, economic, and social implications. 
With urbanization and population growth continuing to 
accelerate, the energy consumed by buildings has surged 
dramatically, straining energy resources and exacerbating the 
problem of climate change. Buildings account for a substantial 
portion of global energy-related carbon dioxide emissions, 
underscoring the critical role of energy efficiency in this sector 
in the pursuit of sustainability goals [1]. According to data 
from the International Energy Agency (IEA), buildings 
consume approximately 40% of the world's energy and are 
responsible for almost a third of global greenhouse gas 
emissions [2]. Moreover, the IEA projects that global building 
energy demand is set to increase by 50% by 2050 if substantial 
measures to enhance Energy Efficiency (EE) are not 
implemented promptly. 

EE stands as one of the most promising solutions to the 
world's energy and environmental challenges. Investments in 
EE yield long-term and cumulative benefits in terms of energy 
savings and cost reductions [3]. Among the sectors with 
significant potential for energy savings, the building sector 
emerges as a particularly promising one [4]. Therefore, it has 
become increasingly imperative to predict and comprehend 
building energy consumption to realize EE goals. Experts 
suggest that this sector has the potential to save up to 50% of 
the electrical energy currently utilized [3]. In recent years, the 
prediction and optimization of building energy consumption 
have attracted considerable attention due to the urgent need for 
enhanced EE and sustainable practices. Accurate predictions of 
energy consumption play a crucial role in enabling effective 
energy management and decision-making processes. 
Simultaneously, optimization techniques offer the potential to 
minimize energy usage and reduce environmental impact. In 
this context, the integration of Artificial Neural Networks 
(ANNs) and optimization algorithms has emerged as a 
promising approach to tackle these challenges. 

ANNs have shown remarkable effectiveness in modeling 
and predicting complex systems, including energy consumption 
in buildings [5-7]. Their ability to capture intricate 
relationships between input variables and energy consumption 
patterns makes them a valuable tool for achieving accurate 
predictions. ANNs can analyze huge amounts of data to 
identify patterns and features and, in many cases, can make 
sense of incomplete or inaccurate information. In [8], the most 
significant advantages of ANNs were highlighted as their 
ability to efficiently represent complex problems by 
simplifying certain factors. ANNs have consistently achieved 
success rates ranging from 90 to 99%. In [3], Deep Neural 
Networks (DNN) and ANNs were identified as the most 
effective predictive models for energy consumption, 
particularly in the early design phase, with the lowest Mean 

Squared Error (MSE) values approaching zero. In [9], the 
potential to reduce energy consumption in office buildings was 
evaluated using data-driven models. The findings indicated that 
the ANN approach proved to be the most accurate, with an 
average absolute error of 14.8%. In [10], a comparative 
analysis was performed on the effectiveness of Random Forest 
(RF) and feed-forward back-propagation ANN in predicting 
Heating, Ventilation, and Air Conditioning (HVAC) electricity 
use in a hotel in Spain. ANN exhibited slightly better 
performance compared to RF. In [11], five distinct methods 
were used to predict power usage in an administrative building 
in London. The proposed ANN outperformed the other four 
approaches, including Multiple Regression (MR), Genetic 
Programming (GP), DNN, and Support Vector Machine 
(SVM). Due to their rapid processing, high accuracy, and 
capacity to handle nonlinear relationships between different 
variables, ANN models have become the most widely used 
method in the field of optimizing building performance [12]. 

ANN research has experienced remarkable growth, finding 
extensive applications in various aspects related to building 
energy consumption [13]. ANNs have proven to be a valuable 
tool in predicting thermal needs for both residential and 
commercial buildings, including heating and cooling 
requirements, optimizing HVAC systems, and achieving 
energy savings [14-16]. Additionally, ANNs play a crucial role 
in predicting and analyzing electrical energy consumption, 
supporting energy planning, emission reduction, and efficient 
energy use [17-23]. Moreover, ANNs are employed to 
anticipate the thermal insulation features of building materials, 
helping to minimize energy usage by optimizing insulation and 
reducing dependence on HVAC systems [24-26]. The 
versatility and effectiveness of ANNs in these applications 
demonstrate their importance in accurately predicting and 
optimizing energy consumption, contributing to sustainable 
building practices. 

Predicting building energy consumption effectively is 
crucial for optimizing energy use and improving overall energy 
efficiency. The accuracy of energy consumption predictions is 
heavily dependent on the selection of appropriate input 
parameters. These parameters act as the building blocks of 
predictive models, and their relevance and representativeness 
directly influence the model's performance. Choosing the right 
input parameters involves a thorough understanding of the 
building's characteristics, occupancy patterns, and 
environmental factors. Some fundamental input parameters 
include building size, orientation, insulation levels, 
construction materials, HVAC systems, lighting fixtures, and 
number of occupants. Additionally, weather data, such as 
temperature, humidity, and solar radiation, play a crucial role in 
capturing the impact of the external environment on energy 
consumption. Sensitivity analysis is a powerful tool to 
investigate the impact of these factors on building energy 
consumption [27]. By systematically varying individual input 
parameters while keeping others constant, the sensitivity and 
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relative importance of each parameter in the model output can 
be assessed [28]. Sensitivity analysis helps identify which 
parameters significantly influence energy consumption and 
which have a lesser impact. This knowledge enables interested 
parties to prioritize interventions and investments to achieve 
substantial energy savings.  

In [29], a sensitivity and energy analysis was performed to 
explore the influential factors that affect energy consumption. 
This study focused on the building form, geometric variations, 
and materials as crucial factors. The results showed that the 
outer zone had a substantial influence on energy use, whereas 
considering both horizontal and vertical geometries along with 
material choices exhibited similar effects. In [30], the influence 
of weather fluctuations on energy consumption was explored 
by analyzing data collected from two residential houses. The 
second house showed lower sensitivity to changes in weather 
variables compared to a conventional house. Notably, non-
temperature factors such as solar radiation and humidity affect 
energy usage, with the second house consistently showing 
lower sensitivity than the first. Moreover, this study showed 
that the sensitivity of energy consumption to weather 
conditions varies with different seasons and specific times of 
day and night. Additionally, it is important to note that building 
energy consumption is significantly influenced by occupant 
behaviors. In [31], the effects of spatio-temporal occupant 
behavior on energy use in residential buildings were studied. 
The results showed that residential building energy use is 
strongly affected by thermostat setpoints. 

Optimizing building energy consumption is a critical area 
to achieve energy efficiency and sustainability. By employing 
various techniques and strategies, it is possible to optimize 
energy use and minimize waste. Optimization approaches 
include the utilization of advanced algorithms, such as GA, 
Particle Swarm Optimization (PSO), and various ML 
techniques, to explore the vast solution space and identify 
energy-efficient configurations. The objective is to reduce 
energy consumption and operational costs and minimize 
environmental impact by achieving a harmonious balance 
between occupant comfort, operational requirements, and 
energy efficiency. In [32], GA was used to optimize indoor 
lighting in an office setting, achieving enhanced illuminance 
uniformity, reduced luminaire count, and lowered maximum 
Unified Glare Rating (UGR) values. These results serve as 
compelling evidence for the effectiveness of GAs in the field of 
lighting design. In [33], PSO was used to address both single 
and multiple objectives, integrated with EnergyPlus, to 
improve building energy performance. This study emphasized 
the importance of building window size, glazing, wall material 
properties, shading, and orientation in achieving energy 
reduction. The results showed that the optimal design led to a 
reduction of 1.6 to 11.3% in the total annual demand for 
electricity. This optimization approach proved to be a valuable 
and efficient tool, allowing the exploration of optimal solutions 
with conflicting objective functions in a time-saving manner. In 
[34], four optimization algorithms were used, namely PSO, 
GA, Gravitational Search Algorithm (GSA), and Firefly 
Algorithm (FA), and three methods were used to optimize the 
design of a building situated in a calm (low wind speed) and 
hot climate. 

In the context of optimizing building energy consumption, 
ANNs have attracted significant attention among ML methods. 
A literature review [33] revealed a significant increase in the 
integration of ANN models with heuristic optimization 
algorithms since 2017. This combination aims to derive 
optimal renovation strategies or achieve optimal building 
designs, considering the limitations associated with simulation-
based optimization methods. The primary innovations and 
goals of this study can be summarized as follows: 

 Develop, train, and utilize an ANN to accurately forecast 
energy use for an existing building located in Kuwait. 

 Perform an exhaustive sensitivity analysis employing the 
Garson method to assess how input factors influence energy 
consumption. 

 Identify the most influential factors that contribute to 
reducing building energy consumption. 

 Implement the Velocity Pausing PSO (VPPSO) algorithm 
to minimize building energy consumption. The aim is to 
optimize the influential parameters and facilitate the 
identification of optimal solutions. 

 Employing a previously unused VPPSO algorithm in the 
building energy use field achieves higher energy efficiency 
and sustainability in building operations. 

II. DATA SOURCES AND METHOD 

A. Case Study and Dataset 

The data used in this study originate from a two-story 
residential villa situated in Kuwait [35, 36], as shown in Figure 
1. Kuwait is characterized by an arid and hot climate. The 
building has a total floor area of 214 m². The 3D model of the 
case study building was developed using Revit software. 

TABLE I.  KEY CHARACTERISTICS OF THE STUDIED 
RESIDENTIAL BUILDING 

Features  Description 

Location 
Latitude 29.31°N 

Longitude 47.48°E 

Climate zone 
Categorized as 1B according to the ASHRAE 

climate zones classification [37] 

Exterior wall 

Internal gypsum plastering, concrete, 
Extruded Polystyrene (XPS) insulation, and 

layers of brick. 
Wall thickness 30cm 

U-value 0.351W/m²-K 
Roofing  U-value 0.25W/m²-K 

Windows  
Double-glazed windows featuring clear glass 

panels and frames made of Unplasticized 
PolyVinyl Chloride (UPVC). 

Window-to-wall ratio (%) 

17.56 N 
1.99 E  
20.56 S  
4.57 W 

Occupancy  0.229 people/m² 
Cooling setpoint 25°C 

lighting power density  5 W/m² 
Internal equipment power 

density  
3.58 W/m² 

Air conditioning system  Energy Efficiency Ratio (SEER): 18.8 
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Fig. 1.  Axonometric view of the building. 

Table I provides a summary of the building's most notable 
design features, including details about its location, envelope 
characteristics, internal gains, type of air conditioning system, 
and other relevant information. This comprehensive overview 
serves to highlight the key aspects of the building's design and 
systems, enabling a better understanding of its energy 
performance and potential areas for optimization. 

B. ANN Model 

ANN is a nonlinear approach that is mostly used for 
prediction. This artificial intelligence method is derived from 
the biological nervous system to understand information and 
make decisions in a human-like way. ANNs have been 
employed to establish a connection between the input and 
output variables. Using the input dataset for training an 
appropriate ANN structure, output variables can be predicted 

[38]. This study used a three-layer feed-forward ANN. The 
dataset was divided into three sets: training data (70%), 
validation data (15%), and testing data (15%). The Levenberg-
Marquardt algorithm was used as an optimizer for the neural 
network. The input variables considered include insulation 
levels, cooling setpoint, maximum allowable discomfort glare 
index, equipment gains, window solar transmittance, outdoor 
airflow, and economizer maximum limit dry bulb temperature. 
Table II presents the input factors and their minimum, 
maximum, and average values. The objective function is 
energy consumption. Figure 2 illustrates the topology and 
details of the ANN model, showing the input factors and the 
resulting output variable. Training the ANN model on these 
data aims to predict and optimize building energy consumption 
by identifying optimal values for these input variables. 

TABLE II.  INPUT FACTORS, AND THEIR MINIMUM, 
MAXIMUM, AND AVERAGE VALUES 

Item Name Min Max Average �� Cooling set point (°C) 22 26 24 �� Outdoor airflow (m3/s) 0.05 0.2 0.125 
�� Insulation (m) 0.05 0.14 0.095 
�� Internal equipment heat gains (W/m2) 2 14 8 �� Window solar transmittance (-) 0.6 0.9 0.75 

�� 
Economizer maximum limit dry bulb 

temperature (°C) 
25 28 26.5 

�� 
Maximum allowable discomfort 

glaring index (-) 
13 28 20.5 

 

 

Fig. 2.  Topology of the proposed ANN, depicting the network's architecture and connections between input factors and the target output variable.
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Performance evaluation is crucial in assessing the 
effectiveness of any model. This study chose the coefficient of 
correlation (R) [39] and Mean Absolute Percentage Error 
(MAPE) [13] as the key metrics to measure the performance of 
the models, as shown in (1) and (2). The coefficient of 
correlation provides insights into the strength and direction of 
the relationship between predicted and actual values, while 
MAPE measures the average percentage difference between the 
model's predicted values and the actual values. 

	 =  �(∑ �����)���� �(∑ ��)���� (∑ ���)����
�[� ∑ ����(∑ ������ )²���� ]�� ∑ ���²�(∑ ������� )²����

 (1) 

���� =  �  %
� ∗ ∑ #������

�� #�$%�    (2) 

In the context of this analysis, &$  represents the measured 
energy, &�$ denotes the predicted energy, and '  is the total 
number of observations. 

C. VPPSO Algorithm 

In the field of building energy consumption, optimization is 
a crucial technique that aids in achieving the greatest 
performance. Therefore, it is essential to apply efficient 
optimization algorithms. PSO is a widely respected 
metaheuristic algorithm known for its remarkable performance 
in tackling various optimization problems [40, 41]. However, 
two significant issues hamper its efficacy: slow convergence 
and local optima entrapment. Additionally, PSO performance 
significantly deteriorates in high-dimensional problems. To 
address these challenges, a novel variant of the PSO algorithm, 
known as velocity pausing, was developed [42]. This variant 
equips the particles with a third movement option, allowing 
them to maintain the same velocity as in the previous iteration. 
Contrary to the usual PSO method, which only permits 
particles to travel at faster or slower rates, this concept enables 
particles to potentially move at slower, faster, and constant 
speeds. The inclusion of a third movement option (constant 
speed) is the primary benefit of velocity pausing. This enables 
VPPSO to strike a better balance between exploration and 
exploitation. To address premature convergence more 
effectively, VPPSO introduces modifications to the first term 
of the PSO velocity equation. Furthermore, the population in 
VPPSO is divided into two swarms to preserve diversity. The 
idea of velocity pausing can be expressed mathematically as  

($() + 1) =  

, ($())                                                                                                    -. /012 < 4
5($()) + 6�/�7�89:;$()) − =$())> + 6�/�(?89:;$()) − =$()))     @)ℎB/5-CB                    

(3) 

where: 

 ($())  and ($() + 1)  are, respectively the velocities of 
particle - at iterations ) and ) + 1 

 =$  is the position vector of particle - at iteration ) 

 4 refers to the parameter for velocity pausing 

 ?89:;  is the global best particle and �89:;  is the personal 
best position 

 5 is the inertia weight 

 6�  and 6�  are the cognitive and the social acceleration 
coefficients 

 /� and /�are the random variables.  

To assess its capabilities, VPPSO has been evaluated on a 
set of 43 benchmark functions and applied to address four real-
world engineering problems, demonstrating its exceptional 
capability in effectively solving intricate high-dimensional 
problems. Consequently, VPPSO holds promise for addressing 
diverse real-world optimization problems. In this work, the 
main objective of the VPPSO algorithm is to choose input 
parameter values that minimize building energy usage.  

Figure 3 presents the proposed VPPSO algorithm's 
flowchart. The VPPSO changes are highlighted in gray. The 
flowchart illustrates the initial modification in VPPSO, 
involving updating PSO particle velocities using a newly 
proposed equation [42]. This equation alters the first term of 
the original PSO velocity equation, effectively avoiding 
premature convergence. Additionally, the proposed velocity 
equation incorporates velocity pausing, contributing to a better 
balance between exploration and exploitation. Another 
significant modification in VPPSO is the introduction of a 
second swarm, where particles update their positions 
differently. This two-swarm strategy is crucial to enhance 
diversity within the algorithm. 

 

 
Fig. 3.  Flowchart of VPPSO, providing a visual representation of the 
algorithm's sequential steps and decision points. 

III. RESULTS AND DISCUSSION  

This section discusses in detail the results obtained. 
Subsequently, using the Garson index approach for sensitivity 
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analysis, the effects of decision parameters on the objective 
function were assessed. Finally, the VPPSO optimization 
findings based on the ANN results were proposed for decision-
making. 

A. ANN Results 

The dataset used consisted of 26,000 samples, of which 
70% were allocated for training, 15% for validation, and 15% 
for testing. The ANN model's topology was structured as 7, 10, 
and 1 with 7 inputs, 1 hidden layer containing 10 neurons, and 
1 output. Figure 4 illustrates the results obtained from the ANN 
model. The findings of this study showcase a high-performing 
ANN model with regression index values close to one, 0.99956 
for training, 0.99954 for validation, and 0.99958 for testing. 
Table III outlines the performance metrics of the ANN model, 
indicating that MAPE values ranged from 2.71 to 2.76%, while 
the average R-value across all data was 0.99956. These results 
indicate the proposed ANN model exhibited high performance. 
Therefore, this ANN model shows promising results and can be 
utilized to predict energy consumption. 

 

 
Fig. 4.  Regression plots. 

TABLE III.  MAPE AND R INDICES OF THE ANN MODEL 

Items  Samples MAPE (%) R 

Training  17920 2.71 0.99956 
Validation  3840 2.73 0.99954 

Testing  3840 2.76 0.99958 

 
The weights of the ANN model were extracted from 

MATLAB to calculate the importance of each input parameter 
by analyzing its weights within the neural network layers. This 
involves multiplying the weights linked to the variable of 
interest by those of all input variables for each neuron in the 
hidden layer. Squared products are summed and normalized, 
yielding a relative importance measure for each input variable. 
This sensitivity analysis aids in understanding the relative 

influence of various input parameters on the model's 
predictions, providing valuable insights into the factors driving 
the ANN model's performance. 

B. Sensitivity Analysis Results 

Sensitivity analysis is significant for building performance 
analysis, as it can be used to identify the primary design 
elements that directly affect energy consumption [43]. 
Typically, it is conducted during the early design stage, 
benefiting from greater design flexibility. It is usually 
performed before the optimization process to identify the most 
important design parameters, streamlining the optimization 
problem and considerably reducing the required time [44]. 

This study used seven design variables, and optimization 
was performed directly without simplifying them. However, 
performing a sensitivity analysis remains valuable to explore 
the individual contributions of each variable to the variance of 
the building performance metrics. Table IV shows Garson's 
relative importance, as well as the rank of the seven input 
variables for energy performance. Figure 5 provides a clear 
demonstration of the importance of each input parameter in 
predicting energy consumption. A higher relative importance 
means that the variable is more important in energy 
consumption. 

TABLE IV.  GARSON'S RELATIVE IMPORTANCE AND RANK 
OF INPUT VARIABLES 

 Variables 
Garson's relative 

importance (%) 
Rank 

x1 Cooling set point 32.014127 1 
x2 Outdoor airflow 18.034043 3 
x3 Insulation 31.734819 2 
x4 Internal equipment heat gains 8.695349 4 
x5 Window solar transmittance 2.843613 6 

x6 
Economizer maximum limit dry 

bulb temperature 
0.013736 7 

x7 
Maximum allowable discomfort 

glaring index 
6.664313 5 

 

 
Fig. 5.  Sensitivity analysis using the Garson method. 

The two most influential variables that affect building 
energy consumption are cooling setpoint (x1) and insulation 
(x3). These variables have a somewhat equal impact on energy 
use. Cooling setpoint contributes 32.01%, which is comparable 
to insulation's contribution (31.73%). Outdoor air flow (x2) was 
identified as the second most impactful parameter, contributing 
18.03% to energy consumption. The economizer maximum 
limit dry bulb temperature variable (x6) was determined to be 
the least influential factor, with a contribution of only 0.013%. 
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C. VPPSO Optimization Results 

40 iterations were used to determine the optimal energy 
consumption, as shown in Figure 6. Details of three optimal 
energy consumption iterations and their associated effective 
parameters are presented in Table V. Additionally, variability 
ranges were selected for each optimized variable based on the 
specific characteristics of the case study. From the best 40 
iterations of energy-use percentages, as obtained by VPPSO 
and shown in Figure 7, the energy-use percentage decreased 

between 37.14% and 43.78% (5,317.7 kWh to 4,756.03 kWh). 
In terms of overall optimal results, annual energy consumption 
decreased by 43.78%, from 8,460.87 kWh to 4,756.03 kWh, by 
modifying the values of the factors. The ANN model not only 
helped to establish the relationships between inputs and outputs 
but also help identify the influential parameters in energy 
consumption. Although a linear relationship between inputs 
and outputs indicates that the lowest value is the best option, 
this applies to iteration 40. 

 

 
Fig. 6.  Optimum energy consumption of the studied building (40 iterations). 

TABLE V.  DETAILS OF THREE OPTIMAL ENERGY CONSUMPTION ITERATIONS AND THEIR ASSOCIATED EFFECTIVE PARAMETERS 

Iteration 

number  

Cooling 

setpoint 

Outdoor 

airflow 
Insulation 

Internal 

equipment heat 

gains 

Window solar 

transmittance 

Economizer 

maximum limit dry 

bulb temperature 

Maximum allowable 

discomfort glaring 

index 

Energy 

consumption 

(kWh) 

40 26 0.05 0.14 2 0.6 25 13 4756.03184 
14 26 0.05 0.14 2 0.6 26.013766 13 4757.971392 
3 26 0.05 0.14 3.366342 0.6 27.812098 13.699375 4924.803432 

 

 
Fig. 7.  Percentage of energy consumption optimization (40 iterations). 
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Based on Table V, iteration 40 achieved the minimum 
energy consumption rate at a cooling setpoint of 26°C. Optimal 
cooling setpoints can vary depending on specific building 
characteristics, climate conditions, and energy efficiency goals. 
In general, the recommended range for optimal cooling 
setpoints aims to strike a balance between occupant comfort 
and energy conservation. During occupied hours, a typical 
optimal cooling setpoint is often suggested to be around 24°C 
to 26°C. In [45], it was found that a room temperature of 26°C 
provides the most comfortable thermal condition, with a 
thermal sensation closest to neutral. This study also observed 
that increasing the temperature setpoint from 23°C to 26°C 
resulted in a substantial improvement in thermal acceptability 
and significant energy savings of 44 kWh/m²/year in electrical 
energy used for comfort cooling.  

Furthermore, the optimal values for insulation and outdoor 
airflow were 0.14 m and 0.05 m3/s, respectively, which resulted 
in minimal energy consumption. These findings indicate that 
increasing the insulation thickness to 0.14 m and maintaining 
the outdoor airflow at 0.05 m3/s are crucial factors in achieving 
the most energy-efficient performance for the building. Table 
VI displays the optimal values for the remaining decision 
variables as follows: Internal equipment heat gains (x4) with a 
value of 2 W/m², Maximum allowable discomfort glaring index 
(x7) with a value of 13, Window solar transmittance (x5) with a 
value of 0.6, and Economizer maximum limit dry bulb 
temperature (x6) with a value of 25°C. These optimal values 
were identified through the VPPSO optimization process and 
are associated with minimal energy consumption, contributing 
to the overall energy efficiency of the building. The proposed 
solutions for maintaining the decision variables at their optimal 
values include implementing energy-efficient equipment for 
lower heat gains, using shading devices and adjustable blinds to 
control glare, opting for energy-efficient glazing materials to 
reduce solar transmittance, setting the economizer's maximum 
limit dry bulb temperature to 25°C, etc. 

In conclusion, the VPPSO optimization method presents a 
promising and innovative approach to reducing energy 
consumption in building renovations. The proposed parameters 
can be effectively applied to a wide range of existing building 
renovations and newly constructed buildings, leading to 
improved energy efficiency, cost savings, and environmental 
sustainability. The versatility of this optimization technique 
makes it a valuable tool for enhancing the energy performance 
of various building types and meeting the evolving demands of 
the modern built environment. 

IV. COMPARISON TO THE LITERATURE  

In [46], the optimization of the heating energy demand of a 
shelter in Iran was studied using various protective zones and 
optimizing occupant heat. This study employed ANNs trained 
with backpropagation and enhanced the models with GWO and 
PSO algorithms. Galapagos and Silvereye were used as 
optimizer engines to minimize the heating energy demand, 
resulting in satisfactory results. Sensitivity analysis revealed 
that occupant density significantly influenced the reduction of 
energy consumption. In [47], a building performance 
optimization process was proposed, which evaluated 
daylighting and energy performance for multiple design 

options, generating optimized designs using GA, building 
simulation modeling, and parametric design. The effectiveness 
of this approach was validated through a case study involving a 
small office building located in three distinct climates (Miami, 
Atlanta, and Chicago). After optimization, daylighting 
performance improved by 38.7%, 31.6%, and 28.8%, while 
energy demand was reduced by 20.2%, 18.5%, and 17.9% 
compared to average values. Sensitivity analysis identified 
skylight width and length as crucial variables at all locations, 
while others show varying levels of influence. In [48], the 
focus was on optimizing three parameters: occupant schedule, 
occupant density, and Wall-U value. The results revealed a 
reduction in energy consumption of up to 13%.  

In [49], the aim was to propose a reliable method for 
optimizing building energy consumption. By identifying 
crucial input parameters, this study focused on a case study of a 
research center building in Iran. EnergyPlus software was used 
to evaluate energy consumption, while an ANN was trained to 
accurately simulate energy use. The Galapagos plugin, utilizing 
a GA, was used for energy optimization, leading to a notable 
reduction of 35% in energy consumption. Additionally, 
sensitivity analysis revealed that the number of occupants 
exerts the most significant influence on the building's energy 
consumption, followed by the wall U-value, which is linked to 
wall insulation. The findings of this study confirm that 
insulation is a critical parameter that influences energy 
consumption. Furthermore, both the insulation and the cooling 
setpoint exhibit similar effects on energy use, followed by 
outdoor airflow as the second most impactful parameter. In this 
study, the utilization of the VPPSO algorithm demonstrated the 
potential to reduce energy consumption by an impressive 43%, 
with the energy use decreasing significantly, ranging from 
37.14% to 43.79%, showcasing the effectiveness of this 
algorithm in minimizing energy consumption. 

V. CONCLUSIONS 

This study aimed to optimize energy consumption in 
buildings to reduce energy demand. This led to the derivation 
of design solutions or recommendations that are not only 
readily comprehensible but also easily implementable by 
architects in practical scenarios. In this context, this study 
selected a representative building in Kuwait to exemplify the 
optimization process. Seven crucial input parameters, including 
Insulation levels, Cooling setpoint, Maximum allowable 
discomfort glare index, Equipment gains, Window solar 
transmittance, Outdoor airflow, and Economizer maximum 
limit dry bulb temperature, were employed in the ANN model 
with energy consumption as the objective function.  

This study encompassed the development, training, and 
application of an ANN model to accurately predict the energy 
consumption of the building. It also involved an extensive 
sensitivity analysis to assess the influence of input variables on 
energy consumption, along with the identification of the most 
influential factors using the ANN. Additionally, the VPPSO 
algorithm was utilized to minimize energy consumption. 
Moreover, the Levenberg-Marquardt algorithm was used to 
train the ANN model to estimate the most effective building 
parameters on energy consumption, with a sensitivity analysis 
conducted considering the case study. The application of the 
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VPPSO algorithm ultimately led to the optimization of the 
energy consumption of the studied building, resulting in an 
average decrease in energy consumption of 43%. Notably, 
architectural parameters were found to hold a crucial 
significance in determining the energy performance of the 
building, and the selection of appropriate design parameters 
remarkably contributed to reducing energy consumption. 

The results of this study showcase a high-performing ANN 
model with a MAPE of 2.71% for training, 2.73% for 
validation, and 2.76% for testing, along with regression index 
values close to one (0.99956 for training, 0.99954 for 
validation, and 0.99958 for testing). These findings make the 
model highly promising for predicting energy consumption. 
The sensitivity analysis highlighted the cooling setpoint and 
insulation as the most impactful parameters in building 
renovation with a similar effect on energy use (32.01% and 
31.73%, respectively), followed by outdoor airflow (18.03%). 
By optimizing the proposed model using the VPPSO algorithm, 
a substantial reduction of 43% in energy consumption was 
achieved, underscoring the effectiveness of the algorithm. 
Consequently, this approach has significant potential as a 
method to reduce energy consumption in building renovation 
projects, and its proposed parameters can be applied to enhance 
energy efficiency in other building renovations.  

Future research should explore and apply additional input 
parameters to evaluate more complex and intricate buildings. 
This would not only help regulate energy consumption but also 
enhance various vital aspects of building performance, 
including heating and cooling efficiency, as well as thermal 
comfort, among others. 
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