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ABSTRACT 

Abnormal signals of brain activity can predict epilepsy, which can be effectively detected with the use of 

IoT-enabled Electro-Encephalo-Gram (EEG) devices. In this process, wearable devices can collect relevant 

data and transmit them to health providers for analysis. These data can be assessed for epilepsy using Deep 

Learning (DL) algorithms. DL and evolutionary algorithms are combined to detect epilepsy detection with 

optimized performance. This study proposed a system with multiple objectives. First, EEG signals were 

obtained using IoT from subjects in healthy conditions and with epilepsy. In preprocessing, the EEG signal 

is filtered using finite impulse response. Features were extracted from preprocessed signals, including 

wavelet coefficients, signal entropy, spectral power, coherence, and frequency bands. An optimal structure 

was selected from the extracted features through a newly designed hybrid optimization model, called the 

alpha bat customized squirrel optimizer, with a combination of standard jellyfish search algorithm with 

particle swarm optimization. Finally, a multimodal deep learning framework, including Long Short-Term 

Memory Network (LSTM), Gated Recurrent Units (GRU), and Convolutional Neural Network (CNN), 

detects epilepsy. The results show that the proposed multilayer DL-based approach outperforms existing 

methods in terms of accuracy, precision, sensitivity, False Negative Rate (FNR), and specificity. 

Keywords-deep learning; LSTM ; GRU; CNN ; jellyfish search algorithm 

I. INTRODUCTION  

Recently, the field of ECG and EEG biometrics research 
has grown tremendously and many researchers are working to 
improve recognition performance. In [1], the efficacy of 
Seismo Cardio Graph (SCG) and fusion-based predictions was 
determined against traditional ECG-based methods. This study 
reflects a difference between how SCG and fusion-based 
projections work compared to the traditionally used EEG-based 
method in CCTA gating. The Internet of Things (IoT) has 
become a ubiquitous innovation in e-health, changing how 
healthcare services are offered from traditional facilities to 
homes and workplaces [2]. IoT devices support the quick 
generation and sharing of data over the Internet, improving the 
monitoring and management of wireless medical devices. 
Today, Coronary Heart Disease (CHD) and heart attacks 
cannot be fully treated but can be managed to some extent 
through proper monitoring and timely medications. 
Deficiencies in the EEG signals obtained are used to diagnose 
cardiac abnormalities [3]. 

Various IoT devices are used to analyze ECG signals at 
home and assist remote cardiac patient monitoring systems. 
However, how they influence consumer OGS adoption in 
developing countries remains largely unexplored. The study in 

[4] aimed to bridge this knowledge gap, helping to update the 
understanding of online retail strategies for dynamic 
environments. EEG-based biometric developments have 
focused on improving recognition performance. Comparative 
studies of SCG and fusion-based predictions versus traditional 
ECG methods in CCTA highlight possible improvements in 
predictive accuracy and reliability [5]. IoT has revolutionized 
health by redistricting services to the periphery, being one of 
the vital e-health innovations that allow rapid data 
establishment and sharing over the Internet, helping to better 
monitor and manage wireless medical devices [6]. In [7], a 
visualization display was created for a 10-second segment of 
the EEG signal encoding amplitudes of the brain wave signal, 
the so-called steady-state brain activity, for an IoT-enabled 
EEG device for epilepsy prediction. This is in agreement with a 
focus on IoT EEG devices and DL algorithms that can put 
meaningful steady-state EEG analysis into practice to detect 
abnormal brain activity patterns indicative of epilepsy [8]. 

The Short-Time Fourier Transform (STFT) of the EEG 
signal describes all changes in the frequency content over time. 
For a 10-second signal, the STFT is very uniform, showing a 
consistent pattern of frequency over time. This stability in the 
distribution of frequencies could mean that the brain activity of 
the subject was perhaps constant during this period and that this 
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might represent phases of sleep or relaxation without sudden 
changes, as seen in states such as epileptic seizures or sleep 
spindles. The proposed system captures EEG signals from the 
IoT-enabled Emotiv EPOC X, a continuous brain activity 
monitoring device. This device captures EEG signals through 
electrodes attached to the scalp and records them using 
microcontrollers connected to laptops via microUSB cables for 
real-time transmission to health providers. Continuous 
monitoring by such IoT-enabled devices is of prime importance 
for the early detection and timely intervention of epileptic 
events. In contrast to traditional approaches that are mediated 
by episodic or manual data collection, IoT devices can support 
remote monitoring and improve patient convenience by 
minimizing the frequency of hospital visits. Moreover, 
continuous data acquisition supplies a complete dataset to 
enhance the accuracy of DL algorithms used in anomaly 
detection. Real-time data processing and advanced algorithms 
integrated with IoT-enabled EEG devices significantly increase 
the effectiveness of epilepsy detection and treatment for prompt 
medical decisions, improving patient outcomes. Wearable IoT 
EEG devices have electrodes attached to the scalp, connected 
with physical leads to the EEG equipment. These devices use a 
microcontroller interfaced with a laptop PC through a micro-
USB cable and run various signal-processing software for real-
time data acquisition and processing. Continuous monitoring 
by IoT EEG devices can help in terms of early diagnosis and 
management of epilepsy, improving patient outcomes. 
Although epilepsy cannot be completely treated, continuous 
monitoring and preventive measures are highly necessary to 
treat such neurological disorders.  

Abnormal EEG signals could indicate problems such as 
epilepsy. In this case, IoT devices are essential for signal 
interpretation at home and support the development of remote 
patient monitoring systems. However, more understanding is 
needed about the adoption of IoT-enabled health monitoring 
systems in emerging countries. This study attempts to fill this 
gap and allow the development of effective e-health strategies 
for rapidly evolving environments. As shown in Figure 1, the 
architecture was designed so that IoT-enabled EEG devices are 
integrated with multilayer deep learning supported by 
evolutionary algorithms to improve epilepsy detection. This 
integration provides real-time data processing and ascertains 
early identification of the trends leading to epilepsy, improving 
overall disease management and eventually the quality of 
patients' lives. The primary technical contributions of this study 
are: 

 Feature extraction: Extract features of mutual information 
based on EEG signals to improve prediction accuracy, and 
use sophisticated signal processing techniques to recognize 
relevant patterns and characteristics that indicate epilepsy. 

 Feature selection: This process is carried out through a 
fusion of the Jellyfish Search Algorithm and Particle 
Swarm Optimization (PSO), to effectively balance the 
exploration and exploitation involved in identifying the 
most informative features. 

 Deep multilayer framework: This study uses a new DL 
framework that integrates CNN, GRU, and LSTM. 

 

Fig. 1.  System architecture. 

In [10], early detection of arrhythmia was proposed, 
showing that IoT has enormous potential for remote and 
noninvasive monitoring of cardiac arrhythmias, modernization 
in the healthcare sector, acquisition, processing, and triggering 
alerts for doctors in emergencies. In [11], the growing demand 
for low-latency applications, such as health monitoring and 
surveillance systems, was addressed by proposing edge and 
cloud computing paradigms to efficiently solve the data 
processing problem by bringing resources closer to the user, as 
traditional centralized storage in cloud databases suffers from 
degraded performance. In [12], the data flow in health systems 
was explained. Providers collect patient data, forwarding them 
to different authorized medical facilities and life insurance and 
pharmaceutical companies. This study raised warnings about 
the security risks involved in the process, especially breaches 
during synchronization or cloud transfers. In [13], problems in 
data quality from wearable technology and non-professional 
users that make feature extraction complex and reduce 
detection accuracy were addressed, proposing new techniques 
to improve detection accuracy using raw ECG data in wireless 
healthcare systems. In [14], SaaS solutions were investigated, 
coupled with smart device insights to simplify monetization in 
vertical domains. This study described the concept of a 
machine economy, where effective data commercialization is 
an advantage in the digital market. In [15], a one-dimensional 
deep CNN method was proposed to classify cardiac conditions. 
Empirical mode decomposition reflects a technique that 
preprocesses EEG signals in advance and feeds the modified 
signal into the network. 

In [16], various methods and their main features were 
discussed to support ES detection. In [17], feature extraction 
techniques were described along with the results of automated 
identification methods in different stages of epilepsy, 
highlighting their efficiency. Performance evaluation of feature 
extraction methods and classification algorithms assessed the 
practical feasibility of seizure detection techniques for real-
world applications. Reviews of new strategies in classification 
methods and feature selection on BCI have also been reported, 
including DL approaches and classifying brain signals. The 
impact of ambiguity in EEG data on classifier efficiency has 
been estimated by investigating different classification 
algorithms. Models have been proposed for the segmentation of 
EEG signals into sub-bands using different transformations, 
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such as DCT and DWT [18-20]. In [21], common ML 
approaches to epilepsy prediction models were critically 
reviewed, underlining the challenges that ML methods face in 
this domain. 

In [22], a literature review on different ML techniques to 
detect ES was presented, with studies using black-box and non-
black-box methods and, where appropriate, several statistical 
features. In [23], the need for early ES detection and the use of 
DL or ML techniques for prediction was underlined [23]. In 
[24], several ML classification techniques were used for ES 
detection, with experiments showing that RF was the most 
efficient classifier. In [25], various DL techniques for ES 
detection were reviewed, highlighting the pros and cons of each 
model. This study addresses the challenge of accurately and 
efficiently detecting epilepsy using IoT-enabled EEG devices 
in conjunction with DL algorithms. While EEG-based 
biometric recognition and IoT healthcare solutions have seen 
considerable development, existing methods have significant 
gaps and limitations. 

A. Problem Statement 

 Current limitations: Traditional epilepsy detection using 
EEG signals has many drawbacks, such as difficulty in real-
time processing and poor accuracy of the results. However, 
most approaches underutilized the power of IoT and state-
of-the-art DL techniques for monitoring and analysis. 

 IoT-device integration with advanced algorithms: The 
integration of IoT-enabled devices with advanced 
algorithms to ensure real-time, accurate, and secure data 
transmission and analysis remains relatively unexplored. 

 Feature extraction and selection: Many existing methods 
lack strong feature extraction and selection modules, which 
are very important and extremely influential on predictive 
performance. 

B. Significance of this Study 

 Improved performance: With the aid of IoT-enabled EEG 
devices, the proposed method ensures that it is continuous 
and will remain real-time, improving the quality and 
comprehensiveness of the data to be collected and resulting 
in fine-tuned predictions and earlier detection of epilepsy. 

 Advanced signal processing: Preprocessing involves FIR 
filtering. It also incorporates a hybrid optimization model 
for feature selection, the Alpha Bat Customized Squirrel 
Optimizer (ABCSO), to ensure that the most relevant 
features are effectively utilized to improve the overall 
accuracy and efficiency of the detection model. 

 DL framework: A multilayer integration of a DL 
framework provides a robust and sophisticated way to 
analyze EEG signals for superior performance compared to 
traditional ML models. 

 Comprehensive evaluation: The proposed approach was 
evaluated based on several performance metrics, including 
accuracy, sensitivity, specificity, precision, recall, FPR, and 
FNR to clearly understand its strengths and weaknesses. 

 Scalability and practical applications: A method deployed 
in MATLAB is intended to be both scalable and practical, 
so its applications run efficiently in real-world scenarios. 
This underscores how vitally critical secure data 
transmission and processing are for any IoT-enabled health 
monitoring system. 

 Contribution to e-health innovations: This study offers a 
novel solution, contributing significantly to the developing 
area of e-health in the management and monitoring of 
epilepsy - an issue whose management is tricky in 
developing countries where access to continuous healthcare 
remains a challenge. 

II. PROPOSED METHOD 

A. Preprocessing using Hybrid Wavelet Transform 

Wavelet transform is one of the essential preprocessing 
techniques that is applied to a large extent in EEG signal 
analysis. While FIR filters are designed essentially for 
stationary signals, wavelet transformation can capture transient 
features and non-stationarities inherent in EEG data. This 
technique decomposes the signal at different scales into 
different frequency components, improving the representation 
of EEG signals. Wavelet transform is very useful, particularly 
in applications such as epilepsy detection and brain activity 
monitoring. FIR filters are applied to the EEG signal to remove 
noise or unwanted frequency components. FIR filters can 
improve signal quality by providing selective attenuation or 
amplification of specific frequency ranges. The output of FIR 
filtering can be modeled as: 

���� = ∑  �	
�� ���� ⋅ ��� − ��   (1) 

where ����is the input, ���� denotes the FIR filter coefficients, 
and � − 1 is the filter length. Wavelet transform is then 
performed on the preprocessed EEG signal to decompose it 
into time-frequency components. Equation (2) represents both 
time-localized and globally averaged frequency features of the 
wavelet transform that may be very helpful in detecting 
transient features and non-stationarities of EEG signals. 

������, �� = 

�| | !  "	" ��#�$∗ &'	(

 ) *#  (2) 

Let ����  be the original EEG signal. The combined 
preprocessing step before wavelet transform, represented as ����, can be expressed as one in which FIR filtering is applied. 

+��� = ���,��, ��    (3) 

where ���,��, ��  denotes the wavelet transform applied to 

the FIR-filtered signal +��� containing valuable information in 
both time and frequency domains, especially for feature 
extraction. This approach ensures that an EEG signal is 
processed for its informational content while retaining relevant 
transient and nonstationary features of paramount importance 
to make an accurate inference on epilepsy detection. 

B. Feature Extraction 

1) PQ-Segment Analysis 

The PQ segment, as shown in (4), denotes the time elapsed 
from the beginning of the P-wave to the onset of the QRS 
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complex in an EEG signal. This measure reflects the delay 
between the depolarization of the atria and that of the 
ventricles. The PQ time interval is essential for EEG-based 
epilepsy detection, as it provides information about the heart's 
electrical activity and possible aberrations. The exact matching 
of this interval improves epilepsy detection by providing 
critical insights into the cardiac and neural activities under 
study through these advanced DL and evolutionary algorithms. 

-.duration = #/01onset − #2onset   (4) 

where #/0113456'  is the onset of the QRS complex, and #2onset is 

the onset of the P-wave. 

2) Short-Time Fourier Transform (STFT) 

STFT can be applied to analyze changes in the signal's 
frequency content with time. Notably, this will show the time-
varying pattern of the EEG signal. Hence, it can detect some 
transient events or frequency shifts that might give a clue about 
cardiac abnormalities. STFT is given by: 

7�8������, 9, :� = ∑ ���� ⋅ ;�� − 9� ⋅ <	=>4"4�	"  (5) 

where  ���� is the EEG signal, ;��� is a window function (e.g., 
Hamming window), 9 is the window shift parameter, and : is 
the frequency parameter. 

3) Principal Component Analysis (PCA) 

PCA is a mathematical technique to decrease the 
dimensions within datasets while retaining their principal 
structure. The original features are transformed into new, 
equally sized variables, called principal components, which are 
linearly uncorrelated with each other. These principal 
components explain the maximum possible variance among all 
linear transformations in the original data. Thus, their 
representation will be succinct and effective for analysis. PCA 
can be used as one of the preprocessing aspects to enhance the 
performance of a model on EEG data by reducing noise and 
leading to better computational efficiency. Equation (6) 
represents the matrix decomposition, where Y captures the 
component score by projecting X onto the component W. 

Y = X ⋅ W     (6) 

where X represents the matrix of all relevant features of EEG 
signals, and W is the matrix of principal components. 

4) Hilbert Transform 

The Hilbert transform, represented in (7), is a mathematical 
tool that aids in retrieving the complex analytic representation 
of a signal. An analytic signal represents both the amplitude 
and information of the phase of an original signal, which is 
very useful for signals whose frequency changes over time, as 
can be seen in the case of EEG signals exhibiting complex 
dynamics. 

BC��#�D = 

E !  "	" ��F�

'	F *9   (7) 

where ��9� is the original EEG signal and +�9� is the analytic 
signal obtained through the Hilbert transform. 

 

 

5) Improved Mutual Information (IMI) 

IMI is one of the methods to assess the statistical 
dependencies between variables in EEG signals. It aims to 
select the optimal features by considering both information 
content and signal variability. IMI with Standard Deviation 
(SD) weighting is given by: 

G�G�X, Y� = 

H ∑  HI�
 J 


KLM ⋅ ��I − �‾� ⋅ ��I − �‾�O (8) 

where X = P�
, �Q, … , �HS  and Y = P�
, �Q, … , �HS  are sets of 
EEG signal data points, TU is the SD of X, �‾ and �‾ are the mean 
values of X and Y, respectively. 

6) Hjorth Parameters 

Equations (9) and (10) represent the Hjorth parameters that 
describe EEG signals with activity and mobility. The time and 
frequency domains of the signal are provided, which helps in 
discriminating different brain states and abnormalities. 

VW#XYX#� =  

Z  ∑ �IQHI	
     (9) 

where �I are the EEG signal samples and � is the total duration 
of the signal. 

�[�X\X#� = ]∑^_M`  ��^	�^a�M
�H	
�⋅Z    (10) 

7) Bispectrum Analysis 

Bispectrum analysis accounts for the nonlinear 
interoperability of the various frequency components of an 
EEG signal. This means that it can identify phase coupling and 
non-Gaussianity related to neural mechanisms and 
abnormalities. The bispectrum b�c
, cQ�  of a signal ��#�  is 
computed using the third-order moment as in: 

b�c
, cQ� = limZ→"   
Z !  Z ��#�<	=QEha'��# + 9�<	=QEhM'�  

      �# + 29�*#    (11) 

where c
  and cQ  are frequency components and 9  is the lag 
parameter. 

C. Feature Selection via Alpha Bat Customized Squirrel 
Optimizer 

This study used a hybrid optimization algorithm based on 
ABCSO for feature selection. This is a variant of the standard 
jellyfish search algorithm with specific strategies added from 
PSO. This algorithm can achieve a better search for the optimal 
feature subset by balancing exploration and exploitation and 
improving the convergence speed to the best solution, since it 
uses the strategies of both jellyfish search and PSO. Most 
currently available methods produce a search-utilization 
equilibrium, lack resilience, experience early settlement, and 
need more expandability. Motivated by these challenging 
issues, this study focuses on developing a hybrid optimization 
technique. The need to create ABCSO is realized due to the 
limitations posed by the traditional approaches in offering 
proper exploration-exploitation trade-offs, strong robustness, 
rapid convergence speeds, and flexibility in dealing with 
different problems. The fitness function is designed to 
maximize the accuracy obtained from the selected features 
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(12). The optimization algorithm determines which feature 
subset gives maximum accuracy for classification or prediction 
tasks. By maximizing accuracy, this approach helps to improve 
the efficiency of the selected features and provides better 
results for feature selection. 

First, IoT-based EEG signals are obtained for persons both 
healthy and with epilepsy. Afterward, they are preprocessed 
using FIR filtering. Wavelet coefficients, signal entropy, 
spectral power, coherence, and frequency bands are extracted 
from these preprocessed signals as features. The ABCSO filters 
them for the most relevant features. This model aims to find the 
best feature subset that provides maximum accuracy, 
improving the performance of deep models. 

8X#�<kk = max��WWno�W��   (12) 

The position update in the jellyfish search algorithm is 
given by: 

pI�# + 1� = pI  �#� + qI �#� .  p(65'�#� −  pI�#� (13) 

where pI�#� is the position of the i-th feature at iteration t, qI�#� 
is the movement step size influenced by the jellyfish search 
dynamics, and p(65'�#� is the position of the best feature so far. 
The position update in PSO is defined as:  

YI�# + 1� = :YI�#� + W
o
CsI − pI�#�D + WQoQCt − pI�#�D  

pI�# + 1� = pI�#� + YI�# + 1�  

where YI�#� is the velocity of the X-th feature at iteration #, : 
represents a momentum factor, W
 and WQ include individual and 
collective parameters, correspondingly, o
 and oQ are stochastic 
values ranging from zero to one, sI  is the individual optimal 
location of the i-th characteristic, and t is the overall optimal 
location among all characteristics. The jellyfish search and 
PSO updates are taken according to a control parameter α as in: 

upI�#� + qI�#� ⋅ &pbest 
�#� − pI�#�) ,  if v < vthreshold                             

pI�#� + :YI�#� + W
o
CsI − pI�#�D + WQoQCt − pI�#�D [#ℎ<o;Xk<   

      (15) 

where v  determines the switch between jellyfish search and 
PSO, and vthreshold is a predefined threshold value. This study 
uses the maximum accuracy achieved as the fitness function. 
The optimization model aims to identify the optimal subset of 
features for better classification accuracy. 

D. Epilepsy Detection 

1) Convolutional Neural Networks (CNN) 

CNNs are used due to their ability to extract spatial features 
directly from the input, such as EEG signals. CNNs are made 
up of several layers: a convolutional layer, an activation 
function, and a pooling layer. 

a) Convolutional Layer 

The convolutional layer convolves the input signal for 
feature extraction. Unlike traditional neural networks that use 
matrix multiplication to process data, CNNs process data via 
convolution. Mathematically, this operation is expressed as 
shown in (16). The convolutional layer identifies the patterns 
and anomalies of EEG signals. Through convolutional 

operations, it manages to perfectly capture spatial hierarchies 
within the data, which in turn makes DL techniques more 
accurate and robust for epilepsy detection. 

��X, y� = �� ∗ ;��X, y� =  

    ∑ ∑ ��z, ��;�X − z, y − ��{{    (16) 

where ; is the weight of the convolutional kernel at position 
(X, y), � is the pixel value of the input image at position (z, �), 
and � is the output feature map. 

b) Activation Function 

CNNs often use the nonlinear ReLU activation function to 
increase non-linearity in the model and speed up training. 
ReLU is defined as: 

c��� = max�0, ��    (17) 

c) Pooling Layer 

The pooling layer reduces the spatial dimensions of the 
input feature map, thus reducing computational load and 
emphasizing only the most important features and their 
information. Max-pooling is defined as: 

��X, y� = max{,4  ��X ⋅ k + z, y ⋅ k + ��  (18) 

where k  is the stride, and z, �  are the dimensions of the 
pooling kernel. 

2)  Long Short-Term Memory Networks (LSTM) 

LSTM is a recurrent neural network that aims to capture 
and learn the long-term dependencies existing in the data. 
LSTMs are instrumental in handling sequential information and 
making forecasts, since they can keep the memory of previous 
inputs for very long periods. This study uses LSTMs to analyze 
EEG signal sequences. Since LSTMs can retain information 
that is valid for a more extended period, they are ideal for 
detecting epilepsy-associated patterns and anomalies, 
enhancing the accuracy and reliability of the approach using 
multi-layer DL and evolutionary algorithms. An LTSM cell is 
defined by: 

c' = TC�h ⋅ �ℎ'	
, �'� + �hD   (19a) 

X' = T��I ⋅ �ℎ'	
, �'� + �I�   (19b) 

[' = T��3 ⋅ �ℎ'	
, �'� + �3�   (19c) 

�̃' = tanh��� ⋅ �ℎ'	
, �'� + ���  (19d) 

�' = c' ⋅ �'	
 + X' ⋅ �̃'    (19e) 

ℎ' = [' ⋅ tanh��'�    (19f_ 

where c' is the forget gate, X' is the input gate, [' is the output 

gate, �̃'  is the cell state candidate, �'  is the cell state, and ℎ' is 
the hidden state. 

3) Gated Recurrent Units (GRU) 

GRUs merge the forget and input gates into a single update 
gate, simplifying the architecture. They maintain the efficiency 
and performance of LSTMs while reducing the overall 
complexity of the model. GRUs offer a powerful solution for 
handling sequential EEG data. Due to their simplified 
structures and faster computations, along with less resource-
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intensive training, they are critical in performing real-time 
epilepsy detection guided by DL and evolutionary algorithms. 
A GRU is defined by: 

+' = T��� ⋅ �ℎ'	
, �'� + ���   (20a) 

o' = T��� ⋅ �ℎ'	
, �'� + ���   (20b) 

ℎ'˜ = tanh��� ⋅ �o' ⋅ ℎ'	
, �'� + ���  (20c) 

ℎ' = �1 − +'� ⋅ ℎ'	
 + +' ⋅ ℎ̃'    (20d) 

where +' is the update gate, o'  is the reset gate, ℎ'	
  is the 

candidate hidden state, and ℎ̃' is the hidden state. 

III. RESULTS AND DISCUSSION 

A. Dataset Description 

This study utilized two key databases: the CHB-MIT Scalp 
EEG Database and the TUH EEG Seizure Corpus. These 
datasets contain all forms of multivariate EEG time series data 
needed to test the effectiveness of the proposed method in 
epilepsy diagnosis. 

1) CHB-MIT Scalp EEG Database 

 Source: Contains EEG recordings taken from pediatric 
subjects who have intractable seizures. 

 Subjects: 24 subjects on the dataset. 

 Duration: Contains over 900 hours of EEG recordings. 

 Sampling Rate: Recordings are sampled at a rate of 256 Hz. 

 Context: Contains different EEG channels, meaning that 
there are multiple channels in which brain activity is 
recorded. 

 Annotations: Each recording is annotated with seizure 
events, including their presence and duration. 

2) TUH EEG Seizure Corpus 

 Source: Consists of multichannel EEG data obtained from a 
significantly large number of subjects that account for 
diverse features. 

 Significance: Is notable for its extensive size and detailed 
seizure event annotations. 

 Data type: Contains EEG recordings with detailed 
annotations regarding seizure events.  

 Preprocessing: The received signal is preprocessed using an 
FIR filter to remove noise and artifacts.  

 Features are extracted from the preprocessed signals to 
improve seizure detection accuracy. 

B. Results 

Table I provides the performance evaluation of the 
proposed model for epilepsy detection over simple models. 
Figure 2 compares the four deep learning models: CNN, RNN, 
DNN, and the proposed multilayer framework integrating 
LSTM, GRU, and CNN architectures. In all metrics, the 
multilayer framework achieved better performance with an 
accuracy of 95%, a precision of 91%, a recall of 93%, and an 

FNR of 8%. CNN achieved 90% accuracy, 85% precision, 88% 
recall, and 12% FNR, RNN achieved 88% accuracy, 82% 
precision, 86% recall, and 14% FNR, and DNN achieved 92% 
accuracy, 87% precision, 90% recall, and 10% FNR. These 
results show that the proposed multilayer framework worked 
better in classifying EEG signals related to epileptic detection 
than single models. 

TABLE I.  PERFORMANCE EVALUATION OF EPILEPSY 
DETECTION MODELS 

Methods 30% 50% 70% 90% 

CNN 0.896 0.891 0.894 0.898 

RNN 0.902 0.903 0.909 0.911 

DNN 0.911 0.915 0.916 0.934 

Multilayer framework 0.936 0.945 0.954 0.968 

 

 
Fig. 2.  Comparative performance analysis of DL models for EEG-based 

epilepsy detection. 

Figure 3 shows the (a) accuracy, sensitivity, specificity, (b) 
precision, recall, and (c) FNR of the four models for raw data 
without feature selection. This graph shows that although the 
proposed multilayer framework is, in general, time-consuming 
compared to CNN, RNN, and DNN, its performance was 
consistently better than the other models in all metrics. The 
results show that the proposed model had better epileptic 
detection capabilities, achieving higher accuracy, sensitivity, 
specificity, precision, and recall while obtaining a lower FNR 
rate. From the visualization, it is evident that even though it is 
more computationally expensive, the proposed multilayer 
framework is better at discriminating a person with epilepsy 
from non-epileptic EEG signals. Table II presents the obtained 
performance metrics for four different techniques used in 
epilepsy detection from EEG signals without feature selection. 
In all the metrics, the proposed multilayer framework presents 
a superior performance, attaining an increased accuracy of 
90.2%, sensitivity of 85.56%, specificity of 92.8%, precision of 
88.6%, recall of 88.78%, and a low FNR of 15.4%. 
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Fig. 3.  Performance metrics of DL models. 

TABLE II.  COMPARISON OF DL FRAMEWORKS FOR EEG-
BASED EPILEPSY DETECTION WITHOUT FEATURE 

SELECTION 

Method Accuracy Sensitivity Specificity Precision Recall FNR 

CNN 85.02 80.23 88.23 82.9 78.7 20.6 

RNN 82.23 75.62 85.02 76.09 80.56 25.7 

DNN 87.26 82.23 90.65 83.45 85.34 18.6 

MLF 90.2 85.56 92.8 88.6 88.78 15.4 

 
Some critical aspects form the basis for choosing an 

optimized method. The method should ensure continuous real-
time monitoring of EEG signals, which is a vital component of 
timely detection and intervention in the management of 
epilepsy. Accurate preprocessing using FIR filtering removes 
noise and artifacts satisfactorily compared to more 
straightforward techniques. This study extracted advanced 
features, including wavelet coefficients, signal entropy, spectral 
power, coherence, and frequency bands. All of them constitute 
one complete feature set that is very informative and improves 
the performance of the model. Furthermore, efficient feature 
selection is ensured, since this is achieved by a hybrid 
optimization model where the ABCSO combines the jellyfish 
search algorithm with PSO for better relevance of features. 
CNN, LSTM, and RNN models are combined to achieve 
superior performance in epilepsy detection over single or 
simpler ML models. 

The results show the excellent effectiveness of the proposed 
multilayered framework for the precise detection of epileptic 
events while keeping the occurrence of both false positives and 
negatives at a minimum level, as required for clinical 
applications. Therefore, these findings support the efficacy of 
the proposed approach in the research related to epilepsy 
detection using EEG-based methods. Table III illustrates a 
comparative analysis highlighting the advantages of the 
proposed compared to the existing methods. 

 

TABLE III.  COMPARATIVE ANALYSIS OF THE PROPOSED OVER EXISTING MODELS 

Aspect Proposed Method Existing Methods Advantages 

Data acquisition 

and real-time 

monitoring 

Collects and monitors the data of IoT-based 

EEG devices in real time. 

Frequently rely on episodic data collection, 

manual EEG recordings, or offline 

analysis. 

Continuous monitoring can provide a complete 

dataset than other methods, allowing improved 

prediction and early detection of epilepsy. 

Preprocessing 

techniques 

Uses FIR filtering to preprocess EEG 

signals. 

Use less efficient or more straightforward 

preprocessing techniques. 

FIR filtering removes noise and artifacts in an input 

data stream, improving its quality before analysis. 

Feature 

extraction 

Extracts advanced features, such as wavelet 

coefficients, signal entropy, spectral power, 

coherence, and frequency bands. 

Often rely on basic statistical features or 

fewer types of features. 

More rich and diversified feature sets have more 

relevant information captured from EEG signals, 

enhancing model performance. 

Feature selection 

Uses a hybrid optimization model, the alpha 

bat customized squirrel optimizer, which 

assimilates the power of the basic jellyfish 

search algorithm and PSO. 

Use traditional feature selection methods, 

which are often not as effective. 

The proposed hybrid optimization model is better at 

selecting only the most relevant features, achieving 

higher model accuracy and efficiency. 

DL models 
Integrates a multi-layer framework of CNNs, 

LTSM, and RNNs. 

Often, only simpler ML algorithms or 

single neural network types are used. 

Combining CNN with LSTM and RNN provides an 

establishment that is more accurate and robust in 

detection. 

Performance 

metrics 

Performance was evaluated with a complete 

set of metrics: accuracy, sensitivity, 

specificity, precision, recall, false positive 

and false negative rates. 

Report fewer metrics or mainly focus on 

accuracy. 

Detailed performance evaluation allows for a more 

profound comprehension of the strengths and 

weaknesses of the method, ensuring reliability and 

robustness. 

Implementation Implementation in MATLAB. 
Various platforms are used but not 

constantly optimized. 

MATLAB provides many tools and libraries in signal 

processing and DL, making development efficient. 
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Although the proposed technique is on the cutting edge, it 
has some limitations. Computational complexity and extensive 
resource usage make it less feasible for comprehensive 
practice. Challenges related to real-time processing and the 
need for secure data transmission cast doubt over the 
practicality and privacy of data. Furthermore, high-quality 
training datasets are required. Finally, the lack of model 
interpretability affects generalization and thus clinical 
acceptance. 

IV. CONCLUSION 

This study presented an advanced IoT-enabled ECG-based 
system for the detection of epilepsy, applying a multilayer 
hybrid DL algorithm to analyze EEG signals. The process 
involved capturing EEG signals from both healthy and 
individuals suffering from epilepsy using IoT-enabled devices, 
which relay the captured data to health analysis units. The 
preprocessing stage involves FIR filtering to clean the signals, 
while feature extraction identifies wavelet coefficients, signal 
entropy, spectral power, coherence, and frequency bands. The 
proposed hybrid optimization method was introduced to select 
features. This model integrates the standard jellyfish search 
algorithm in combination with the PSO to ensure that the most 
relevant features are selected for accurate prediction. The last 
stage is epilepsy detection, which is achieved through the 
sophisticated multilayer DL framework that incorporates CNN, 
GRU, and LSTM. The comparative analysis of the results 
showed that the proposed multilayer framework was highly 
superior to several conventional methods, such as CNN, RNN, 
and DNN. The results obtained show that the proposed 
framework had the highest accuracy, sensitivity, specificity, 
precision, recall, and FNR of 90.2, 85.56, 92.8, 88.6, 88.78, and 
15.4%, respectively. This method is a novel approach to the 
detection and prediction of epilepsy by integrating IoT, using 
advanced feature selection techniques and multilayer DL 
frameworks for improved results. Future work should 
investigate the development of data collection in a diverse 
population with real-time monitoring, advanced wearable 
devices that enable the continuous non-intrusive monitoring of 
EEG signals, and adaptive learning algorithms to facilitate 
personalized medicine. Emphasis should also be placed on 
cloud-based and edge computing to enable efficient processing 
of large volumes of EEG data and accelerate analysis for timely 
interventions. 
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