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ABSTRACT 

Electric load forecasting plays a vital role in all aspects of the electrical system, including generation, 

transmission, distribution, and electricity retail. The LightGBM ensemble learning method has been 

widely applied in load forecasting and has yielded many positive results. This study presents an algorithm 

combining the grid space of hyperparameters with cross-validation to evaluate the accuracy of LightGBM 

models across different hyperparameter values. Peak load data from Ho Chi Minh City were used to 

enhance the reliability of the results. Analysis of the results based on boxplot statistical charts indicated 

that the accuracy of the LightGBM model significantly depends on the hyperparameter values. Moreover, 

using default hyperparameter values may result in large errors in load forecasting. 
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I. INTRODUCTION  

Electric load forecasting estimates the future electricity 
consumption for a specific area, system, or grid. This 
forecasting is critical in assisting power plants, utility 
companies, and grid operators in effectively planning and 
managing electricity production, transmission, and distribution. 
Accurate load forecasting ensures an adequate supply of 
electricity to support socio-economic activities, such as 
allowing businesses to schedule production efficiently while 
optimizing the performance of an electrical system, minimizing 
losses, and reducing costs [1]. Numerous methods have been 
proposed for electric load forecasting, including regression 
methods [2, 3], exponential smoothing [4], cluster analysis 
methods [3], Artificial Neural Networks (ANNs) [5], machine 
learning models [6], deep learning [7], and ensemble learning 
[8]. In recent years, among state-of-the-art load forecasting 
methods, the LightGBM model has been proven to be effective 
in time series forecasting problems [9-10]. 

The performance of ensemble learning models, including 
LightGBM, generally depends on their hyperparameters. In this 
regard, evaluating the impact of hyperparameter values is 
crucial for applying the LightGBM model. To the best of our 
knowledge, very few studies have focused on this topic. For 

example, in [11], the characteristics of the learning rate (γ) and 
num_leaves were examined, identifying the optimal values for 
these two LightGBM hyperparameters. In [12], the influence of 
the n estimators and the learning_rate on the performance of 
the LightGBM model was established, obtaining the optimal 
values. In addition, some studies simply applied the LightGBM 
model with default hyperparameter values to predict loads [13-
15]. Therefore, conducting a comprehensive evaluation of the 
influence of key hyperparameters on the performance of the 
LightGBM model is important for its application, especially 
compared to the default hyperparameter values. This study uses 
the grid space for hyperparameters and cross-validation 
procedures to evaluate their overall influence on the 
performance of LightGBM, utilizing peak load data from Ho 
Chi Minh City for experimentation. In addition, a boxplot chart 
was used to analyze the results under various experimental 
scenarios. 

II. RESEARCH METHODS 

A. LightGBM Model 

LightGBM is a powerful machine learning algorithm that is 
widely applied in solving classification and regression 
problems. Developed by Microsoft, LightGBM is a high-
performance decision tree-based model that integrates several 
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advanced techniques such as the histogram algorithm, leaf-wise 
strategy, gradient-based one-side sampling, and exclusive 
feature bundling [16]. Combining these techniques enhances its 
efficiency, providing many advantages over other gradient-
boosting models. The basic steps of the LightGBM model are 
[17]: 

 Define a specific loss function: LightGBM requires a 
suitable loss function for the specific problem. This loss 
function will be optimized during the training process. 

 Gradient-based one-side sampling: LightGBM uses this 
procedure to create subtrees. Instead of random sampling, 
the algorithm focuses on samples with large gradients to 
optimize performance. 

 Histogram algorithm to identify the optimal segmentation 
point: This algorithm identifies the optimal segmentation 
point. Instead of processing each data point, the algorithm 
uses histograms to optimize tree splitting. 

 Feature dimension by exclusive feature bundling: 
LightGBM can automatically combine similar features into 
a single feature, reducing data dimensionality and 
accelerating the training process. 

 Leaf-wise algorithm with depth limitation: LightGBM 
grows trees vertically (leaf-wise) instead of horizontally 
(level-wise). This approach selects leaves with the most 
significant loss to grow, optimizing performance. 

 The leaf nodes to which the samples belong are combined 
to fit the residuals: LightGBM combines the leaf nodes to 
fit the residuals of the samples, improving the model 
accuracy. 

 Split the nodes of a tree by scoring the tree structure: 
LightGBM uses tree structure scores to decide how to split 
the nodes, optimizing the tree structure. 

 Stop the growth and generate the decision tree: LightGBM 
halts tree growth when certain conditions are met (e.g., 
maximum depth, maximum number of trees). The resulting 
decision tree is then used for the prediction. 

TABLE I.  SUMMARY OF LIGHTBM HYPERPARAMETERS 

Hyperparameters Description 

learning_rate 
Adjusts how much the model's weights are updated at 

each iteration. 

min_child_samples 
The minimum number of samples required in a node to 

be split into two child nodes. 

colsample_bytree  
The percentage of columns to be randomly sampled and 

used for constructing each decision tree. 

n_estimators 
The number of decision trees to be built during the 

training process. 

num_iterations The number of iterations to train the model. 

max_depth The maximum depth of the decision trees. 

num_leaves 
The maximum number of leaves that a decision tree can 

have. 

max_bin 
The maximum number of bins to be used in 

constructing histograms. 

bagging fraction 
The fraction of samples that are randomly sampled for 

each iteration. 

feature_fraction 
The fraction of features (or columns) that are randomly 

selected to build each decision tree split. 

Similarly to other machine learning models, the 
performance of LightGBM also depends on its hyperparameter 
values [18]. Table I presents the important hyperparameters of 
the LightGBM model and their descriptions. 

B. Proposed Method 

To evaluate the impact of hyperparameters on the 
performance of the LightGBM model, it is essential to assess 
model performance while varying their values around their 
default settings. Figure 1 illustrates an example of setting up a 
grid space with two hyperparameters, denoted as a and b. 
Hyperparameter a is configured with three values {a1, a2, a3}, 
where a2 is the default value. Similarly, {b1, b2, b3} are 
configurations for hyperparameter b, with b2 being the default 
value. The combination of these two hyperparameters creates 9 
parameter sets. Comparing the performance of the default 
combination (a2, b2) with the others provides a basis for 
assessing the role of different hyperparameter values relative to 
their defaults. This study set up a grid of values for 
fundamental hyperparameters of the LightGBM model, 
including colsample_bytree, n_estimators, min_child_samples, 
and learning_rate. This approach aims to evaluate the roles of 
these hyperparameters in model performance. 

 

 
Fig. 1.  A grid space model with two hyperparameters of a and b.  

Ensemble learning models, specifically LightGBM, often 
encounter overfitting issues in which they perform well on 
training data but are less effective on new data. In this scenario, 
a technique known as k-fold cross-validation can be applied to 
mitigate overfitting during hyperparameter tuning processes, as 
shown in Figure 2 [19].  

 

 

Fig. 2.  The k-fold cross-validation procedure. 
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This technique divides the dataset into k equal parts (folds). 
The model is trained k times each time, using (k-1) folds for 
training and the remaining fold for validation. The performance 
of the model is measured in the validation fold in each 
iteration. The results from k cross-validation runs are then 
averaged to estimate the model performance. The k-fold cross-
validation technique helps assess the generalization of a model 
on new datasets, thereby optimizing performance and 
mitigating overfitting issues for models. 

An algorithm was proposed by combining the 
hyperparameter grid space and cross-validation, as shown in 
Figure 3, including the following main steps: 

 Step 1: Data preprocessing. The data of the maximum 
electric load are processed and split into the input (X) and 
target (Y) datasets. 

 Step 2: Grid setup based on predefined ranges of 
hyperparameter values. At the same time, the cross-
validation procedure is established using the selected k-fold 
values. 

 Step 3: Training the LightGBM model. The model error is 
measured corresponding to each combination within the 
grid space. The Mean Square Error (MSE) is used to 
estimate the discrepancy between the actual and predicted 
values [20]. These MSE values are used to evaluate and 
analyze the roles of the hyperparameters in the performance 
of the LightGBM model. 

 

 
Fig. 3.  Impact assessment of hyperparameters. 

Furthermore, to evaluate the influence of hyperparameters 
on the effectiveness of the LightGBM model in more detail, 
different combinations of hyperparameters were considered, as 
shown in Table II. These models consist of the following: 

 Model M1 uses default values for four hyperparameters: 
colsample_bytree, n_estimators, min_child_samples, and 
learning_rate. 

 In Model M2, three hyperparameters retain their default 
values, with only colsample_bytree varying within the 
predefined range. 

 Model M3 keeps two hyperparameters unchanged while 
adjusting the colsample_bytree and n_estimators. 

 Model M4 maintains one hyperparameter at its default 
value while adjusting the remaining three: 
colsample_bytree, n_estimators, and min_child_samples. 

 Finally, model M5 does not retain any hyperparameters at 
their default values. 

TABLE II.  PROPOSED HYPERPARAMETER MODELS 

Model  Combinations of hyperparameters 

M1 

colsample_bytree = 1 

n_estimators =100 

min_child_samples = 20 

learning_rate = 0.1 

M2 

colsample_bytree = [min - max] 

n_estimators =100, 

min_child_samples = 20 

learning_rate = 0.1 

M3 

colsample_bytree = [min - max] 

n_estimators =[min - max] 

min_child_samples = 20 

learning_rate = 0.1 

M4 

colsample_bytree = [min - max] 

n_estimators = [min - max] 

min_child_samples = [min - max] 

learning_rate = 0.1 

M5 

colsample_bytree = [min - max] 

n_estimators = [min - max] 

min_child_samples = [min - max] 

learning_rate = [min - max] 

 
Analyzing the errors across these models allows for 

assessing the impact of adjusting hyperparameters on the 
predictive performance of the model. Consequently, the study 
can demonstrate how increasing the number of hyperparameter 
combinations can improve or affect the accuracy of the model. 
The findings of this analysis will support optimizing the 
LightGBM model, particularly in complex forecasting 
applications, to achieve the best possible performance. 

The statistical results are presented in the form of boxplots. 
A boxplot is a standard method for displaying data distributions 
by dividing the dataset into four equal parts, as shown in Figure 
4. The first (Q1), second (Q2), and third (Q3) quartiles 
correspond to the 25th, 50th (median), and 75th percentiles of 
the dataset. The second quartile (Q2) lies in the middle and 
divides the data into two halves, therefore, Q2 is also called the 
median [20]. 

 

 
Fig. 4.  Boxplot and its components. 

III. RESULTS AND DISCUSSION 

A. Experimental Setup  

This study used a peak electric load dataset from Ho Chi 
Minh City. These datasets were extracted and preprocessed to 
create the input (X) and target (Y) datasets corresponding to the 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17005-17010 17008  
 

www.etasr.com Nguyen et al.: Research on the Influence of Hyperparameters on the LightGBM Model in Load … 

 

LightGBM model's inputs and outputs. Figure 5 shows the 
graph of the Y data corresponding to the dataset. 

 

 

Fig. 5.  Graph of target values (Y). 

Table III presents the range of surveyed values for the 
hyperparameters of LightGBM and the range of surveyed 
values for the k-fold cross-validation process. The range of 
surveyed hyperparameter values is set within their respective 
limits, ensuring that the default values of the hyperparameters 
are positioned in the middle of the surveyed range. By 
exploring the values within this range, the study aims to 
evaluate the impact of hyperparameters on the performance of 
the LightGBM model, particularly when using default values. 
The default values of the hyperparameters are indicated in bold. 

TABLE III.  SURVEYED VALUE RANGE 

Hyperparameters Value range 

colsample_bytree [0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1] 

n_estimators  [25, 50, 75, 100, 125, 150, 175] 

min_child_samples [1, 5, 10, 20, 25, 30, 35] 

learning_rate [0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175] 

k-fold [2, 3, 4, 5, 6, 7, 8] 

 

B. Results and Evaluation 

1) Assessment of the Impact of Cross-Validation 

Figure 6 presents the analysis of the impact of the k-fold 
parameter in the cross-validation on the prediction errors of the 
LightGBM model in load forecasting. The results show that the 
prediction error at the default value k = 5 is not optimal. 
Specifically, at k = 5, the median error is 186,281 MW, and the 
minimum error is 142,186 MW. At k = 7, these values decrease 
to 180,737 MW and 140,711 MW, respectively. More 
decreasing errors are observed at k = 8, with values of 176,046 
MW for the median and 140,250 MW for the minimum error. 
Therefore, selecting an appropriate k-fold value instead of the 
default k = 5 in the cross-validation algorithm can help reduce 
errors in the LightGBM model forecasting process. 

2) Assessment of the Impact of Each Hyperparameter 

Figure 7 illustrates the impact of the colsample_bytree 
hyperparameter on prediction errors. The chart indicates that 
the default value colsample_bytree = 1 is not optimal regarding 
model error. The results show that both the median and 
minimum errors start to increase from colsample_bytree = 0.15 

(with a median of 167,972 MW and a minimum of 140,250 
MW) up to colsample_bytree = 1.0 (with a median of 189,818 
MW and a minimum of 143,995 MW). These results suggest 
that reducing the colsample_bytree value can improve the 
model's prediction performance. 

 

 

Fig. 6.  Boxplots of prediction errors when altering the k-fold parameter. 

 

Fig. 7.  Boxplots of prediction errors when altering colsample_bytree. 

Figure 8 illustrates the impact of the n_estimators 
hyperparameter on the prediction errors of the model. The chart 
shows that the default value n_estimators = 100 is not optimal. 
Specifically, the errors tend to increase from n_estimators = 25 
(with a median of 156,690 MW and a minimum of 140,250 
MW) to n_estimators = 100 (with a median increasing to 
183,291 MW and a minimum of 143,724 MW). These data 
indicate that adjusting the value of n_estimators value instead 
of using the default can improve the accuracy of predictions, 
thus enhancing the model's performance. 

 

Fig. 8.  Boxplots of prediction errors when altering n_estimators. 
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Figure 9 illustrates the impact of the min_child_samples 
hyperparameter on prediction errors. The chart shows that the 
default value min_child_samples = 20 is not optimal. 
Prediction errors decrease significantly when 
min_child_samples is increased from 20 to 35. Specifically, the 
analysis shows a decrease in errors from a median of 178,233 
MW and a minimum of 141,551 MW at min_child_samples = 
20 to 156,945 MW and 140,711 MW at min_child_samples = 
35, respectively. These results show that adjusting the 
min_child_samples value appropriately can enhance the 
model's prediction accuracy. 

 

 

Fig. 9.  Boxplots of prediction errors when altering min_child_samples. 

Figure 10 illustrates the impact of learning_rate on 
prediction errors. As shown in the graph, the default 
learning_rate = 0.1 is not optimal. When reducing the 
learning_rate from 0.1 to 0.025, prediction errors decrease 
significantly. Specifically, errors decrease from a median of 
183,840 MW and a minimum of 142,514 MW at learning_rate 
= 0.1 to a median of 156,203 MW and a minimum of 140,711 
MW at learning_rate = 0.025. These data show that adjusting 
the learning_rate can appropriately enhance the prediction 
accuracy of the model compared to using the default value. 

 

 

Fig. 10.  Boxplots of prediction errors when altering learning_rate. 

In summary, analyzing boxplot charts of prediction errors 
for each case study of the LightGBM model's hyperparameters 
(such as colsample_bytree, n_estimators, min_child_samples, 
and learning_rate) reveals that using the default values may not 
yield optimal results. Therefore, selecting appropriate values 

for these hyperparameters tailored to each forecasting problem 
is crucial to enhancing model performance. 

3) Assessment of the Influence of the Hyperparameters 
Combination 

Figure 11 presents the results on the impact of 
hyperparameter combinations. The graphical analysis indicates 
an increase in the number of hyperparameter combinations, 
helping to reduce the prediction error compared to those of the 
default values. Specifically, using the default values (Model 
M1), the corresponding error is 194,398 MW. For Model M2, 
statistical values with a median of 187,683 MW and a 
minimum of 173,880 MW are observed. For Model M3, the 
corresponding values are 187,420 MW and 151,508 MW. For 
Model M4, it is 187,683 MW and 146,963 MW. Finally, for 
Model M5, it is 186,280 MW and 142,186 MW. 

 

 
Fig. 11.  Boxplots of prediction errors based on hyperparameter 

combinations. 

IV. CONCLUSION  

To assess the impact of the LightGBM model's 
hyperparameters on load forecasting, an algorithm was 
proposed based on a grid space of hyperparameter values 
combined with cross-validation cycles. Various cases were 
suggested for investigation, and the results were evaluated 
using boxplot charts. The findings showed that the accuracy of 
the LightGBM model significantly depends on its 
hyperparameter values. The LightGBM model with default 
hyperparameters results in relatively large errors in the survey 
range, whereas there are some other hyperparameter values 
with better error results. Moreover, increasing the number of 
hyperparameter combinations also tends to achieve better 
forecasting results. These results underscore the importance of 
optimizing hyperparameter values for the LightGBM model 
and other machine learning models for load forecasting and 
general time series prediction. The obtained results allow for 
more in-depth research on hyperparameter optimization for the 
LightGBM model. 
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