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ABSTRACT 

The primary design property necessary to ensure the longevity and durability of manufactured materials is 

the material hardness. The primary objective of this study was to investigate the effect of cutting 

parameters, namely feed rate, cutting speed, and depth of cut, on the surface hardness generated during 

the turning process of aluminum alloy 6061. The turning experiments were conducted using a Taguchi L27 

orthogonal array arranged for three-level cutting parameters. The Analysis of Variance (ANOVA) was 

employed to determine the relative importance of each parameter on surface hardness. Additionally, an 

Artificial Nural Network (ANN) predictive model using the back-propagation learning algorithm was 

created to predict surface hardness levels at each level of the cutting parameters. The results revealed that 

increasing the values of all the turning parameters resulted in an increase in hardness, and it was 

concluded that the feed rate was the most critical factor (53.41%) in achieving high surface hardness, 

followed by the depth of cut (27.89%), whereas cutting speed had a lower impact (18.7%). This study also 

suggests a simple equation for estimating the surface hardness from the cutting parameters. The ANN 

model could accurately estimate the surface hardness with a coefficient of correlation (R) higher than 0.98 

between the predicted and experimental values. The predicted values of hardness by ANN were more 

precise (R2 =0.973839) than those predicted by ANOVA (R2=0.893). 

Keywords-AA6061; micro-hardness; correlation coefficient; ANN; ANOVA; feed rate; cutting speed; depth of 

cut 

I. INTRODUCTION  

Turning is an essential machining process in which a single 
point cutting tool removes small chips of material from a 
rotating cylindrical workpiece surface. The surface layers 
become deformed and hardened after the process, which allows 

them to withstand plastic deformation. This is important for 
designers when testing corrosion resistance and initiating 
fatigue cracks in parts throughout their use. Consequently, 
caution should be taken when choosing cutting parameters such 
as feed rate, cutting speed, depth of cut, cutting tools, and type 
of machine tools, whether with manual or Computer Numerical 
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Control (CNC) [1]. Round bars made of aluminum alloy 6061 
are highly adaptable and are used in a variety of applications 
because of their strength, ease of machining, and heat 
treatability. This material is quite good at withstanding and 
tolerating high temperatures without breaking down [2]. Few 
studies have investigated the hardness of machined Al alloys. 
Most previous research has concentrated on surface roughness 
and optimizing the appropriate cutting settings [3-5]. Several 
optimization methods have been employed to enhance the 
production process by optimizing input parameters for 
machining through the Taguchi optimization method. This 
method requires fewer trials for optimization, thereby lowering 
the cost associated with testing and manufacturing [6-9]. 

Several studies on the parameters affecting the surface 
hardness of different materials after turning have been 
performed using different optimization algorithms based on 
Response Surface Methodology (RSM) and proper design of 
experiments [10]. For example, the authors in [11] used the 
Box-Behnken design to optimize the cutting process 
parameters to improve the quality of machined components 
made from 6082-T6 aluminum alloy. The parameters 
considered were cutting speed, feed rate, and depth of cut. The 
authors in [12] demonstrated that during dry turning and 
minimum quantity cooling of turning magnesium alloys 
(AZ91D), the cutting process parameters had a significant 
impact on the force needed for cutting, surface quality, tool 
flank wear, and cutting temperature. They found that the feed 
rate and cutting speed were the most important factors. 
Optimization of the parameters was performed following the 
Taguchi method and Taguchi-based Grey Relational Analysis 
(GRA). The authors in [13] employed the Taguchi L9 
orthogonal array experimental design, adjusting the feed rate, 
depth of cut, and nose radius to study their impact on the 
surface roughness, rate of material removal, cutting duration, 
and cutting force. Similarly, the Taguchi method was used to 
determine the optimal turning parameters for achieving the 
maximum hardness of aluminum 6061 [14]. The influence of 
the cutting parameters along with the cooling method, blank 
size, and work material on the dimensional accuracy, 
circularity, diameter error, and surface roughness (Ra) of 
turned aluminum 6061, mild steel 1030, and alloy steel 4340 
workpieces were investigated using the Taguchi method and 
statistical analysis [15]. The optimal turning parameters for 
turning aluminum 6063 with carbon nitride inserts were 
estimated through statistical methods. Experiments based on 
the Taguchi method L27 orthogonal array were evaluated using 
the "lower the better" approach [16]. 

Artificial Neural Network (ANN) models have also been 
used to optimize turning parameters. Al-Ani [10] compared an 
ANN model and the RSM for predicting surface roughness 
after turning aluminum 6061. The ANN exhibited better 
predictive performance. However, both the ANN and RSM 
found that the cutting speed and feed rate were the major 
factors affecting the surface finish. Other sophisticated 
approaches for predicting and optimizing the surface finish of 
machined Al alloys include the finite element model [17] and 
genetic algorithms [18]. 

According to the previous literature review, there is a 
considerable body of knowledge regarding the machinability of 
aluminum alloys. However, it should be noted that extensive 
studies on the surface hardness of 6061 alloys using different 
cutting tools have not yet been conducted. Consequently, this 
study aims to develop a mathematical model for predicting the 
surface hardness (HV) of aluminum 6061. To this end, turning 
tests were performed, and the hardness of the turning surface 
was estimated. The mathematical model was then formulated 
using an ANN, and an Analysis of Variance (ANOVA) was 
employed to determine the contribution of the cutting 
parameters to HV. Additionally, the mathematical model was 
validated by examining the influence of the turning cutting 
parameters (feed rate, cutting speed, and cutting depth) on the 
surface hardness of aluminum alloy 6061. The aim was to 
assess the impact of these parameters in the surface hardness 
using ANN and ANOVA analyses [19]. 

This research is pioneering in that it establishes a 
dependable and precise model for predicting the surface 
hardness and optimizing the turning parameters of Al 6061 
alloy. The results of this study are expected to have a 
substantial positive impact on the aerospace industry and CNC 
machining. 

II. METHODOLOGY 

A. Turning Process  

Cylindrical bars (diameter, D = 50 mm; length, L = 300 
mm) of aluminum alloy 6061 were machined to obtain 
specimens 30 mm in length by turning in a medium CNC 
turning machine using an uncoated carbide cutting tool. A new 
insert edge was utilized for each experiment to guarantee the 
same cutting conditions. 

The design of experiments was performed using three 
controllable factors of three levels and one response variable. 
The three factors were Cutting Speed (Cs), Feed Rate (Fr), and 
Depth of Cut (Dc). The values for each factor and level were 
selected based on our experience with aluminum alloy 6061 
and are shown in Table I. For a full factorial design, 27 runs 
were needed. Therefore, turning experiments were conducted 
for 27 sets of cutting parameters, which were reported 
according to the orthogonal array of L27. After turning, the 
micro-hardness, HV, of the 27 turned parts was estimated. In 
turning operations, usually greater micro-hardness values are 
ideal for surface integrity. 

TABLE I.  SELECTED PROCESS PARAMETERS AND 
LEVELS FOR EXPERIMENTAL TRIALS 

Level Cs (rpm) Fr (mm/rev) Dc (mm) 

1 150 0.07 0.2 
2 230 0.13 0.4 
3 355 0.3 0.6 

 
The tool architecture parameters and geometry were 

selected from the tool database in the Mastercam X5 program, 
as shown in Figure 1. For each set of factors (Cs, Fr, and Dc), 
the Vickers micro-hardness profile was measured by creating 
five random indentations and rejecting the outliers. An HM-
200 tester was used for the micro-Vickers hardness 
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measurements and to determine the average hardness value 
from the three measurements. 

 

 
Fig. 1.  A turning tool was selected using Mastercam X5. 

B. Analysis of HV Results Utilizing Taguchi Method 

The results were analyzed using the Minitab-17 software. 
For the analysis, the dependent variable was HV, whereas the 
independent variables were Cs, Fr, and Dc. Furthermore, 
Pareto-ANOVA analysis was performed to determine the 
impact of each factor according to the following criteria [13]: 

When P>0.10, the factor has insignificant impact. When 
0.05<P<0.10, the factor is moderately significant. When 
P<0.05, the factor has significant impact. 

The Taguchi Signal-to-Noise (S/N) ratio was used to 
optimize the process parameters by measuring how the 
response factor varied with respect to a target value under 
various noise conditions. The experimental data were 
converted to the corresponding S/N ratios using the following 
equation [19]: 

�/���� � �10��
��
�

�
∑ 1 ��

�⁄�
���   (1) 

S/N is the signal-to-noise ratio in decibels, yi is the result of the 
ith experiment, and n is the overall number of observations for 
each response, yi. The S/N ratio analysis was performed 
according to the "bigger is better" option, that is, the higher the 
S/N ratio value, the higher the quality characteristics. 
Consequently, the optimum set of process parameters was 
selected based on the higher S/N value. A response was then 
generated to estimate the order of the parameters that affect the 
hardness [20]. 

C. Artificial Neural Network Model 

The ANN is capable of finding complex relationships 
among various factors influencing a desired outcome [21]. 
Although the Back Propagation Algorithm (BPA) is commonly 
used as a neural network training method, its convergence 
tends to be slow. In contrast, Levenberg Marquardt (LM) offers 
a faster alternative, leading to the utilization of BPA with LM 

for network training. The input layer of the network comprises 
three neurons representing Cs, Fr, and Dc. The output layer 
contained one neuron for the response factor. The appropriate 
number of neurons inside the hidden layer was determined 
through trial and error. The optimal configuration, resulting in 
the minimum mean squared error for surface roughness 
prediction, was found to include 20 neurons in the hidden layer. 

 MATLAB provides a Neural Network Toolbox for 
simulating neural networks, which facilitates the construction 
of a neural network model for training and testing data to 
categorize, identify hidden models, group, and make 
predictions. The most accurate artificial neural network 
architecture designed in the MATLAB toolbox is illustrated in 
Figure 2. 

 

 
Fig. 2.  The neural network architecture. 

An experiment was conducted using the NN Toolbox 
provided by MATLAB with the cutting parameters set of data 
as previously described. The dataset, comprised of 27 models, 
was randomly divided into two groups, with 70% used for 
training and the remaining 30% for testing. Using the training 
data, a neural network model was generated and the impact of 
various activation functions on the network layers was 
evaluated with respect to hardness values and MSE in the 
results. Nineteen models were trained to analyze ANN surface 
irregularities, and the weights after training were fixed for 
evaluation. We confirmed the network's adherence to the 
experimental results and calculated its compliance using the 
mean absolute percentage error and correlation coefficient (R2) 
as key metrics. 

III. RESULTS AND DISCUSSION 

A. Experimental Results Analysis 

The results of the 27 experiment runs are listed in Table II, 
showing the average surface hardness HV and S/N ratio. The 
influence of each cutting parameter on HV is shown in Figure 
3. It can be observed from Figure 3a that micro-hardness 
increased with increasing feed rate. This can be explained by 
the fact that as the feed rate increases, the cutting force also 
increases because the tool propagation exerts a higher 
resistance. As shown in Figure 3b, the microhardness increased 
as the cutting speed increased. This can be rationalized as an 
increase in the cutting force when the cutting speed increases. 
Figure 3c shows that an increase in the cut depth causes the 
hardness to increase. This phenomenon indicates that an 
improvement in the cut of depth value results in an 
improvement in cutting forces, which leads to a more work-
hardened surface layer. 
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TABLE II.  EXPERIMENTAL TESTS WITH A MEASURED 
SURFACE HARDNESS AND S/N 

No Cs (rpm) Fr (mm/rev) Dc (mm) HV S/N (dB) 

1 355 0.3 0.6 138.1 42.8039 
2 355 0.3 0.4 125.7 41.9867 
3 355 0.3 0.2 120 41.5836 
4 355 0.13 0.6 128.85 42.2017 
5 355 0.13 0.4 118.33 41.4619 
6 355 0.13 0.2 104.66 40.3956 
7 355 0.07 0.6 110 40.8279 
8 355 0.07 0.4 101 40.0864 
9 355 0.07 0.2 90.8 39.1617 

10 230 0.3 0.6 130 42.2789 
11 230 0.3 0.4 120.1 41.5909 
12 230 0.3 0.2 110 40.8279 
13 230 0.13 0.6 125 41.9382 
14 230 0.13 0.4 105.6 40.4733 
15 230 0.13 0.2 87.95 38.8847 
16 230 0.07 0.6 100.5 40.0433 
17 230 0.07 0.4 90 39.0849 
18 230 0.07 0.2 75.73 37.5854 
19 150 0.3 0.6 120.4 41.6125 
20 150 0.3 0.4 115 41.2140 
21 150 0.3 0.2 110 40.8279 
22 150 0.13 0.6 102.7 40.2314 
23 150 0.13 0.4 99.7 39.9739 
24 150 0.13 0.2 93.6 39.4255 
25 150 0.07 0.6 93.8 39.4441 
26 150 0.07 0.4 81.3 38.2018 
27 150 0.07 0.2 64.22 36.1534 

 

(a) 

 

(b) 

 

(b) 

 
Fig. 3.  Effect of feed rate, cutting speed, and depth of cut on hardness. 

B. Analysis of the Parameters Results in Micro-Hardness  

To enhance the outcome of the reaction on the aluminum 
alloy 6061, the S/N was employed as an indicator of the output 
quality to identify the optimal level of each parameter. 
Typically, a higher S/N ratio signifies a higher quality output, 
as depicted in Table II. 

Table III displays the response table of the S/N for the 
three-level factors. The optimal parameters for maximum 
surface hardness corresponded to the highest S/N. Figure 4 
shows the optimal parameters according to the highest S/N 
ratio for HV, which are Cs=355 rpm, Fr=0.30 mm/rev, and 
Dc=0.6 mm. 

TABLE III.  RESPONSE TABLE OF S/N RATIOS FOR THE 
THREE LEVEL FACTORS 

Level Cs Fr Dc 

1 39.68 38.95 39.43 
2 40.3 40.55 40.45 
3 41.17 41.64 41.26 

Delta 1.49 2.68 1.84 
Rank 3 1 2 

 

 
Fig. 4.  Main effects of turning parameters on HV. 

An ANOVA statistical analysis of the experimental data 
was performed for the HV values, and the results are shown in 
Table IV. The obtained results demonstrated a considerable 
impact (P<0.05) for all the factors on the HV values. 
Additionally, the F-value signifies the percentage of influence 
of each parameter. The higher the F value, the greater is the 
impact on the machining performance characteristics. 
According to Table IV, the feed rate had the highest 
contribution to HV (53.41%), followed by the depth of cut 
(27.89%), and the cutting speed, which was less significant 
(18.7%). 

TABLE IV.  ANOVA FOR SURFACE MICRO-HARDNESS. 

Factor 
Degree of 

Freedom 

Sum of 

Squares 

Mean 

Squares 
F-value P- value 

Contribution 

(%) 

Cs 1 1378.8 1378.79 35.91 0 18.7 
Fr 1 3937.6 3937.61 102.54 0 53.41 
Dc 1 2056.3 2056.33 53.55 0 27.89 

Error 23 883.2 38.4       
Total 26 8255.9         
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Using significant regression coefficients, the micro-
hardness HV can be estimated according to the following 
equation: 

HV= 43.25 + 0.0847 Cs + 124.0 Fr + 53.44 Dc  (2) 

R2 = 0.893, R2
adj= 0.89 

The R2 and R2
adj values of about 90% indicate that the 

model is acceptable and adequate. The plots in Figure 5 display 
that the residuals form a straight line, which implies that the 
errors are consistent and demonstrate the reliability of the 
model [13]. 

 

 
Fig. 5.  Residual plots for the mathematical expression of hardness. 

C. Simulation Result of ANN 

The neural network model receives input data to target the 
output parameter of surface hardness for three individual 
variables: cutting speed, feed rate, and depth of cut. The model 
is layered, distributing the input data until it produces an 
output. The output is then compared to the goal, which is actual 
surface hardness in this case. The error is measured, and the 
network is propagated backward until the minimum error value 
is reached. Figure 6 shows that the resultant tracks have a 
strong training orientation, confirmation, and experimentation 
with R-values of 0.99444, 0.99995, and 0.996151, respectively. 
These values result in an overall R-value of 0.98683, with a 
reported MSE of 0.00328. In this case, the network output is 
favorable, and the model can be utilized for new inputs. The 
regression (R) plot displays the significance of the difference 
between the target (measured hardness value) and the ANN 
output (predicted hardness value), with an R-value of 0.9665 
indicating that the output of the ANN closely resembles the 
intended result. 

To predict the output responses, the trained ANN was 
simulated using data from the input process variables. The 
predicted outputs were in the same range as the normalized 
range of the output data group used to train the neural network. 
It is evident from Figure 7 that the predicted values of hardness 
by ANN are more accurate (R2= 0.973839) than those 
predicted by ANOVA (R2 =0.893) when compared with the 
experimental values of hardness [22]. 

 
Fig. 6.  Correlation coefficient of the trained ANN model. 

 
Fig. 7.  Comparison of surface hardness values from experiments and 
predictions. 

IV. CONCLUSIONS 

The manufacturing process plays a crucial role in 
determining the surface hardness of the finished product. 
Therefore, understanding the relationship between the 
machining process and the surface hardness is essential. In this 
study, the hardening of aluminum alloy 6061 during turning 
was examined, and reasonable conclusions were drawn based 
on the context investigated. 

The optimal cutting parameters for turning were determined 
using the Taguchi signal-to-noise (S/N) ratio. The minimum 
hardness was found to be achieved at cutting speed of 150 rpm, 
feed rate of 0.13 mm/rev, and depth of cut of 0.6 mm. In 
contrast, the maximum hardness was obtained at a cutting 
speed of 355 rpm, feed rate of 0.13 mm/rev, and depth of cut of 
0.6 mm. Generally, the surface micro-hardness increases when 
all the cutting parameters increase. The verification tests 
concluded that the results achieved were precise, up to 89.3%. 
An Analysis of Variance (ANOVA) revealed that the feed rate 
had the most significant impact (53.41%) on surface hardness, 
followed by the depth of cut (27.89%), and the cutting speed 
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had the least impact (18.7%). The results suggest that the three 
parameters used in the turning process have a significant effect 
on the surface hardness [23]. Moreover, an Artificial Neural 
Network (ANN) was used to predict surface micro-hardness, 
and the ANN model was found to be more accurate than 
Taguchi's method. The predicted values of hardness estimated 
by the ANN were more accurate (R2 =0.973839) than those 
predicted by ANOVA (R2= 0.893) and when compared with 
the experimental values of hardness [24]. 

The novelty of this study lies in the evaluation of 
sustainability indicators and machining characteristics to 
enhance machining efficiency, reduce tool wear, and improve 
surface hardness. This study is expected to boost 
manufacturing productivity, increase production efficiency, 
reduce production costs, and enhance competitiveness in the 
aluminum 6061 alloy manufacturing industry. The primary 
novelty lies in avoiding the traditional manual experimental 
selection of process parameters and employing optimization 
methods to determine efficient cutting process parameters. In 
future research, it would be beneficial to investigate the 
influence of additional turning cutting parameters, such as 
coolant, cutting material, and tool geometry, on the surface 
hardness of the aluminum alloy AA-6061. 

REFERENCES 

[1] M. Siva Surya, "Optimization of turning parameters while turning Ti-
6Al-4V titanium alloy for surface roughness and material removal rate 
using response surface methodology," Materials Today: Proceedings, 
vol. 62, pp. 3479–3484, Jan. 2022, https://doi.org/10.1016/ 
j.matpr.2022.04.300. 

[2] G. Karthik Pandiyan and T. Prabaharan, "Optimization of machining 
parameters on AA6351 alloy steel using Response Surface Methodology 
(RSM)," Materials Today: Proceeding, vol. 33, pp. 2686–2689, Jan. 
2020, https://doi.org/10.1016/j.matpr.2020.01.369. 

[3] Y.-C. Cheng, W.-Y. Hsu, K. Abou-El-Hossein, O. Olufayo, and T. 
Otieno, "Investigation of diamond turning: of rapidly solidified 
aluminum alloys," in Current Developments in Lens Design and Optical 
Engineering XV, SPIE, Sep. 2014, pp. 232–240. https://doi.org/ 
10.1117/12.2060176. 

[4] Y.-C. Cheng, W.-Y. Hsu, C.-H. Kuo, K. Abou-El-Hossein, and T. 
Otieno, "Investigation of rapidly solidified aluminum by using diamond 
turning and a magnetorheological finishing process," in Optical 
Manufacturing and Testing XI, SPIE, Aug. 2015, pp. 222–229. 
https://doi.org/10.1117/12.2186725. 

[5] V. Hiremath, P. Badiger, V. Auradi, S. T. Dundur, and S. A. Kori, 
"Influence of particle size on Cutting Forces and Surface Roughness in 
Machining of B4Cp - 6061 Aluminium Matrix Composites," IOP 
Conference Series: Materials Science and Engineering, vol. 114, no. 1, 
Feb. 2016, Art. no. 012041, https://doi.org/10.1088/1757-899X/ 
114/1/012041. 

[6] M. Akgün and H. Demir, "Optimization of Cutting Parameters Affecting 
Surface Roughness in Turning of Inconel 625 Superalloy by 
Cryogenically Treated Tungsten Carbide Inserts," SN Applied Sciences, 
vol. 3, no. 2, Feb. 2021, Art. no. 277, https://doi.org/10.1007/s42452-
021-04303-2. 

[7] B. Özlü, "St-37 Malzemesinin Lazer Kesiminde İşleme Parametrelerinin 
Deneysel ve İstatiksel Olarak İncelenmesi," Fırat Üniversitesi 
Mühendislik Bilimleri Dergisi, vol. 33, no. 1, pp. 161-171, Feb. 2021, 
https://doi.org/10.35234/fumbd.769716. 

[8] H. Akkuş and H. Yaka, "Experimental and statistical investigation of the 
effect of cutting parameters on surface roughness, vibration and energy 
consumption in machining of titanium 6Al-4V ELI (grade 5) alloy," 
Measurement, vol. 167, Jan. 2021, Art. no. 108465, https://doi.org/ 
10.1016/j.measurement.2020.108465. 

[9] N. V. Cuong and N. L. Khanh, "Parameter Selection to Ensure Multi-
Criteria Optimization of the Taguchi Method Combined with the Data 
Envelopment Analysis-based Ranking Method when Milling SCM440 
Steel," Engineering, Technology & Applied Science Research, vol. 11, 
no. 5, pp. 7551-7557, Oct. 2021, https://doi.org/10.48084/etasr.4315. 

[10] O. Abdulateef, A. Ali, and S. Abed Al Kareem, "Surface Hardness 
Prediction Model of Turning Duplex Stainless Steel under Different 
Cutting Variables," Advances in Science and Technology Research 
Journal, vol. 17, no. 1, pp. 1–7, Feb. 2023, https://doi.org/10.12913/ 
22998624/157528. 

[11] R. F. Garcia, E. C. Feix, H. T. Mendel, A. R. Gonzalez, and A. J. Souza, 
"Optimization of cutting parameters for finish turning of 6082-T6 
aluminum alloy under dry and RQL conditions," Journal of the Brazilian 
Society of Mechanical Sciences and Engineering, vol. 41, no. 8, Jul. 
2019, Art. no. 317, https://doi.org/10.1007/s40430-019-1826-4. 

[12] R. Viswanathan, S. Ramesh, and V. Subburam, "Measurement and 
optimization of performance characteristics in turning of Mg alloy under 
dry and MQL conditions," Measurement, vol. 120, pp. 107–113, May 
2018, https://doi.org/10.1016/j.measurement.2018.02.018. 

[13] C. Shekar, N. B. D. Pattar, and Y. V. Kumar, "Optimization of 
Machining Parameters in Turning of AL6063T6 Through Design of 
Experiments," International Journal of Mechanical Engineering and 
Technology, vol. 7, no. 6, pp. 96-104, Nov. 2016. 

[14] Z. Hadi, A. A. Ugla, and H. I. Radhi, "Investigations and Optimization 
of Turning Process Parameters on Hardness of Machined AL6061 
Parts," International Journal of Mechanical Engineering, vol. 7, no. 2, 
pp. 4159-4167, 2022. 

[15] M. N. Islam, "Effect of Additional Factors on Dimensional Accuracy 
and Surface Finish of Turned Parts," Machining Science and 
Technology, vol. 17, no. 1, pp. 145–162, Jan. 2013, https://doi.org/1 
0.1080/10910344.2012.747936. 

[16] A. Saravanakumar, S. C. Karthikeyan, B. Dhamotharan, and V. G. 
Kumar, "Optimization of CNC Turning Parameters on Aluminum Alloy 
6063 using TaguchiRobust Design," Materials Today Proceedings, vol. 
5, no. 2, Part 2, pp. 8290–8298, Jan. 2018, https://doi.org/10.1016/ 
j.matpr.2017.11.520. 

[17] C. Kalyan and G. L. Samuel, "Cutting mode analysis in high speed finish 
turning of AlMgSi alloy using edge chamfered PCD tools," Journal of 
Materials Processing Technology, vol. 216, pp. 146–159, Feb. 2015, 
https://doi.org/10.1016/j.jmatprotec.2014.09.003. 

[18] B. Umroh, Muhathir, and Darianto, "The Optimum Cutting Condition 
when High Speed Turning of Aluminum Alloy using Uncoated 
Carbide," IOP Conference Series: Materials Science and Engineering, 
vol. 505, no. 1, May 2019, Art. no. 012041, https://doi.org/ 
10.1088/1757-899X/505/1/012041. 

[19] V. C. Nguyen, T. D. Nguyen, and D. H. Tien, "Cutting Parameter 
Optimization in Finishing Milling of Ti-6Al-4V Titanium Alloy under 
MQL Condition using TOPSIS and ANOVA Analysis," Engineering, 
Technology & Applied Science Research, vol. 11, no. 1, pp. 6775-6780, 
Feb. 2021, https://doi.org/10.48084/etasr.4015. 

[20] M. Mia et al., "Taguchi S/N based optimization of machining parameters 
for surface roughness, tool wear and material removal rate in hard 
turning under MQL cutting condition," Measurement, vol. 122, pp. 380–
391, Jul. 2018, https://doi.org/10.1016/j.measurement.2018.02.016. 

[21] B. Zahran, "Using Neural Networks to Predict the Hardness of 
Aluminum Alloys," Engineering, Technology & Applied Science 
Research, vol. 5, no. 1, pp. 757-759, Feb. 2015, https://doi.org/ 
10.48084/etasr.529. 

[22] S. Miladinović, S. Gajević, S. Savić, I. Miletić, B. Stojanović, and A. 
Vencl, "Tribological Behaviour of Hypereutectic Al-Si Composites: A 
Multi-Response Optimisation Approach with ANN and Taguchi Grey 
Method," Lubricants, vol. 12, no. 2, Feb. 2024, Art. no. 61, 
https://doi.org/10.3390/lubricants12020061. 

[23] N. Q. Mahmood, Y. F. Tahir, M. Hikmat, M. S. Abdulsatar, and P. 
Baumli, "Experimental Investigation of the Surface Roughness for 
Aluminum Alloy AA6061 in Milling Operation by Taguchi Method with 
the ANOVA Technique," Journal of Engineering, vol. 30, no. 03, pp. 1-
14, Mar. 2024, https://doi.org/10.31026/j.eng.2024.03.01. 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17118-17124 17124  
 

www.etasr.com Mahdi et al.: The Influence of Cutting Parameters on the Surface Hardness in Turning of 6061 … 

 

[24] A. Kannan and N.M.Sivaram, "Evaluation and Performance 
Improvement of Environmentally Friendly Sustainable Turning of 6063 
Aluminum Alloy in Dry Conditions Using Grey Relational Analysis," 
International Journal of Automotive and Mechanical Engineering, vol. 
21, no. 1, pp. 11085-11098, Mar. 2024, https://doi.org/10.15282/ 
ijame.21.1.2024.12.0858. 


