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ABSTRACT 

This study addresses the Vehicle Routing Problem with Time Windows (VRPTW) in the context of ice 

distribution by introducing a novel mathematical model that incorporates practical constraints essential 

for real-world applications. These constraints include customer retention strategies and quality 

preservation methods, which are important for maintaining customer satisfaction and product integrity. 

The objective is to minimize the total costs, including fuel expenses, standard and bonus driver wages, 

missed delivery penalties, and costs related to a quality preservation strategy. Given the NP-hard nature of 

this problem, this study proposes a hierarchical cluster-first-route-second approach and a Differential 

Evolution (DE) algorithm to solve large-scale problems. The effectiveness of these methods was examined 

and compared through test cases involving various problem sizes using real-world data from an ice 

distribution company in Thailand. The results show that the hierarchical cluster-first-route-second 

approach is more effective for the practical problem. Using capacitated K-means clustering, this 

hierarchical approach groups customers, enabling the solution of manageable subproblems through 

Mixed-Integer Linear Programming (MILP). The proposed method not only provides cost-effective and 

scalable solutions, but also outperforms traditional methods in terms of computation time and feasibility 

for large-scale applications. This study offers significant theoretical contributions by extending VRPTW 

models and providing practical implications for optimizing distribution strategies in competitive market 

environments, leading to substantial cost reductions and enhanced operational efficiency. 

Keywords-ice distribution optimization; vehicle routing problem with time windows; capacitated k-means 

clustering; hierarchical clustering; mixed integer linear programming; differential evolution 

I. INTRODUCTION  

Ice is a vital commodity with a significant role in various 
global markets. Beyond its uses in food preservation and 
beverage cooling, ice is crucial in sectors, such as construction, 
healthcare, food processing, and tourism. The global ice market 
is projected to experience substantial growth from 2023 to 
2031 due to its versatility [1]. Additionally, the increasing 
threat of global warming, with predictions of a 1.5°C 
temperature rise between 2030 and 2052 due to human-induced 
greenhouse gas emissions, is expected to boost the demand for 
ice [2]. This anticipated demand surge will likely drive further 
growth in the ice-making industry. Over the past century, the 
ice manufacturing industry has seen consistent growth, 
resulting in increased competition [3]. However, the industry 
faces challenges, such as maintaining consistent temperatures 
during production, storage, and transportation. Supply Chain 
Management (SCM) and the unpredictability of Industry 4.0 

networks, including feedback loops and system dynamics, pose 
significant concerns in production and logistics systems [4, 5]. 
Ice production and storage require significant energy 
consumption for continuous temperature control [6]. 
Transportation also adds complexity, as refrigeration-equipped 
vehicles are needed to preserve product quality during transit, 
leading to higher fuel consumption and costs [7]. Additionally, 
ice manufacturers deal with declining sales as a result of 
increased competition. Therefore, maintaining high product 
quality, timely delivery, and accurate shipment estimates are 
necessary to retain customers. These issues highlight the need 
for operational efficiency and cost-effectiveness. 

This study addresses the practical challenges encountered 
by an ice manufacturing company in Thailand, where 
consumption is high. The company faces competition in route 
delivery, and delays can lead to customers refusing to purchase 
products as they may already have secured supplies from other 
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sources. To maintain customer retention, the company 
implements a strategy to pass customer locations within a 
limited extended time frame, even if arriving outside the 
specified time window, to prevent permanent customer loss. 
Customer satisfaction depends on both timely delivery and 
product quality. Despite vehicle refrigeration, heat transfer 
during transportation can cause the ice to melt. To maintain 
product quality, the company fully packs vehicles to prevent 
melting. Moreover, several cost-related issues in ice 
distribution planning are a major concern. Late deliveries 
outside the customer's time window lead to lost sales, and 
loading extra products into vehicles to maintain delivery 
quality incurs additional costs. In addition, bonus costs to 
incentivize employee performance are considered. 

In temperature-controlled distributions, such as cold chain 
logistics, transporting products requires careful attention to 
maintain temperature and humidity levels [8]. Ensuring timely 
delivery and maintaining product quality is crucial to customer 
satisfaction, adding more cost factors to consider. 
Consequently, the Vehicle Routing Problem with Time 
Windows (VRPTW) is a popular approach in this field. The 
studies carried out in [9-12] focused on VRPTW in 
temperature-controlled distributions. These studies 
decomposed various cost components and integrated additional 
transportation-related factors into their objective functions, 
such as refrigeration operational costs, penalties, and product 
damage costs. Maintaining temperature control is especially 
critical in the distribution of ice products. However, few studies 
have been conducted in this area. Authors in [13] focused on 
minimizing fuel costs in the ice distribution, considering a 
scenario with only two vehicles. A mathematical model was 
developed to recommend a strategy that involves driving to the 
furthest destination first and then delivering backward to the 
distribution center. In [7], the capacitated VRP was addressed 
in ice distribution by incorporating time windows and multiple 
products to minimize total costs, including travel, driver, and 
penalty costs. Mixed-Integer Linear Programming (MILP) was 
used to solve small-size problems, and a Differential Evolution 
(DE) algorithm with local search was developed to address 
large-size problems. In [4], VRPTW was addressed by 
considering the fleet size and road conditions for ice 
distribution to minimize travel costs. This approach combined 
hybrid Particle Swarm Optimization (PSO) and Adaptive Large 
Neighborhood Search (ALNS) algorithms, tailored to the 
specific needs of ice product distribution. However, VRPTW, 
being NP-hard, becomes more complex with added conditions 
and factors. For large-scale problems, exact methods are often 
impractical due to computational challenges. Therefore, many 
studies use heuristics and metaheuristics to find feasible 
solutions. 

To provide feasible delivery planning solutions and 
enhance customer satisfaction, customers are often grouped 
into clusters based on their location or delivery conditions [14]. 
A hierarchical cluster-first-route-second approach is one of the 
constructive heuristic methods deployed to handle large-scale 
problems [15]. A hierarchical approach allows the problem to 
be divided into different levels, with distinct methods applied at 
each level [16]. In [17, 18], a two-phase method was followed, 
which included clustering and distribution routing to solve 

VRPTW. K-clustering, especially the k-median and k-means, is 
the most popular model to solve the general clustering problem 
[19]. To prove the effectiveness and efficiency of this method, 
K-means, K-medoids, and DBSCAN were compared for 
customer grouping, solving VRPHTW implementing an MILP 
model. The K-means provided optimal routes at lower costs 
[20]. Many studies, such as [21, 22], utilized K-means 
clustering in the initial phase to reduce the problem's scale, 
optimizing the route distribution. These studies highlight the 
importance of cluster determination in minimizing total costs 
for VRPTW. 

Metaheuristic algorithms are the most researched, 
developed, and widely applied to solve various problems [23]. 
Commonly used metaheuristic algorithms in route planning 
include Ant Colony Algorithms (ACA) [24, 25], Tabu Search 
(TS) [26, 27], Genetic Algorithms (GA) [28], PSO algorithms 
[29], DE [30], and Simulated Annealing Algorithms (SAA) 
[31]. DE is one of the most effective evolutionary algorithms 
for numerical optimization problems due to its positive 
feedback performance and use of simple operations - mutation, 
crossover, and selection - on initial vectors to generate 
competitive solutions [32, 33]. Its straightforward nature and 
rapid convergence make it very effective for numerical 
optimization, including VRPTW applications. Numerous 
studies have employed DE to solve VRPTW, aiming to provide 
efficient and high-quality solutions. In [34], DE was utilized 
for VRPTW, incorporating service times and driver-specific 
time windows. In [35], a sort-based DE algorithm was 
introduced, which incorporated Pareto dominance for dual-
objective optimization. In [36], postman delivery routing was 
optimized using both PSO and DE, finding that both methods 
reduced travel distances and outperformed current practices, 
with DE being more effective than PSO. In [37], the Multi-
Objective VRPTW (MOVRPTW) was examined, improving a 
differential mutation strategy to improve the likelihood of 
generating feasible solutions and improving population 
convergence. In the context of ice distribution, DE has been 
used to provide an efficient solution and reduce transportation 
costs [7]. 

Very few studies addressed vehicle routing problems 
specific to the ice industry. Furthermore, as far as is known, no 
study on VRPTW for ice distribution has considered the 
combination of conditions and restrictions. This study 
addresses this gap by incorporating time window violations to 
improve customer retention. It also considers bonus costs to 
incentivize employee performance, as well as costs associated 
with maintaining product quality. This approach aims to 
enhance the efficiency of ice distribution operations by 
incorporating real-world constraints to cope with the market's 
increasing competitiveness. Therefore, this study aims to 
develop a novel mathematical programming model to optimize 
the ice transportation process. This model, formulated as 
MILP, effectively addresses VRPTW specific to the ice 
industry. Key considerations include delivery time windows, 
varying fuel consumption rates according to vehicle age, 
vehicle capacity constraints, different product types, and 
customer retention requirements. The objective is to find 
optimal ice distribution routes with minimum total costs, 
including fuel expenses, standard and bonus driver 
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remuneration, missed service costs, and product quality 
preservation expenditures. Owing to the complexity of 
VRPTW, exact methods are often impractical for large-scale 
problems. As a result, this study proposes alternative 
approaches to find optimal solutions to a large-scale real-world 
problem. These include a hierarchical approach known as 
cluster-first-route-second, as well as a DE metaheuristic 
algorithm. The solutions obtained from these three different 
methods are compared for their efficiency to be evaluated in 
terms of objective results and computation times to identify the 
most suitable approach. The goal is to find an appropriate 
solution that efficiently adapts to real-world data and operates 
within practical computation time constraints. This study is the 
first to investigate various objective functions and problem 
characteristics related to ice distribution operations. By 
optimizing routes and adapting to changing conditions, the 
proposed method enables the ice industry to overcome the 
unique challenges associated with transporting this specific 
category of merchandise. 

II. DEFINITION OF THE PROBLEM 

The ice manufacturing company based in Thailand 
specializes in producing various types of ice products, 
including tube ice, small tube ice, cube ice, and flake ice. Its 
distribution network consists of a single depot serving 83 
customers, each requiring different daily amounts of these 
products. The company operates a fleet of homogeneous 
vehicles, categorized into three groups based on age: three new 
vehicles, two medium-aged vehicles, and two old vehicles, 
each with different fuel consumption rates. Vehicles travel at 
an average speed of 50 km/h and have a maximum capacity of 
150 ice bags, each weighing 20 kg. Drivers are paid a standard 
wage of 300 baht per day and must deliver a minimum of 70 
units of ice products, with bonuses awarded for exceeding this 
threshold. The operation time is from 6:00 a.m. to 3:30 p.m., 
adhering to this timeframe for all deliveries. Each customer 
specifies their preferred earliest and latest arrival times, 
creating time windows for deliveries.  

In this context, the VRPTW presents specific 
considerations. If a vehicle arrives at a customer location 
earlier than the designated time window, there are no 
associated costs, but the vehicle must wait until the earliest 
service time. Arriving later than the latest allowable service 
time results in missed sales opportunities and incurs costs due 
to unsold goods. This ice transportation is unique in that even if 
a customer does not receive service within the time window, 
the vehicle must still pass within a 90-minute extension to 
avoid permanent customer loss. This process ensures that 
customers perceive the ice delivery service as still operating on 
their route, thus maintaining customer retention. Furthermore, 
to prevent ice products from melting and sustain their form 
during transportation, the company implements a quality 
preservation strategy by fully loading the vehicle with ice 
products. If the total shipping demand falls below the vehicle's 
capacity, the company adds supplementary ice tube products to 
increase density and reduce the air-exposed surface area. These 
unsold and supplementary products are returned for processing 
into flake ice, incurring additional costs. Currently, deliveries 
are managed by designated vehicles and drivers, with routes 

determined by driver experience. However, this often leads to 
significant transportation costs due to vehicle misallocation and 
inefficient route sequencing. Given these considerations, this 
study aims to minimize costs related to fuel, driver wages 
including bonuses, missed deliveries, and the quality 
preservation strategy. The combination of these elements is 
crucial to optimizing ice distribution operations. Figure 1 
shows an overview of the problem. 

 

 
Fig. 1.  Schematic of the problem. 

III. METHODOLOGY 

To address this problem, this study proposes a 
mathematical model that considers the various constraints of 
ice distribution. However, solving this VRPTW by using an 
exact method was not feasible within a reasonable timeframe. 
Therefore, this study employs a hierarchical cluster-first-route-
second approach and a DE algorithm to effectively address 
large-scale problems. The results obtained from these three 
methods are compared for their differences to be assessed and 
the most suitable solution to be identified. 

A. Mathematical Model 

The VRPTW can be described in the form � =  (� , �), 
where � = {0,1, … , }  denotes the set of customers or nodes, 
with vertex 0 representing the depot. The set � =
 {(�, �): �, � € �, � ≠ �}  is a set of arcs connecting each customer 
location �  to � . The distance between customer �  to �  is 
symmetrically represented by ���. A mixed linear programming 
mathematical model was developed to obtain the optimal 
solution. 

1) Indices and Sets 

Customer �, �, ℎ = 1,2 … , . 

Vehicles � = 1,2 … , �. 

Ice products � = 1,2 … �. 

2) Input Parameters 

 is the number of customers. 

� is the number of vehicles. 

� is the number of product types 

��� is the traveling distance from customer � to � (km). 

�� is the fuel consumption cost of vehicle � (bath/km). 
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�  is the standard driver wage (bath). 

!" is the minimum number of product standards (units). 

#� is the capacity of vehicle � (units). 

$�% is the amount of product � to be delivered to customer �  
      (units). 

&�� is the total demand of customer � (units). 

'� is the earliest arrival time allowed by customer �. 
(� is the latest arrival time allowed by customer �. 
)� is the service time at customer � (mins). 

*  is a driver's bonus for exceeding the standard daily  
      quantity of delivered goods (baht/unit). 

�  is the cost of additional products for maintaining the 
      quality of delivering goods (baht/unit). 

"�%  is the cost of lost sales of product �  from missed 
        customers (baht/unit) 

&!�+ is the maximum time for delivery (mins). 

&�� is the time per kilometer of vehicle (min/km). 

MP is the extended time for driving during which  
         customers are not serviced (mins). 

! is a large positive number. 

3) Decision Variables 

�� becomes 1 when vehicle � is used and 0 otherwise. 

+��� becomes 1 when vehicle � travels from customer � to  
        customer � and 0 otherwise. 

,��  becomes 1 when vehicle �  services customer �  and 0 
      otherwise. 

-&�� becomes 1 when vehicle �  misses service at customer 
        � and 0 otherwise. 

&��� is the arrival time of vehicle � at customer �. 
&"�� is the departure time of vehicle � at customer �. 
*"� is a driver's bonus of vehicle � (units). 

�$$�  is the number of additional products for maintaining  
          the quality of delivering goods for vehicle � (units). 

�.)� is the total distance of vehicle � (km). 

4) Objective function 

!�/0 = ∑ (�� ∗ �.)�)3�45 + ∑ 7(� ∗ ��) + (* ∗ *"�)83�45 +
    ∑ ∑ ∑ ("�% ∗ $�% ∗ -&��)9%453�45:�45 + ∑ (� ∗ �$$�)3�45   (1) 

5) Constraints 

∑ +;��:�45 ≤ 1     ∀�∈ {1, … �} (2) 

∑ +�;�:�45 ≤ 1      ∀�∈ {1, … �} (3) 

∑ ∑ +���:�45:�45 ≤   ∗ ��   ∀�∈ {1, … �} (4) 

∑ +�?�:�4; − ∑ +?��:�4; = 0   ∀?∈ {1, … },  

 ∀�∈ {1, … �} (5) 

∑ ∑ +���3�45:�45 =  1  ∀�∈ {1, … } (6) 

∑ ,��3�45 = 1   ∀�∈ {1, … }    (7) 

∑ +���:�45 =  ,��, ∀�∈ {1, … }, ∀�∈ {1, … �} (8) 

∑ ∑ (��� ∗ +���):�45:�45 =  �.)� ∀�∈ {1, … �} (9) 

∑ &�� ∗ (,�� −:�45 -&��) ≥ !" ∀�∈ {1, … �} (10) 

∑ (&�� ∗ (,�� − -&��)):�45  − !" = *"�∀�∈ {1, … �} (11) 

∑ ∑ ($�% ∗ ,��):%45:�45 ≤ #� ∀�∈ {1, … �} (12) 

#� − ∑ ∑ ($�% ∗ ,��):%45:�45 =  �$$�   

∀�∈ {1, … �}  (13) 

&"�� + (��� ∗ &���) − ! ∗ 71 − +���8 ≤ &���  

∀�∈ {1, … }, ∀�∈ {1, … }, ∀�∈ {1, … �}  (14) 

&��� + )� ∗ (,�� − -&��) =  &"��  

∀�∈ {1, … }, ∀�∈ {1, … �}  (15) 

&��� ≤ '� ∀�∈ {1, … }, ∀�∈ {1, … �} (16) 

&��� ≤ ((� ∗  ,��) + (!� ∗  -&��)  

∀�∈ {1, … }, ∀�∈ {1, … �} (17) 

− ! ∗ -&�� + &��� ≤ (�  

∀�∈ {1, … }, ∀�∈ {1, … �} (18) 

! ∗ (1 − -&��) + &��� > (�  

∀�∈ {1, … }, ∀�∈ {1, … �}  (19) 

∑ +���:�45 ≥  -&��, ∀�∈ {1, … }, ∀�∈ {1, … �} (20) 

&"�� + (��; ∗ &��� ∗ +�;�) ≤  &!�+     
 ∀�∈ {1, … }, ∀�∈ {1, … �} (21) 

The objective function (1) aims to minimize the total cost, 
which includes fuel costs, standard and bonus driver costs, 
missed deliveries costs, and costs associated with the quality 
preservation strategy. Constraints (2) and (3) ensure that the 
vehicle starts and ends at the depot. Constraint (4) limits the 
number of active vehicles to the number of vehicles available. 
Constraint (5) ensures that if a vehicle visits a specific 
customer, it will also leave that customer. Constraint (6) 
certifies that a vehicle traveling from customer i to customer j 
has only one destination. Constraint (7) ascertains that each 
customer is visited only once by a vehicle. Constraint (8) 
specifies that a vehicle k can travel to customer i only if it 
follows a route through customer j. Constraint (9) calculates the 
total distance traveled by vehicle k. Constraint (10) ensures that 
each vehicle used must deliver more goods than the specified 
minimum standard quantity. Constraint (11) calculates the 
number of products eligible for a bonus value of vehicle k. 
Constraint (12) specifies that the total product carried by the 
vehicle does not exceed its capacity. Constraint (13) indicates 
the quantity of additional goods included as part of the strategy 
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to maintain the product quality for the vehicle k. Constraint 
(14) calculates the arrival time of vehicle k at the customer. 
Constraint (15) eatimates the departure time of vehicle k from 
customer i. Constraint (16) certifies that vehicles can reach 
customers before the earliest time without incurring additional 
costs. Constraint (17) guarantees that vehicles arrive at the 
customer within the latest time for service, and if not, they 
must pass the customer within a specified extended period. 
Constraints (18) and (19) determine the implications of vehicle 
k arriving at the customer later than the latest allowed time, 
resulting in missed deliveries. Constraint (20) determines that 
vehicle k must pass customer i even if no service is provided to 
prevent permanent customer loss. Constraint (21) ensures that 
the total vehicle travel time does not exceed the maximum 
distribution time. 

B. Hierarchical Cluster-First-Route-Second approach 

The cluster-first-route-second is a hierarchical method that 
simplifies complex problems by breaking them down into more 
manageable subproblems. This approach is employed to deal 
with the large-scale VRPTW problem. In the first phase, 
customers are grouped deploying the capacitated K-means 
clustering method. In the second phase, a mathematical model 
is applied for route optimization using MILP, employing a 
branch-and-bound algorithm. The steps for solving this 
hierarchical approach are: 

 Step 1 - Input customer data: Relevant data for clustering 
customers, including total demand, latitude and longitude 
coordinates, and the distance matrix, are collected and 
generated. 

 Step 2 - Determine the number of clusters: The K-means 
clustering algorithm has no specific rules for determining 
the number of clusters. The number of clusters (k) usually 
depends on the data characteristics. In general, classical 
clustering methods use the distance between members and 
center points. However, for VRPTW, vehicle capacity must 
be considered. As suggested in [38, 39], the appropriate 
number of clusters (k) is determined based on the total 
demand and the vehicle capacity, utilizing a specific 
formula: 

/CD(EF GH IJCKLEF (�) = MNOPQ RSTPUR
VS?�WQS WP%PW�OX (22) 

The number of clusters is rounded up to the nearest integer. 
For instance, for a total demand of 968 units and a vehicle 
capacity of 150 units, the number of clusters is 7. 

 Step 3 - Apply the K-means algorithm: The K-means 
algorithm partitions data into k clusters to maximize 
similarity within each cluster. This is determined by the 
average distance between the data point and the centroid of 
each cluster.  

Algorithm 1 The steps of K-Means algorithm 

1. Initialize a set of K centers through 

random  

   sampling. 

2. Determine cluster membership by 

calculating the  

   distance between each data point and 

the center  

   point, assigning each member to the 

closest  

   set. 

3. Calculate the new center point for each 

set  

   using the mean values. 

4. Repeat steps 2 and 3 until the center 

points no 

   longer change. 

 
 Step 4 - Verify cluster constraints: After clustering 

customers based on location, each cluster's demand is 
verified to ensure that it meets the vehicle's capacity and the 
worker's standard rate (70 to 150 units). Clusters that satisfy 
both constraints are considered acceptable. The system 
relocates customers to the nearest cluster that can 
accommodate their demand if their demand within a cluster 
exceeds the capacity constraint. This process is repeated 
iteratively until all customers are part of a single cluster that 
satisfies the capacity condition.  

 Step 5 - Prioritize clusters by distance from the depot: 
Given the utilization of homogeneous vehicles with varying 
ages, which consequently exhibit different fuel 
consumption rates, the arrangement of vehicles within each 
cluster has a significant impact on transportation costs. 
Thus, this study arranges the sequence of clusters for 
vehicle selection based on the distance from the depot and 
the centroid center of each cluster. Vehicle assignment is 
prioritized for the cluster farthest from the depot, followed 
by clusters in descending order of distance. 

 Step 6 - Apply a mathematical optimization model: Route 
optimization and vehicle assignment for each cluster are 
carried out using an MILP with a branch and bound 
algorithm. 

C. Differential Evolution (DE) Algorithm 

DE consists of four main steps. This study employed a DE-
based metaheuristic to find optimal solutions to complex and 
large-scale problems. The DE procedure includes the following 
operations: solution initialization, mutation, recombination, and 
selection.  

1) Step 1: Solution Initialization 

Generating the initial vector population is crucial in DE, as 
a well-designed initial population significantly affects the 
quality of the solution. The encoding and decoding procedures 
below outline the population design and parameters. 

 Encoding solution: An initial vector population comprises a 
set of parameters that define a proposed solution to the 
problem. This population is generated by randomly 
selecting uniform numbers in the range [0,1). Each vector 
comprises a customer sequence  = { U ∈ Y|/ = 1, … , } 
and a vehicle sequence � = {�� ∈ Y|� = 1, … , �} . The 
vector represents defined customer and vehicle positions 
based on   and � coordinate system, as shown in Figure 2. 
The first iteration initializes each position in the vector with 
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randomly generated real numbers. Subsequent iterations 
update these position values using DE operations (mutation 
and recombination). 

 Decoding solution: In Figure 2, the position values of both 
  and �  in vectors are sorted, with smaller values being 
given higher priority according to the ROV rule. Therefore, 
the customer and vehicle positions are rearranged based on 
their sorted values. The conceptual procedure for decoding 
is illustrated in Figure. 3. 

 

 
Fig. 2.  Example of randomly generated encoding and decoding. 

Procedure Decoding of the problem 

For each vehicle �� from �5 to �3: 
  // Assign customer to vehicle �3 
  For each customer  U from  5 to  :: 
    If Cumulative total demand + demand of 

 U ≤ 
       Capacity of �_� 
      Assign Customers  U to �� as ( U

\]) 
      Update cumulative total demand  

      Update demand of  U to 0 
    Else 

      Break the customer loop and move to 

the next 

      vehicle �3^5 
  // Routing process for each vehicle 

  Rearrange assigned customers  ( U
\]) by 

ROV  

  earlies time 

  For each customer in assigned customers 

for 

  vehicle: 

    Consider the time window constraints 

    Update departure time, total distance,  

    cumulative demand 

    Calculate objective function and 

update total 

    costs for the vehicle 

// After completely assigning all 

customers to 

// vehicles, check minimum served 

constraints 

Return objective function 

2) Step 2: Mutation Operation 

The mutation operation generates a new solution different 
from the initial population. The mutation vector ���,_^5  is 
calculated using (23), combining three randomly selected 
vectors from the initial solution (+`5,_ , +`a,_ , +`b,_) . The 
scaling factor � is a constraint from [0, 2]. 

���,_^5 = +`5,_ + �(+`a,_ −  +`b,_)  (23) 

3) Step 3: Recombination Operation 

This operation generates the trial vectors c��,_^5  through 
crossover between the mutant vector ���,_^5  and the target 
vector +��,_^5, as obtained from (24). The position value of the 
vector can be either a trial or a target value, depending on a 
random number F'/$�  and a crossover rate  d ∈ e0,1f. 

c��,_^5 = g ���,_^5 �HF'/$� ≤  d
+��,_^5 �H F'/$� >  d   (24) 

4) Step 4: Selection Operation 

The final operation selects the vector that will become the 
initial solution for the next generation � + 1.  This is achieved 
by comparing the objective function values of the trial and 
target vectors one-to-one. The vector with the lowest value of 
the objective function is chosen as the new target vector for the 
next generation, according to (25). In subsequent iterations, the 
best solution is determined by comparing the objective function 
of the target vector. 

+�,_ 4 gc�,_  �H  H(c�,_) ≤ H(+�,_i5) 
+�,_i5  GLℎEFj�KE                     (25) 

IV. RESULTS AND DISCUSSION  

This section presents a case study that evaluates the 
effectiveness of the solutions acquired using the exact model, 
the hierarchical cluster-first-route-second approach, and the DE 
algorithm. Initially, a mathematical model was developed to 
address the VRPTW for ice distribution, to determine the most 
efficient ice distribution routes while minimizing total costs. 
This study generated 35 test instances, dividing them into three 
sizes: 1) a small problem with 10, 20, and 30 customers, 2) a 
medium problem with 40 and 50 customers, and 3) a large 
problem with 60 and 70 customers. Real data from a case study 
consisting of 83 customers were also deployed. The distance 
matrix for all locations was calculated using latitudes and 
longitudes retrieved from Google Maps. 

The company's eight-hour planning time constraint limits 
the scenarios it can solve. Each problem was tested under five 
scenarios based on customer demand and time windows. The 
Lingo 19 software was applied for the exact model, whereas 
DE was implemented using Python in Google Colab. The two-
phase approach utilized Google Colab for the first phase and 
Lingo 19 for the second phase. Table I presents the best 
solution for each scenario, solved in five iterations, showing 
the objective results and computation times obtained from 
MILP, the two-phase approach, and DE. The last two columns 
provide the efficiency in determining the objective results of 
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cluster-first-route-second and DE methods. Table II depicts the 
percentage differences between the objective results and CPU 
times among the three methods. 

The results demonstrate that the exact model could achieve 
the global optimal solution for small problems with up to 30 
customers (instances 1-15). The efficiency of the cluster-first-
route-second method and DE was assessed by comparing their 
objective solutions with the global optimal solution. The 
cluster-first-route-second provided an objective solution very 
close to the global optimal, with an average efficiency of 
99.50%. The DE method achieved an average efficiency of 
91.72%, indicating that both methods can provide acceptable 
solutions for small problems. However, DE required 
significantly less computation time compared to the cluster-
first-route-second. 

For medium problems with 40 customers (instances 16-20), 
the exact model could not provide a global optimal solution 
within the limited computation time, making it more 
challenging to obtain feasible solutions. Both the cluster-first-
route-second and DE methods consistently delivered feasible 
solutions. The cluster-first-route-second method provided the 

objective solution with an average cost that was 10.21% lower 
than that of the optimal solution and required a shorter 
computation time. DE resulted in higher costs, averaging 
2.67% above the optimal solution, although it also required a 
shorter computation time compared to both the optimal 
solution and the cluster-first-route-second method.  

For problems with more than 40 customers (medium and 
large problems), the exact model could not find optimal 
solutions due to the increased complexity of larger-size 
problems in VRPTW. Both the cluster-first-route-second 
approach and the DE provided feasible solutions. However, the 
cluster-first-route-second method delivered an objective 
solution with a 24.40% lower average cost than that of DE. 
Even though it required slightly more computation time, this is 
acceptable given the significant cost savings. This makes the 
cluster-first-route-second approach more suitable, as it offers 
feasible solutions with much lower costs and reasonable 
computation times. In the real case with 83 customers, the 
cluster-first-route-second approach was proved again more 
practical, delivering significantly lower costs by 58.59% and 
acceptable computation times compared to those of DE. 

TABLE I.  RESULTS COMPARISON FROM EXACT MODEL, CLUSTERING-FIRST-ROUTE-SECOND, AND DE ALGORITHMS 

Test 

instance 

Number of 

customers 

Exact model Cluster-first route-second DE Cluster-first 

route-second 

_EF (%) 

DE-EF 

(%) State 
Total costs 

(baht) 

CPU time 

(sec) 

Total costs 

(baht) 

CPU time 

(sec) 

Total costs 

(baht) 

CPU time 

(sec) 

1 10 Global 1,102.00 28.89 1,102.00 630.89 1,102.00 152.77 100 100 
2 10 Global 1,583.75 42.88 1,583.75 650.35 1,768.50 154.34 100 89.55 
3 10 Global 1,041.25 14.32 1,041.25 620.12 1,390.75 144.62 100 95.43 
4 10 Global 1,100.00 26.86 1,100.00 630.52 1,100.00 152.26 100 100 
5 10 Global 1,076.00 20.04 1,076.00 620.69 1,076.00 149.45 100 100 
6 20 Global 1,412.50 115.80 1,412.50 620.85 1,714.75 286.26 100 82.37 
7 20 Global 1,472.37 169.92 1,410.00 614.39 1,546.50 293.24 100 91.17 
8 20 Global 1,436.00 136.76 1,436.00 614.61 1,436.00 285.91 100 100 
9 20 Global 1,406.75 213.16 1,406.75 611.27 1,406.75 286.17 100 100 

10 20 Global 1,425.50 91.25 1,428.75 615.25 1,425.50 263.61 99.77 100 
11 30 Global 2,174.50 9,146.84 2,203.75 623.39 2,577.50 341.26 98.67 84.36 
12 30 Global 2,221.50 5,307.45 2,234.50 618.96 2,491.25 428.17 99.42 89.17 
13 30 Global 2,586.00 28,800 2,614.25 621.47 2,907.75 371.45 98.92 88.93 
14 30 Global 2,463.32 28,800 2,520.25 623.23 2,949.50 407.18 97.74 83.52 
15 30 Global 2,444.40 28,800 2,494.25 615.41 3,429.25 365.13 98.00 71.28 
16 40 Feasible 4,294.11 28,800 3,770.60 683.45 5,402.01 505.67 113.88 79.49 
17 40 Feasible 4,288.08 28,800 4,548.43 691.89 4,501.77 486.39 94.28 95.25 
18 40 Feasible 5,144.91 28,800 4,591.75 693.92 4,933.71 522.21 112.05 104.28 
19 40 Feasible 4,959.92 28,800 4,292.60 660.54 4,586.71 474.33 115.55 108.14 
20 40 Feasible 4,754.27 28,800 3,768.60 665.29 4,479.34 510.10 126.15 106.14 
21 50 N/A N/A - 3,915.73 643.99 5,237.87 576.41 - - 
22 50 N/A N/A - 4,207.53 663.73 5,431.10 610.94 - - 
23 50 N/A N/A - 4,484.94 670.08 5,334.09 559.24 - - 
24 50 N/A N/A - 5,398.08 681.97 5,920.80 526.05 - - 
25 50 N/A N/A - 4,207.73 669.70 5,463.33 609.23 - - 
26 60 N/A N/A - 4,194.01 670.56 7,036.70 657.49 - - 
27 60 N/A N/A - 4,607.28 667.08 5,436.15 673.92 - - 
28 60 N/A N/A - 5,842.02 642.42 7,335.61 674.52 - - 
29 60 N/A N/A - 6,333.52 653.53 7,155.63 672.84 - - 
30 60 N/A N/A - 4,717.49 679.08 6,061.80 692.56 - - 
31 70 N/A N/A - 4,947.82 673.33 8,640.28 796.35 - - 
32 70 N/A N/A - 4,924.26 700.62 7,775.67 768.30 - - 
33 70 N/A N/A - 5,530.08 692.52 8,715.66 796.12 - - 
34 70 N/A N/A - 5,217.82 684.77 9,030.35 752.46 - - 
35 70 N/A N/A - 5,183.78 680.91 8,574.97 793.33 - - 

Real case 83 N/A N/A - 6,193.50 704.16 9,822.24 945.128 - - 
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The exact model could provide efficient solutions for small-
size problems. However, for the larger cases, the hierarchical 
cluster-first-route-second approach demonstrated superior 
efficiency, cost-effectiveness, and scalability. This method is 
particularly suitable for real-world applications in the ice 
distribution industry, especially in competitive market 
environments where time and cost optimization are crucial. 
Meanwhile, the metaheuristic DE method is also popular and 
effective for solving VRPTW. Its performance depends on the 
problem's complexity, solution encoding and decoding, and the 
software used. 

TABLE II.  DIFFERENCES OF OBJECTIVE RESULTS AND 
CPU TIME 

Test 

instance 

Difference of total cost (%) Difference of CPU time (sec) 

OP_K OP_DE K_DE OP_K OP_DE K_DE 

1 0.00 0.00 0.00 -602.00 -123.88 478.12 
2 0.00 -11.67 -11.67 -607.47 - 111.46 496.01 
3 0.00 -4.78 -4.78 -605.80 -130.30 475.50 
4 0.00 0.00 0.00 -603.66 -125.40 478.26 
5 0.00 0.00 0.00 -600.65 -129.41 471.24 
6 0.00 -21.40 -21.40 -505.05 -170.46 334.59 
7 0.00 -9.68 -9.68 -444.47 -123.32 321.15 
8 0.00 0.00 0.00 -477.85 -149.15 328.70 
9 0.00 0.00 0.00 -398.11 73.01 325.10 

10 - 0.23 0.00 0.23 -524.00 -172.36 351.64 
11 - 1.35 -18.53 -16.96 8,523.45 8,805.58 282.13 
12 - 0.59 -12.14 -11.49 4,688.49 4,879.28 190.79 
13 - 1.09 -12.44 -11.23 28,178.53 28,428.55 250.02 
14 - 2.31 -19.74 -17.03 28,176.77 28,392.82 216.05 
15 - 2.04 -40.29 -37.49 28,184.59 28,434.87 250.28 
16 12.19 -25.80 -43.27 28,116.55 28,294.33 177.78 
17 - 6.07 -4.98 1.03 28,108.11 28,313.61 205.50 
18 10.75 4.11 -7.45 28,106.08 28,277.79 171.71 
19 13.45 7.52 -6.85 28,139.46 28,325.68 186.22 
20 20.73 5.78 -18.86 28,134.71 28,289.90 155.19 
21 - - -33.76 - - 67.59 
22 - - -29.08 - - 52.79 
23 - - -18.93 - - 110.85 
24 - - -9.68 - - 155.92 
25 - - -29.84 - - 60.47 
26 - - -67.78 - - 13.07 
27 - - -17.99 - - -6.84 
28 - - -25.57 - - -32.10 
29 - - -12.98 - - -19.31 
30 - - -28.50 - - -13.48 
31 - - -74.63 - - -123.02 
32 - - -57.91 - - - 67.68 
33 - - -57.60 - - -103.60 
34 - - -73.07 - - - 67.69 
35 - - -65.42 - - -112.97 

Real case - - -58.59 - - -240.97 

 

In the real-world case study, involving 83 customers and a 
total demand of 968 units, clustering resulted in seven distinct 
clusters, as evidenced in Figure 3. These clusters were 
prioritized based on the distance from the depot to each 
cluster's centroid to optimize vehicle routing. MILP was then 
applied to each cluster to determine the optimal routes, 
appropriate vehicle types, and associated total costs. Table IV 
outlines the details of the computational results. The proposed 
approach resulted in a total cost of 6,193.50 baht per day and 
required approximately 704.16 s overall computation time. 

Compared to the company's current transportation costs, this 
method could potentially reduce monthly costs by 54,195 baht, 
equivalent to a 23% decrease. The results disclose that the two-
phase algorithm, which uses the cluster-first-route-second 
approach, effectively addresses the ice distribution problem by 
providing optimal vehicle routing without missing customers. 
Its total costs are lower than those of the current ice company, 
indicating a potential for significant cost savings and 
operational efficiency improvements. 

The results from the exact model reveal that solving times 
utilizing the branch-and-bound method in Lingo software 
depends not only on the problem size, but also on the dataset's 
complexity. As problems become more complex with a larger 
number of variables, they require further computation time, 
making conventional methods unsuitable. The cluster-first-
route-second approach and the DE algorithm are capable of 
tackling large-scale VRPTW problems, with the cluster-first-
route-second approach achieving the best balance between 
solution quality and computational efficiency. Although the 
proposed algorithm, which combines capacitated K-means 
clustering and branch-and-bound, does not guarantee 
optimization, it provides solutions close to optimal within 
practical solving times. This approach demonstrates the 
potential for real-world application in the ice industry and 
similar contexts, particularly those with dynamic delivery times 
and varying data, such as daily customer demands. In such 
cases, effective planning must deliver solutions within a 
reasonable timeframe and with a limited set of configurations. 

 

 
Fig. 3.  Depot and customer locations of seven clusters. 

V. THEORETICAL AND PRACTICAL 
IMPLICATIONS 

This study provides resources for researchers and 
practitioners aiming to optimize VRPTW solutions in the 
context of perishable goods distribution. From a theoretical 
perspective, this study introduces new practical constraints in 
ice distribution in VRPTW, such as a customer retention 
strategy and a quality preservation method. This extension of 
traditional VRPTW models aligns the problem more closely 
with real-world applications, offering a more comprehensive 
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theoretical framework. Future models for other distributions of 
perishable goods can explore and integrate this extension. This 
work can be extended by incorporating these constraints into 
different contexts, potentially leading to more comprehensive 
models. Furthermore, the use of the hierarchical cluster-first-
route-second approach to handle VRPTW can be adapted and 
expanded in future research by combining different algorithms 

and techniques to address similar complex logistics problems 
more effectively. Finally, by comparing the performance of the 
exact method, hierarchical approaches, and metaheuristics, this 
comparative analysis improves the understanding of the 
strengths and limitations of various optimization techniques in 
different problem scenarios.  

TABLE III.  COMPUTATIONAL RESULT OF THE CASE STUDY 

Cluster 
Vehicle 

type 

Number of 

customers 
Sequence 

Total demand 

(units) 

Total costs 

(baht) 

CPU time 

(s) 

1 New 10 0-4-40-6-5-8-1-41-2-9-3-0 139 782.25 18.86 
2 Old 13 0-10-14-17-20-68-18-66-67-19-21-58-65-15-0 140 1,238.00 11.72 
3 Mid 13 0-80-79-45-83-78-16-81-75-77-53-82-74-76-0 139 860.00 16.87 
4 New 13 0-43-27-22-23-31-28-32-24-25-26-29-30-42-0 149 749.00 8.37 
5 Mid 10 0-36-7-34-33-44-35-39-37-38-73-0 115 876.00 13.47 
6 New 11 0-55-49-52-51-54-48-46-72-71-47-50-0 136 729.75 19.81 
7 Old 13 0-56-60-13-11-70-62-61-69-64-59-63-12-57-0 150 958.50 15.06 

 
For practitioners, the study offers practical tools to enhance 

distribution strategies, reduce costs, and improve service 
efficiency in the competitive ice distribution market. The 
proposed methods help in strategic decision-making regarding 
vehicle allocation and route planning. The study's 
methodology, which uses real-world data and addresses 
practical constraints, ensures that the proposed solutions are 
directly applicable to current industry practices. This study 
provides a practical approach to maintaining customer 
satisfaction and loyalty by ensuring timely deliveries within 
specified windows and incorporating strategies for handling 
late arrivals to retain customers, even when service time 
windows are missed. This study also includes a strategy to 
maintain ice quality, which provides a holistic approach to ice 
distribution. Practitioners can utilize these insights to refine 
their delivery strategies, enhance service quality, and ascertain 
that their products maintain quality throughout the distribution 
process, thus reducing losses and improving customer 
satisfaction. In addition, this study provides a clear approach to 
managing vehicle routes and schedules more efficiently. The 
proposed hierarchical approach is scalable and can be adapted 
to various sizes of distribution problems. Practitioners in 
different industries can adopt and tailor these methods and 
strategies to their specific needs to streamline their operations, 
certifying optimal use of resources and time. 

VI. CONCLUSIONS 

This study addresses the VRPTW specific to the ice 
distribution industry, which faces challenges in a competitive 
market, by introducing new conditions critical to operating in 
such an environment. The purpose is to improve the efficiency 
of ice distribution operations by incorporating real-world 
constraints to cope with the increasingly competitive conditions 
in the ice market. This contributes to the development of a 
novel and comprehensive mathematical model that 
incorporates previously unexplored practical constraints. These 
constraints include delivery time windows, varying fuel 
consumption rates based on vehicle age, vehicle capacity 
constraints, different product types, bonus costs to incentivize 
employee performance, and distribution strategy requirements. 
A key customer retention strategy implemented is that even if a 
customer does not receive service within the specified time 

window, the vehicle must still pass by within an extended time 
frame to avoid permanent customer loss. This guarantees that 
customers perceive the ice delivery service as reliable, thus 
maintaining retention. Quality preservation methods are also 
considered to ensure customer satisfaction.  

Real-world data from an ice company in Thailand provide a 
robust framework to optimize distribution routes while 
minimizing total costs. The results demonstrate that the exact 
model effectively solves small problems, while the hierarchical 
cluster-first-route-second approach and the DE algorithm offer 
scalable and efficient solutions for larger problems. The 
hierarchical method, particularly when using capacitated K-
means clustering followed by branch-and-bound optimization, 
is proved to be highly effective in balancing solution quality 
and computational efficiency. The hierarchical cluster-first-
route-second approach is well-suited for real-world 
applications, providing significant cost savings and operational 
efficiencies. This method outperforms the traditional exact 
method and the DE algorithm in terms of both solution quality 
and computation time, especially for medium- to large-sized 
problems. As a result, the company can efficiently strategize its 
distribution by managing the required number of vehicles, 
organizing optimal delivery routes to adhere to specified 
timeframes, and determining customer retention for late 
arrivals, as well as product quality, at the lowest possible cost. 
These contributions enhance customer satisfaction and 
strengthen the company's competitiveness in today's dynamic 
market environment. 

Although this study presents a robust framework, there are 
limitations related to model complexity, single-depot 
configurations, and deterministic parameters. Future research 
should investigate multi-depot configurations, split deliveries, 
and variable vehicle speeds to further enhance model 
applicability and solution efficiency. Additionally, exploring 
hybrid methods could yield further improvements in solving 
complex logistics problems. In conclusion, this study offers 
significant theoretical and practical contributions to VRPTW in 
the ice distribution industry, providing scalable, efficient, and 
cost-effective solutions that are adaptable and extendable to 
other perishable goods distribution contexts. 
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