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ABSTRACT 

Deep Convolutional Neural Networks (DCNNs) are very useful for image-based pattern classification 

problems because of their efficient feature extraction capabilities. Although DCNNs have good 

generalization performance, their applicability is limited due to slow learning speed, as they are based on 

iterative weight-update algorithms. This study presents a new noniterative DCNN that can be trained in 

real-time. The fundamental block of the proposed DCNN is fixed real number-based filters for convolution 

operations for multi-feature extraction. After a finite number of feature extraction layers, nonlinear kernel 

mapping along with pseudo-inverse is used for the classification of extracted feature vectors. The proposed 

DCNN, named Deep Convolutional Kernelized Classification (DCKC), is noniterative, as the mask 

coefficients of its convolution operations are fixed real numbers. The kernel function with predefined 

parameters of DCKC does a nonlinear mapping of extracted features, and pseudo-inverse is used to find its 

output weights. The proposed noniterative DCKC was evaluated on benchmark face recognition databases, 

achieving better results and establishing its superiority. 
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I. INTRODUCTION  

The real challenge in machine learning is to adequately 
simulate the human brain for efficient information processing. 
Deep Neural Networks (DNN) are better models of how the 
human brain works than shallow neural networks (with one or 
two hidden layers). Two Dimensional Convolution operation-
based DNNs (DCNNs) are one of the most promising models. 
DCNNs have been increasingly used in image and speech 
recognition problems and have performed well in a variety of 
tasks [1]. Facial Recognition (FR) is one of the most popular 
domains of DCNN application [2] and is becoming more 
successful as a technology that is easy to use and unobtrusive. 
The appearance, expression, and light varieties affect the 
results of classification frameworks [3]. Light variation on 
subject faces arises due to light projection from distinctive 
bearings at various points on the face of an individual, creating 
pictures that are clearly distinctive, making the recognition 

process exceptionally troublesome. Several studies have 
presented strategies for light normalization. 

DCNNs were initially introduced in 2010 [4], exploring 
their application in computer vision and handwritten digit 
recognition. The excellent performance of DCNNs over 
traditional Computer Vision (CV) classification methods has 
attracted the interest of researchers over the years [5, 6]. 
DCNNs have revolutionized the field of CV by providing a 
comprehensive approach. In 2014, DeepFace was introduced 
[7], which is an FR system that achieved remarkable accuracy 
on the LFW benchmark, approaching human performance. 
However, subsequent systems, such as DeepId3 and FaceNet 
[8], quickly exceeded its accuracy. These advances in FR 
technology are a testament to the advancement in deep-network 
architectures. The evolution of DCNNs can be traced back to 
LeNet in 1989 [9], and since then have become sophisticated 
networks driven by challenges such as the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) [10]. Among 
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the influential ILSVRC networks, LeNet, GoogleNet, AlexNet, 
VGGNet, ZFNet, and ResNet [11] stand out, as shown in 
Figure 1. A typical DCNN follows a conventional structure, 
which includes a series of convolutional layers, contrast 
normalization, and max-pooling, along with one or more fully 
connected layers. In addition, various modifications have been 
implemented to enhance performance. 

 

 
Fig. 1.  Progress in deep learning architectures. 

The advance of deep-network architectures began by 
enlarging both their depth and width. However, the growing 
complexity associated with larger networks is not preferred in 
practical situations. As a result, GoogleNet was introduced with 
an enhanced architecture along with a few feature parameters. 
Subsequently, Microsoft aimed to streamline training using 
networks with reduced complexity. In recent developments, 
these two design techniques have been merged to produce more 
simplified networks [12]. 

An efficient DCNN learning algorithm will reduce training 
time and achieve higher accuracy. Existing state-of-the-art 
DCNNs, such as AlexNet, GoogleNet, ResNet, etc., use 
backpropagation to calculate the parameters of the network. 
The backpropagation algorithm is a stochastic iterative 
algorithm based on the steepest-decent theory, where the 
weights of the neural network are updated to negative gradients 
in the weight space. Incorrect learning rate, under-fitting, over-
fitting, local minima, slow learning, and out-of-memory 
problems are some basic implementation issues with existing 
algorithms [13]. This study aims to develop a new 
classification engine that can extract discrimination-effective 
features to efficiently classify the nonlinear and nonconvex 
space of facial images captured under unbounded constraints. 
The objective is to achieve multiple feature extraction and 
noniterative learning. The highlights of the proposed method 
are:  

 A deterministic learning method is proposed to extend the 
single-hidden-layer noniterative classifiers. In existing 
noniterative classifiers, such as Extreme-Learning-Machine 
(ELM), the input parameters are assigned randomly and the 
number of neurons in the hidden layer is obtained 
experimentally. In the proposed method, the parameters are 
fixed, resulting in a stable and invariant output. 

 Multiple features are extracted with the help of 
conglomerate convolution filters, where the filter 
coefficients are fixed without requiring iterative tuning of 
the coefficients. In existing DCNNs, these coefficients are 
tuned iteratively. In a non-iterative classifier, Kernel-
Extreme-Learning-Machine (KELM), multiple layers for 
feature extraction do not exist. 

 To deal with the real-time challenges of FR systems, the 
low objects and the Low-Frequency Discrete Cosine 
Transform (LFDCT) components are adjusted to overcome 
the effects of lighting conditions with the help of a fuzzy 
filter-based illumination-normalization method.  

 To establish the effectiveness of the proposed method, it 
was compared with standard noniterative FR methods, 
showing promising results that demonstrate its competence. 

II. DCNN PRELIMINARIES 

The output matrix of the hidden layer can be expressed as: 

� = ∑ ���(�� , 
� , �) = �. �(�)�
���   (1) 

with ar and br being the input weights along with the bias of the 
rth hidden layer neuron with a random number. �(�)  =
 [�(��, 
�, �) … , �(��, 
� , �)]  is the output matrix obtained 
from the hidden layer for input � . For a single-hidden-layer 
feedforward NN, the output weight �  is mathematically 
obtained. The connection of output neurons with hidden nodes 
can be obtained by: 

� = ���� = �� ��
� + ����

���
�  (2) 

where �  is the target class and   is the regularization 
coefficient. ELM was introduced to minimize training errors 
and the norm of the output weights, denoted as ||τ||2. Compared 
to gradient-descent methods, ELM offers a significant 
advantage in terms of time efficiency [14]. It also allows for a 
reduction in computational time required for parameter 
optimization. However, ELM suffers from nondeterministic 
performance due to the random weights and biases it employs. 
To address the limitations of ELM, a noniterative algorithm 
based on the kernel matrix was proposed. In KELM, the kernel 
matrix is not directly related to the target class but is only 
relevant to training samples [15]. The kernel matrix can be 
mathematically expressed as: 

! = ∑ �(�" , 
" , �#)�
"�� . �(�" , 
" , �#)  (3) 

III. PROPOSED NONITERATIVE DCNN WITH 
KERNELIZED CLASSIFICATION 

As the FR problem under real-world variations (pose, 
illumination, expression, etc.) is highly curved and nonlinear, it 
can be resolved by either efficient feature mining, enhanced 
classification system, or integrating both. The proposed DCKC 
comprises some layers for feature extraction followed by 
noniterative kernel mapping along with pseudo inverse for 
classification. The feature extraction component is highly 
responsible for the performance of any classification system. 
Here, multiple convolution operations are performed to extract 
features using fixed-valued masks. As shown in Figure 2, each 
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layer comprises some convolution filters, followed by a 
Rectified Linear Activation Function (RLAF) and a pooling 
operation. These three operations together, named CRP, 
operate in multiple layers on each input image. After the N-

layer operation of the CRP, the multidimensional outcome is 
converted into a column feature vector. This high-dimensional 
feature vector is fed to the kernel function for non-linear 
mapping, followed by pseudo-inverse for classification. 

 

 
Fig. 2.  Proposed DL architecture. 

A. Convolution Using Fixed-Valued Masks 

As shown in Figure 2, all input images are convolved using 
f1 masks in the first layer of the proposed NN. The size and 
number of these masks vary from layer to layer, that is, fi 
masks with size mi×mi are used for convolution in the ith NN 
layer. If wj is a particular mask, then the convolution is defined 
as: 

$(�, %) =  & ∑  ∑ '((), *)+(� , ), % , *)-./0#��-./0-./01��-./0  

      (4) 

where d is two-dimensional input data, c is convolved data, and 
wj is the jth convolution mask of size mi×mi. The elements of 
the masks are generated using the MATLAB function randn 
[16], which gives normally distributed random numbers. To 
repeat the same set of elements that is the same mask matrices 
(fixed), the state of the randn function is controlled by the 
function rng, which controls the generation of random numbers 
depending upon the value of its argument (seed). randn along 
with rng(1) generates the set of real numbers that are repeatable 
and deterministic. For example, rng(1),randn(4,4,3) gives a set 
of three masks of size 4×4, which will be the same matrices 
whenever the code is executed. These matrices are given in 
Table I. 

TABLE I.  NORMAL DISTRIBUTED FIXED NUMBERS 

-0.65 -0.85 -0.20 -1.51 
1.18 -0.57 0.59 0.88 
-0.76 -0.56 -0.85 -0.24 
-1.11 0.18 0.80 0.17 

 
-1.97 -0.28 -1.87 -1.37 
-1.27 0.60 -1.05 -0.29 
1.18 1.78 -0.42 1.27 
2.03 1.77 1.40 0.07 

 
0.45 -0.49 0.60 -1.04 
-0.32 1.80 -0.54 -0.35 
0.79 0.59 -0.16 -1.17 
0.93 -0.64 0.61 -0.69 

 

All elements in the convolution filter masks in every layer 
are multiplied by 10-4, the value of multiplier m in (4), to keep 
the convolved output small. This is performed considering that 
the weights of the DCNN should be small because the values of 
the synaptic weights in a neural network are more dominant 
than its size. A neural network with a smaller norm of synaptic 
weights gives smaller training errors and better generalization 
performance. 

B. Rectified Linear Activation Function (RLAF) 

All the convolution output matrices are operated by an 
activation function. In the proposed method, RLAF is used due 
to its simplicity. It simply outputs the given input, when the 
input is positive. For negative input values, the RLAF output is 
zero. Mathematically, the output of RLAF y can be expressed 
as: % =  &��(0, �)    (5) 

where x represents the output of (4). 

C. Pooling 

At each layer, a 2×2 mean pooling operation is performed 
on the output of RLAF. For the 3th block 4( (of size 2×2), the 
output of mean pooling can be expressed as: 

5( = �|�| ∑ %77��8     (6) 

D. Kernelized Classification 

To train DCKC, a set of input specimens 95: , *:;:��<  is 
presented, where =  is the total number of specimens. 5: ∈ 4?@A  denotes the B th training face image, and *:  represents 
the corresponding class vector. 

As previously stated, FR under uncontrolled environments, 
such as varying illumination, pose, expression, etc., is 
extremely nonlinear and nonconvex, degrading the accuracy of 
many contemporary FR methods. The proposed DCKC 
overcomes these problems by extracting multiple features with 
the help of the convolution operation. It further enhances the 
feature extraction capability using the kernel function [17] to 
map the given input features, obtained from CRP operations, 
into a kernel feature space. This is performed to construct a 
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better feature space (kernel feature space) that is less nonlinear 
and less nonconvex than that in the input feature space of the 
kernel function. If there are two feature vectors, say �7  and �(, 
then the output corresponding to these inputs using a kernel 
function C can be obtained as:  

�7,( = CD�7 , �(E; G, 3 = 1, 2, … , =  (7) 

Many kernel function types can be used, including polynomial, 
Laplacian, sigmoid, wavelet, and Radial Basis Function (RBF) 
kernels. In case where the activation function of the output 
layer neurons is linear and no biases are applied to these 
neurons, the output of the SLFN with this architecture can be 
expressed as: 

∑ J7!(G'7� . �( � 
7<7�� ) = �(, for 3 = 1, 2, … , = (8) 

The training sample represented in (6) can be learned 
completely by the proposed architecture represented in Figure 
2, without any error, if there are J7 , G'7, and 
7 such that: 

∑ J7!(G'7� . �( � 
7<7�� ) = tj , for 3 =  1, 2, … , = (9) 

The above equations can be expressed as: ��  =  �     (10) 

where 

� = K!(G'��. �� � 
�)   ... !(G'<� . �� � 
<)          :                           :!(G'��. �< � 
�)   ...!(G'<� . �< � 
<)M (11) 

N = KJ��   :J<�
M and = K*��  :*<�

M   (12) 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

All experiments were carried out in MATLAB 2024a and 
executed on a laptop with an Intel i7 2.9 GHz processor with 
16 GB RAM. It is worth mentioning that the proposed DCKC 
multi-layer deep neural network classifier did not need a GPU 
or cloud environment to execute the experiments. Three 
different publicly available facial image databases ATT [18], 
Yale [19], and AR [20] were used. Figure 3 shows a detailed 
description of the databases. 

Tables II, III, and IV show the performance of the proposed 
method, in terms of percentage test error, in these three 
databases. There are variations in the percentage test error rate, 
which refers to the number of misclassifications for the total 
number of samples in the test dataset. This analysis was 
performed for varying numbers of training images per subject 
(NTIPS). For example, in the Yale database, when one 
individual image per subject was used for training, the 
remaining images of the subject were used for testing. 
Similarly, when two images per subject were used for training, 
the remaining images of the subject were used for testing. The 
selection of these images was performed sequentially to form 
sets for training and test images. 

(a) 

 

(b) 

 

(c) 

 

Fig. 3.  Databases used. 

Polynomial, Laplacian, sigmoid, wavelet, and RBF kernels 
were chosen along with parameter exploration. As multiple 
convolution filters are applied for global feature exploitation, 
according to the literature, RBF kernels are a better choice for 
local feature wrenching. The RBF kernel parameter �  was 
determined to be 800 after a comprehensive set of experiments. 
This value of the RBF parameter was used for all the results 
shown. 

As shown in Table II, the percentage error rate was zero in 
the ATT database, demonstrating the classification 
performance of the proposed method. Accurate classification 
was achieved for 70, 80, and 90% of the training data 
(correspondingly 30, 20, and 10% of the test data) using the 
proposed method in the ATT face database. Similarly, on the 
Yale and AR face databases, significantly better performance 
was achieved. As face images in the Yale and AR databases are 
affected by light variations, fuzzy filter-based illumination 
normalization [17] was applied to compensate for the effect of 
light variations. After a thorough investigation, the best 
performance was obtained for an LFDCT of 91. Performance 
deteriorated after increasing LFDCT. Similarly, results in the 
AR database were obtained for an LFDCT of 105. 
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The total number of face images is 26 per subject in the AR 
face database. In the performance analysis on this database, 1, 
2, …, 6, and 13 images per subject were used to form the 
distinct training sets, and the exclusive remaining images were 
used to form the test sets. It was found that even with 50% of 
images used for the test set, the proposed method achieved 
accurate classification, as shown in Table IV. 

TABLE II.  PERCENTAGE TEST ERROR OF THE PROPOSED 
METHOD ON THE ATT DATABASE 

Sets Number of images for training/test sets 

Training  1 2 3 4 5 6 
Testing 9 8 7 6 5 4 

% test error  15.56 4.69 1.43 1.25 1.0 1.25 

TABLE III.  PERCENTAGE TEST ERROR OF THE PROPOSED 
METHOD ON THE YALE DATABASE  

Sets Number of images for training/test sets 

Training  1 2 3 4 5 6 
Testing 10 9 8 7 6 5 
Output 6.67 0 0 0 1.11 0 

TABLE IV.  PERCENTAGE TEST ERROR OF THE PROPOSED 
METHOD ON THE AR DATABASE 

Sets Number of images for training/test sets 

Training  1 2 3 4 5 6 13 
Testing 25 24 23 22 21 20 13 
Output 24.240 13.500 6.478 5.272 4.809 1.35 0 

 

A. Computational Complexity Analysis 

Q is used to denote the number of training samples, the size 
of input images is represented as d×d, h denotes the number of 
hidden layer neurons, and w denotes the number of classes of 
the database. The proposed method comprises the following 
processing steps: 

1. The time complexity of the convolution operation is O(+ log + ) . The RLAF operation is of linear time 
complexity and the time complexity of mean pooling is the 
same as that of the convolution operation. As there is a 
fixed number of CRP operations, the total time complexity 
of feature extraction of the proposed method is O(+ log +). 

2. The time complexity of the kernel matrix (7) is O(=0S), 
where S  is the size of the feature vector after a finite 
number of CRP layers. 

3. The time complexity of finding the output weight � (9) and 
(11) using pseudo-inverse is O(=T  �  =0'). 

From the above, it is concluded that the total time 
complexity of the proposed method is O(+ log + � =0S �=T � =0'). As the size of the input image + is comparatively 
smaller than the number of training samples = , the time 
complexity of the proposed method can be approximated to O(=T) , which is the same as that of the most promising 
existing noniterative classifier DMK-ELM-FFE [14]. 

V. COMPARATIVE ANALYSIS 

Tables V, VI, and VII show the performance comparison of 
the proposed method with existing noniterative state-of-the-art 

methods on these databases. The accuracy achieved using the 
proposed method is significantly higher. 

TABLE V.  ACCURACY-BASED COMPARATIVE 
PERFORMANCE EVALUATION ON THE ATT DATABASE  

Technique 
Number of sample training images taken per 

subject 

 1 2 3 4 5 6 
ELM [21] 62.500  74.690 78.570 83.500 83.500 90.630 

KELM RBF[22] 67.220  77.810 80.360 87.080 89.500 95.000 
LBP-KELM[23] 67.720 78.100 81.610 87.480 89.190 95.000 
OMKELM[24] 68.330 79.370 85 91.250 92 95.000 
DMK-ELM[14] 73.890 86.560 85.710 91.250 92.500 95.370 
DMK-ELM-FFE 

[14] 
75.280 89.320 93.580 95.830 98.500 96.810 

Proposed DCKC 84.440 95.310 98.570 98.750 99 98.75 

TABLE VI.  ACCURACY-BASED COMPARATIVE 
PERFORMANCE EVALUATION ON THE YALE DATABASE  

Technique Number of sample training images taken per subject 

 1 2 3 4 5 6 
ELM [21] 54.100 82.410 85.350 89.520 88.800 94.000 

KELM RBF[22] 62.670 87.410 90 91.430 93.330 96.000 
LBP-KELM[23] 47.980 61.770 79.250 87.610 89.310 88.830 
OMKELM[24] 64.670 88.150 92.500 93.330 94.440 96.000 
DMK-ELM[14] 65.330 89.630 95 96.190 95.560 98.670 

DMK-ELM-FFE[14] 65.330 91.890 95.560 96.190 97.500 98.330 
Proposed DCKC 93.333 100 100 100 98.889 100 

TABLE VII.  ACCURACY-BASED COMPARATIVE 
PERFORMANCE EVALUATION ON THE AR DATABASE  

Technique Number of sample training images taken per subject 

 1 2 3 4 5 6 
ELM [21] 67.540 66.420 68.640 70.500 74.220 71.500 

KELM RBF[22] 60.310 62.000 64.910 74.000 80.330 81.130 
LBP-KELM[23] 70.850 74.750 76.360 83.800 91.440 93.250 
OMKELM[24] 70.850 74.750 76.360 83.800 91.440 93.250 
DMK-ELM[14] 77.690 82.330 84.550 87.700 93.440 94.630 

DMK-ELM-FFE[14] 78.080 82.250 84.270 91.000 95.440 96.750 
Proposed DCKC 75.760 86.500 93.521 94.727 95.196 98.65 

 

VI. CONCLUSIONS 

This study presented a novel method for face image 
classification under uncontrolled variations in illumination, 
pose, and expressions using the principle of convolution filter-
based feature extraction and noniterative learning. Although 
existing DCNNs have notable generalization performance, their 
application is limited due to their slow learning speed in real-
time environments. This study presented a new noniterative 
DCNN that can learn in real-time. The main component of the 
proposed DCNN is fixed real number-based filters for 
convolution operation for multi-feature extraction. After the 
limited number of feature extraction layers, nonlinear kernel 
mapping with pseudo-inverse is used to classify the selected 
feature vectors. The proposed DCKC is noniterative because 
the mask coefficients of its convolution operations are fixed 
real numbers. The kernel function with predefined DCKC 
parameters is a nonlinear mapping of the extracted features, 
and the pseudo-inverse is used to find the DCKC output 
weight. The proposed DCKC was tested on benchmark face 
recognition databases. Significantly better results were 
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obtained compared to those of other approaches, indicating the 
superiority of the proposed method. A limitation of this study is 
that the sensitivity of the model to various hyperparameters 
was not extensively explored. A detailed analysis could provide 
insights into the stability and robustness of the model across 
different settings. In future endeavors, the proposed DCKC will 
be explored for video-sequence-based person identification. In 
addition, incorporating other components of soft computing, 
such as fuzzy logic, will be explored to cater to the ambiguity 
of inter- and intra-person class dependencies. 
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