
Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16674-16679 16674  
 

www.etasr.com Ho et al.: Multi-Modality Abnormal Crowd Detection with Self-Attention and Knowledge Distillation 

 

Multi-Modality Abnormal Crowd Detection 

with Self-Attention and Knowledge Distillation 
 

Anh-Dung Ho 

Department of Information Technology, East Asia University of Technology, Hanoi, Vietnam 

dungha@eaut.edu.vn  

 

Huong-Giang Doan 

Faculty of Control and Automation, Electric Power University, Hanoi, Vietnam 

giangdth@epu.edu.vn  

 

Thi Thanh Thuy Pham  

Faculty of Information Security, Academy of People Security, Hanoi, Vietnam 

thanh-thuy.pham@mica.edu.vn (corresponding author) 

Received: 20 June 2024 | Revised: 24 July 2024 | Accepted: 25 July 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8194 

ABSTRACT 

Deep Neural Networks (DNNs) have become a promising solution for detecting abnormal human 

behaviors. However, building an efficient DNN model in terms of both computational cost and 

classification accuracy is still a challenging problem. Furthermore, there are limited existing datasets for 

abnormal behavior detection, and each focuses on a certain context. Therefore, a DNN model trained on a 

certain dataset will be adaptive for a particular context and not suitable for others. This study proposes a 

DNN framework with efficient attention and Knowledge Distillation (KD) mechanisms. Attention units 

capture key information from multiple RGB, optical flow, and heatmap inputs. KD is applied to scale 

down model size. Experiments were performed on several benchmark datasets, examining both AUC and 

accuracy. The results show that the proposed framework outperformed other state-of-the-art methods in 

detection accuracy. Furthermore, the trade-off between detection performance and computational cost was 

also addressed by the proposed framework with KD. 

Keywords-abnormal behavior detection; attention; knowledge distillation 

I. INTRODUCTION  

The proliferation of applications such as Human-Computer 
Interaction (HCI) [1], camera-based surveillance, and Virtual 
Reality (VR) has made the problem of detecting human 
abnormal behaviors increasingly attractive. However, this 
problem has also emerged as a challenging research domain for 
image/video understanding and analysis. Abnormal crowding is 
the behavior of many humans in a public area. It can be the 
reaction of the crowd when people face danger, fear, violence, 
robbery, road accidents, or panic, where they chaotically run, 
fight, chase each other, etc. Thus, the main challenges for 
human abnormal behavior detection are complex backgrounds, 
occlusions, low resolution (especially in the case of 
surveillance videos), variety in camera viewpoints, intra- or 
inter-class variations, and numerous abnormal behaviors that 
are defined depending on the different contexts (airport, 
stadium, supermarket, amusement parks, street, patient room, 
classroom, hospital, etc.) and applications (intelligent visual 
monitoring in hospitals or public areas, crime prevention, 
traffic monitoring, etc.). 

Several solutions have been proposed for abnormal human 
behavior detection, based on two approaches: manual feature 
extraction with classical classifiers and auto-feature learning by 
Deep Neural Networks (DNNs). The handcrafted features of 
SIFT [2], Histogram of Oriented Gradient (HOG) [3], 
Histogram of Optical Flow (HOF) [4], and optical flow [5] are 
mainly exploited for the recognition of human abnormal 
actions. The SIFT feature is less dependent on light intensity, 
noise, rotation, and motion variation. The HOG contains the 
shape and appearance information of the targets. Optical flow 
and HOF are efficient in encoding human motion. Classical 
classifiers, such as Hidden Markov Models (HMM) [6], 
Gaussian Mixture Models (GMM) [7], Support Vector 
Machines (SVM) [8], Random Forest (RF), K-Nearest 
Neighbor (KNN) [9], and Decision Trees (DT) [10] are 
commonly utilized to identify human abnormalities from 
handcrafted features. 

In DNN-based approaches, features can be extracted 
automatically from raw data. Some common DNN 
architectures for auto-feature learning and classification of 
human abnormalities are Convolutional Neural Networks 
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(CNNs) [11] and Recurrent Neural Networks (RNN) [12]. In 
[13], a CNN-RNN combination was proposed for abnormal 
human behavior detection, where spatial features were 
extracted by CNNs and temporal features were generated by 
RNNs [13]. Recently, transformer-based neural networks have 
been employed for human abnormal action recognition [14]. In 
general, a DNN with a large-scale architecture and trained on 
large enough datasets offers better detection accuracy than 
traditional classifiers. However, the complex architecture of 
DNNs with the high-dimensional data of visual tasks leads to 
high computational costs and is difficult to apply in practice. 
Moreover, building an appropriate deep learning model for the 
problem of abnormal human behavior detection is a 
challenging task, due to the dynamic nature and variations in 
real-world problems compared to the data used for training 
DNNs. The existing datasets for human abnormal behavior 
detection are limited, and each of them focuses on a certain 
context. Therefore, a DNN trained on a specific dataset will be 
adaptive for a particular context and not suitable for others. 

An attention mechanism was recently proposed for the 
detection of abnormal human behavior, along with DNNs, to 
reduce computational costs and memory usage while 
improving accuracy and robustness. Attention mechanisms can 
be categorized into four main types: channel attention, spatial 
attention, temporal attention, and branch attention. In addition, 
combinations of channel and spatial attention, or spatial and 
temporal attention, have also been proposed. In an attention 
mechanism, attention masks are generated across the channel 
domains (channel attention), spatial domains (spatial attention), 
time domain (temporal attention), and in different branches 
(branch attention) to select important channels, spatial regions 
or locations, keyframes, and branches, respectively. Studies on 
abnormal human behavior detection by DNNs with attention 
units focus mainly on spatial attention [15], temporal attention 
[16], or a combination of them [17]. 

This study proposes an end-to-end framework for detecting 
abnormal human behaviors. Attention units are deployed to 
help the model focus on important information from the input 
image sequences. The proposed approach is different from 
other common approaches that utilize RGB and optical flow 
inputs for DNN models, as it exploits three types of input 
image sequences: RGB, optical flow, and heatmap. Two 
consecutive RGB frames are used to calculate an optical flow, 
and then a heat map image is generated from the optical flow. 
RGB, optical flow, and heatmap attention units are then used to 
extract the key spatial and temporal information. Experimental 
results on standard datasets showed that the proposed 
framework outperformed other state-of-the-art methods. In 
addition,  a Knowledge Distillation (KD) solution was 
implemented to reduce computation costs while maintaining 
the high recognition accuracy of abnormal behaviors. This will 
be helpful for practical and real-time implementations. 

II. PROPOSED METHOD 

An end-to-end framework, named ROHAC, was 
implemented with spatial and temporal attention units on the 
inputs of three image types, RGB, optical flow, and heatmap, 
for abnormal human behavior detection. These input images 
are prepared by a data preprocessing step. Then, they are input 

into CNN networks for feature extraction. The important 
information from the feature vectors extracted by CNNs is then 
selected by attention layers to provide the final attention feature 
vectors for classification. In addition, KD is used to reduce the 
computational cost for abnormal human behavior detection.  

A. Data Prepossessing 

RGB video frames are commonly used in visual analysis in 
general and in abnormal human behavior detection in 
particular. This study explores two consecutive RGB frames (Ft 
and Ft+1) from input video at a time. At each considered frame, 
person detection is performed using the YOLO v5 model to 

obtain the human bounding boxes of ���
�  (red boxes in Figure 

1) and ���
��� (cyan boxes in Figure 1). The final bounding box 

of person si is calculated from these two frames using: 

���
��	 
 ���

�  ∪  ���
���,     � 
 �1, … , ��   (1) 

where N is the number of people in a frame. Instead of 
calculating time-consuming optical flow over the entire pixels 
of the image, optical flows (middle image at below part of 

Figure 1) are computed on axes of bounding boxes ���
��	

 from 

two consecutive RGB frames (��  and ����) by RAFT networks 

[18]. The optical flow images ���
��  of humans are then used to 

transfer to heat map images ���
��. Then, three modality streams 

(RGB stream, optical flow stream, and heat map stream) are 
exploited. 

 

 

Fig. 1.  Preprocessing for optical flow and jetmap image. 

B. Abnormal Detection with Spatial-Temporal Attention Units 

Figure 2 shows the proposed framework for abnormal 
behavior detection. It embeds Resnet50 networks and attention 
units for extracting key spatial and temporal features from 
RGB, optical flow, and heatmap input images. Given three 
image streams, RGB, optical flow, and heatmap, each image 
consists of N subjects. Thus, each image provides N blobs that 
are bounding boxes of the subjects in the image, such as 

(���
��	 , . . . , ���

��	
), (���

�� , . . . , ���
�� ), and (���

�� , … , ���
�� ) taken from 

the RGB, optical flow, and heatmap streams, respectively. 
Then, these human bounding boxes are utilized as inputs for 
the Resnet50_RGB, the Resnet50_OF, and the Resnet50_HM 
models. The outputs are feature vectors taken at FC layers as 

(���
��	 , … , ���

��	
) for RGB inputs, (���

�� , … , ���
��) for optical flow 

inputs, and (���
�� , …, ���

��) for heatmap inputs. These feature 
vectors belong to �� � �, � 
2048. 
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Fig. 2.  The proposed abnormal behavior detection framework  

In the next step, three attention convs (2, N, 1), RGB 
attention conv, OF attention conv, and HM attention conv are 
applied for image-level features to generate attention scores for 

each stream. The attention convs utilize ���
��	

,���
�� , and ���

�� as 

inputs and output the attention scores  ��
!

 = { ��
��	

,  ��
�� ,  ��

��} 

for the RGB, optical flow, and heatmap streams, respectively. 
The attention scores are calculated using sigmoid and L1 
normalization functions [19] as: 
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The attention scores of each stream are then used to 

compute the context vectors �-��
!

 = {�-��
��	

, �-��
�� , �-��

�� }, 

. 
 �1, . . . , 3�  as shown in (3). Each of these vectors is a 

weighted sum of the value vectors ���
!

 ={���
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. 
 �1, . . ., 3�, respectively. 
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Then, the context vectors of each data type are averaged: 

�-12�
! ∈ ��4� 
 �

�
∑ �-�"

!�
�5�    (4) 

The three average feature vectors of RGB, optical flow, and 

heatmap streams, �-!
12� , . 
 �1, … , 3� , are normalized to 

�! ∈ ��4� . They are then concatenated into a feature vector 

� ∈  ℜ�4�7��. The final feature vector � is fully connected and 
passes through the softmax layer. The softmax cross-entropy 
loss function is used to train the attention networks and classify 
abnormal actions. Given the predicted results of abnormal 
gestures 89:  and ground truth values 8� , � 
 �1, … , ;�, the loss 
function is calculated by: 

<�=>�?14 
 �

@
∑ 8�ABC89:@

�5�    (5) 

C. Knowledge Distillation (KD) Framework for Abnormal 
Behavior Detection 

This study uses KD, as shown in Figure 3, to compress the 
CNN models used in the above-mentioned ROHAC 
framework. Scaling down the CNN model size using KD aims 
at reducing computational costs while maintaining the model's 
performance in abnormal behavior detection. The proposed 
framework includes two main parts. The first part aims to 
compress from the YOLO v5 model to the YOLO v3-tiny 
model (pink boxes in Figure 3). The second part compresses 
the Resnet50 model to the Resnet18 model (blue boxes in 
Figure 3). 

In the first KD component, the ground truth is the human 
bounding box in the dataset D, the predicted label of YOLO v5 

is D�E, and the predicted label of YOLO v3-tiny is D�E. The loss 
function of the KD YOLO model is computed by: 

<���FD, D�E, D�EG 
 �1 H I�<J�K�L7
��� �D, D�E� M I<@N

��� �D�E, D�E� 
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In the second KD component, the ground truth is an 
abnormal label in the abnormal action dataset W, the predicted 

abnormal label by the Resnet50 model is W�X , and the abnormal 

predicted label by the Resnet18 model is W�X  . The loss function 
of the KD Resnet model is computed as: 

<�Q�FW, W�X , W�X G 
 �1 H I�<YZ�[Z��\
�Q� �W, W�X � M I<@N
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where P  is softmax temperature. Prediction distribution is 
softened by the distillation temperature P . This study chose 
P 
  6. The efficiency of the proposed KD framework is 
evaluated on both time cost and performance. 

III. EXPERIMENTS AND RESULTS 

The proposed method was evaluated on challenging 
benchmark datasets: UMN [20], Crow-11 [21], UCF CC 50 
[22], UBNormal [23], and UCSD [24]. Four metrics, micro- 
and macro AUC [23] and micro- and macro accuracy [25] were 
used for experimental evaluations. The final output of the 
proposed system (p score) was taken from the softmax layer. 
This p score is changed to obtain the final label that could 
belong to a normal or abnormal action. Thus, a ROC curve is 
computed based on the True Positive Rate (TPR) and the False 
Positive Rate (FPR) at α = p changing from 0.1 to 1. 
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Fig. 3.  The knowledge distillation framework for anomaly behavior detection. 

TABLE I.  MICRO AND MACRO AUC (%) OF ROHAC AND ROHAC-KD IN COMPARISON WITH OTHER METHODS 

Method 

UBNormal ShangHaiTech CUHK Avenue UMN UCSD Ped2 

AUC(%) 

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro 

[20] - - - - - - 96 - - - 

[23] 59.3 84.9 82.7 89.3 92.3 90.4 85.5 94.4 98.7 99.7 

[26] 74.8 - - - 90.2 - - - 97.3 - 

[27] 56 85.9 83.8 90.5 91.6 92.5 - - - - 

[28] 61.3 85.6 83.7 90.5 93 93.2 - - 91.5 90.6 

[29] - - 68 - 81.7 - - - 92.2 - 

[30] - - 74.5 82.9 87.3 84.5 - - - - 

[31] - - 75.5 83.7 90.9 92.2 - - - - 

[32] - - 78.7 84.9 87.4 90.4 - - - - 

[33] - - 72.1 - 83.3 - - - - - 

[34] - - - - 87.2 - - - 94 - 

[35] - - 70.5 - 88.5 - - - - - 

[36] - - - 76.2 - 92.1 - - - 99.3 

ROHAC 92.9 93.2 92.4 94.8 96.5 97.4 97.8 98.5 99.6 99.9 

ROHAC KD 90.6 92.1 91.7 93.5 94.8 95.6 96.9 97.3 99.5 99.7 

 
The experiments were implemented for AUC accuracy. At 

first, training and test data were separated. The proposed 
frameworks of ROHAC and ROHAC with KD, named 
ROHAC-KD, were evaluated on the benchmark datasets. 

A. AUC Score Evaluation  

For AUC evaluation, micro and macro AUC scores were 
calculated for various benchmark datasets, such as UBNormal, 
ShangHaiTech, CUHK Avenue, UMN, and UCSD Ped2. Table 
I shows the comparative results of the proposed with other 
methods. For the UBNormal dataset, the method in [26] 
achieved a micro AUC of 74.8%, which is much lower those 
achieved by ROHAC (92.9%) and ROHAC-KD (90.6%). The 
macro AUC of ROHAC and ROHAC-KD was also better than 
that of [28], with 93.2% and 92.1% compared to 85.9%, 
respectively [28]. The experimental results on the 
ShangHaiTech dataset also show the higher performance of the 
proposed methods. The method in [27] had micro and macro 
AUC scores of 83.8% and 90.5%, respectively, while ROHAC 
and ROHAC-KD achieved 92.4% and 94.8% for micro AUC 
and 91.7% and 93.5% for macro AUC. In evaluations on the 
CUHK Avenue, UMN, and UCSD Ped2 datasets, ROHAC and 
ROHAC-KD achieved also the highest results, which were 
about 1-3.5% and 0.2-4.2% higher than those of the other best 

methods at micro and macro AUC, respectively. The 
experimental results in Table I show that the same method on 
different datasets gave significantly different results. For 
example, the evaluation of the method in [28] had micro and 
macro AUC of only 61.3% and 85.6%, respectively, on the 
UBNormal dataset. However, the relative results for the CUHK 
Avenue, UMN, and UCSD Ped2 datasets were all above 90%. 
The same happens with the methods in [28] and [27]. However, 
considering the proposed ROHAC and ROHAC-KD methods, 
the micro and macro AUC values are almost steady above 90% 
for all evaluation datasets. This demonstrates the efficiency of 
the proposed frameworks in picking up subtle patterns in 
datasets. 

B. Accuracy Score Evaluation  

Accuracy evaluation metrics were also examined on the 
same datasets. Figure 4 shows the promising results in both 
micro and macro accuracy metrics. The experimental results of 
the ROHAC method on the UBNormal, ShangHaiTech, CUHK 
Avenue, UMN, and UCSD Ped2 datasets were 92.1%, 89.5%, 
95.8%, 96.5%, and 99.5% for micro accuracy, and 93.5%, 
93.6%, 96.4%, 94.8%, and 99.8% for macro accuracy, 
respectively. These results are slightly higher than those of the 
ROHAC-KD method on all datasets. 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16674-16679 16678  
 

www.etasr.com Ho et al.: Multi-Modality Abnormal Crowd Detection with Self-Attention and Knowledge Distillation 

 

 
Fig. 4.  Micro and macro accuracy (%) of ROHAC and ROHAC-KD on 

different benchmark datasets. 

C. Computational Cost Evaluation 

Table II shows the computational costs for the phases of 
human detection, optical flow calculation, and classification, 
and the total time for abnormal behavior detection by ROHAC 
and ROHAC-KD. The time for running experiments was 
evaluated on Jeston Xavier NX and Tesla T4. 

TABLE II.  TIME COST FOR HUMAN DETECTION, OPTICAL 
FLOW, ABNORMAL CLASSIFICATION, AND TOTAL. 

Method 
Human detection 

(ms) 

Optical flow + 

classification (ms) 

Frames per 

second (fps) 

Run on Jeston Xavier NX 

ROHAC 0.325 0.101 2.3 

ROHAC-KD 0.028 0.014 23.8 

Run on Tesla T4 

ROHAC 0.048 0.024 13.7 

ROHAC-KD 0.016 0.008 41.7 

 
For human detection on Jeston Xavier NX, the 

computational time was 0.325 ms for ROHAC and 0.028 ms 
for ROHAC-KD. The respective times on Tesla T4 were 0.048 
ms and 0.016 ms. On Jeston Xavier NX, the computational 
costs for optical flow calculation and classification were 0.101 
ms and 0.014 ms for ROHAC and ROHAC-KD, whereas on 
Tesla T4 were 0.024 ms and 0.008 ms, respectively. When 
running on Jeston Xavier NX, the total fps processed by 
ROHAC-KD was about ten times higher than the ROHAC 
method. Running on a Tesla T4, ROHAC-KD achieved 41.7 
fps, whereas ROHAC achieved only 13.7 fps. 

The results in Table II demonstrate the effectiveness of 
using KD in the proposed framework for abnormal human 
behavior detection, as it greatly reduces computational costs 
while almost preserving recognition accuracy. This study also 
compared the computational costs of the proposed with other 
methods when running on Jeston Xavier NX, and the results 
are shown in Table III. ROHAC can process 13.7 fps, which is 
only 2.9 fps higher than the lowest value of the method in [37]. 
However, compared to other methods, ROHAC achieved a 
lower number of fps. ROHAC-KD achieved 41.7 fps, which is 
higher than other methods, except for MemAE [34] (42 fps) 
and MNAD [36] (56 fps). However, the recognition 
performance of both ROHAC and ROHAC-KD was higher 
than that of these methods. 

TABLE III.  COMPARISON OF COMPUTATIONAL COST 
BETWEEN THE PROPOSED AND OTHER METHODS 

No Method fps 

1 [34] 42 

2 [36] 56 

3 [37] 10.8 

4 [29] 18 

5 SSMTL++v1 [28] 20.2 

6 SSMTL++v2 [28] 18.8 

7 ROHAC 13.7 

8 ROHAC-KD 41.7 

 

IV. CONCLUSION 

This study proposed an efficient framework for abnormal 
human behavior detection by exploring three input frames: 
RGB, optical flow, and heatmap. Attention units were used to 
exploit the important information from these three input 
images. The experimental results on both micro and macro 
accuracy and AUC metrics on multiple datasets showed that 
the proposed method outperformed other state-of-the-art 
methods. In addition, KD was used to reduce the computational 
cost for abnormal behavior detection. The experimental results 
showed that with KD, the proposed framework reduced 
significantly the processing time but still had high detection 
accuracy compared to without using KD. Future work will 
consider deploying multimodal learning of RGB and depth 
images in the proposed system and the evaluation of the models 
on more diverse datasets of abnormal behaviors. Moreover, the 
scale-down models using KD will be expanded to include 
multiple teacher models for several contexts from different 
abnormal behavior datasets. 
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