
Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16178-16184 16178

www.etasr.com Maabed et al.: Optimizing Data Availability and Scalability with RP*-SD2DS Architecture for …

Optimizing Data Availability and Scalability
with RP*-SD2DS Architecture for Distributed
Systems

Mohammed Maabed

Mathematics and Applications - MIA Laboratory, Hassiba Benbouali University, Chlef, Algeria
m.maabed@univ-chlef.dz (corresponding author)

Nassim Dennouni

Higher School of Management, Tlemcen, Algeria, | Computer Science Department - LIA Laboratory,
Hassiba Benbouali University, Chlef, Algeria
n.dennouni@univ-chlef.dz

Mohamed Aridj

Computer Science Department - LIA Laboratory, Hassiba Benbouali University, Chlef, Algeria
m.aridj@univ-chlef.dz

Received: 19 June 2024 | Revised: 6 July 2024 | Accepted: 13 July 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8176

ABSTRACT

This work introduces Range Partitioning Scalable Distributed Two-Layer Data Structures (RP*-SD2DS),

an innovative data storage architecture with the objective of enhancing data availability and scalability in

distributed systems. By employing SD2DS and preorder-preserving RP*, this design avoids the need for a

router or coordinator, ensuring dynamic adaptability. The main goal is to minimize system downtime by

efficiently distributing data across two layers and increasing availability during partitioning operations in

traditional SDDSs, thereby avoiding the bottlenecks associated with master- or coordinator-based systems.

The proposed solution offers significant improvements over MongoDB, a well-known and robust system,

with a single or three Mongos instances.

Keywords-range partioning; multi-computers; large files; Scalable Distributed Two-Layer Data Structures

(SD2DS); Non - Structured Query Language (NoSQL)

I. INTRODUCTION

It is becoming increasingly clear that dependable data
storage systems are essential for maintaining the development
of Internet of Things (IoT) infrastructures, considering the
exponential growth of data both processed and stored online
[1]. Delays in data transmission can result in substantial
financial losses and reduced productivity, while the permanent
loss of data can have severe and far-reaching consequences [2].
It is therefore evident that dependable and effective data
storage solutions are of great importance for a multitude of
applications, including those pertaining to business, social
networking platforms, multimedia and cloud services [3, 4]. In
order to enhance scalability and efficiency, a considerable
number of applications are migrating their data to Non-
Structured Query Language (NoSQL) systems [5].

However, these systems are often optimized for large
datasets, leaving substantial amounts of data in flat file formats
[6]. The management of large volumes of files necessitates the
implementation of distributed storage solutions [7]. Typically,

in NoSQL systems, data and metadata are stored separately,
which poses difficulties in data aggregation and increases
maintenance complexity [8]. Nevertheless, multi-computer
systems remain the most cost-effective solution for high-
performance applications [9].

Scalable Distributed Data Structures (SDDS), designed to
improve performance within a client-server architecture,
represent a significant innovation in this field [10]. However,
SDDSs encounter difficulties with large files, particularly
during the process of splitting them. Recently, research has
indicated that it may be more efficient to store only the
metadata on a dynamic partition, while the actual data are
stored in a fixed partition on the outside [11]. In order to
efficiently manage large files, a distributed data storage system
based on Scalable Distributed Two-Layer Data Structures
(SD2DS) [11], which supports simple and scalable key-value
access is proposed. This system is particularly effective for
medium and large files, as it employs Linear Hashing (LH*)
SDDS to manage the initial layer [12]. Although SDDS LH*

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16178-16184 16179

www.etasr.com Maabed et al.: Optimizing Data Availability and Scalability with RP*-SD2DS Architecture for …

employs a linear hash function to facilitate efficient access, it
encounters difficulties in handling range requests and
necessitates multicasting, which is a resource-intensive process.
Furthermore, the process of sorting results is costly, and the
necessity of a coordinator for splitting introduces a single point
of failure. The SD2DS LH* employs a linear hash function for
accessing the first layer, which, although effective, encounters
difficulties with range queries and necessitates multicast for
their processing. Furthermore, the process of sorting the results
is also costly, and the system is dependent on a coordinator to
oversee the splitting process, which presents a significant
challenge if the coordinator is unable to perform its duties.
Considering that many NoSQL systems, such as MongoDB,
employ a multitude of access methodologies, including hashing
and sharding, Range Partitioning (RP*) has been integrated
into the initial layer [14]. This enhancement addresses the
previous issues within a system that does not require a
coordinator.

This study developed an SD2DS-based architectural
framework with the specific objective of addressing the
challenges posed by range requests. The header is managed
within the scalable section, thereby streamlining the process.
The storage of large files is facilitated by the use of fixed
bucket partitions at each node, thereby enhancing scalability
and minimizing the amount of data transmitted during the
splitting process. This process involves the transfer of half of
the stored data in a node to a new one. This design enables the
system to efficiently manage large files with minimal
transmission costs. A comprehensive description of the
principal elements of the global system architecture is
provided, followed by an overview of both recent and
established research in the field. Subsequently, a detailed
account of the RP*-SD2DS system for the management of
large files is given, succeeded by a comparison of the simulated
results with those of MongoDB.

II. RELATED WORK

The system consists of three main categories of nodes:
servers, clients, and a split coordinator, as outlined in the
SDDS. The servers are responsible for storing data in discrete
units, which are collectively referred to as "buckets." The
combination of these buckets constitutes the storage file. A
bucket may be used to store both headers and bodies either
simultaneously or separately, with the option of storing them
on the same node or on different ones. The responsibility for
data processing is assigned to the clients, while the split
coordinator is tasked with monitoring the status of the two-
layer system. The coordinator plays a significant role in
maintaining the scalability of the system. SDDS is divided into
categories, including SDDS LH* [15], SDDS RP*, and
trees/tries. The LH* variant, which is particularly suitable for
data access, employs a splitting mechanism that is coordinated.
In contrast, the RP* variant employs range queries, thereby
capitalizing on the benefits of pre-ordered data. In order to
address records, SDDS LH* employs a hashing function, such
as a straightforward modulo division:

ℎ��� = � ��	 2� (1)

where C is a key, and i is the file level, which increases as the
file grows.

It should be noted that the file does not require the use of
buckets whose numbers are powers of two. Consequently, at
most, two successive levels (i and i + 1) can be utilized
simultaneously. However, SDDS is inadequately equipped to
process large files (exceeding 1 MB), particularly in the context
of data transfer. The RP* classification [16], employs Binary
Trees (B-Trees) to maintain order. This category comprises the
RP*N, RP*C, and RP*S structures, all of which have been
designed for preserving order in SDDSs that employ range
partitioning. RP*N deploys multicast messages across local,
ATM, and wireless networks to implement range partitioning
without the necessity for an index. The RP*C, enhancement to
the RP*N structure, incorporates indexes, thereby facilitating
point-to-point messaging for key searches, inserts, and deletes.
Furthermore, RP*S enhances throughput by constructing
indexes on servers.

Authors in [17] introduced Scalable Distributed Compact
Trie Hashing (CTH*), a novel distributed data structure
designed for multicomputer systems. The CTH* data structure
is designed to maintain record order, operate without multicast,
and use only three bytes to address a server, making it suitable
for dynamic workloads. It was applied in the context of
distributed databases, file systems and caching systems. In
[18], the MapReduce (MR2P*) framework is introduced, which
incorporates a distributed range partitioning algorithm into the
MapReduce framework [19]. This approach is focused on the
dynamic scheduling of data, with the objective of optimizing
the shuffle phase between mapping and reducing operations.
These enhancements are achieved through the utilization of a
partitioning function based on the SDDS-RP framework.
Authors in [20] introduced (TH*), a client/server architectural
model. It is the responsibility of each client to maintain a
partial trie that represents its own view of the distributed file.
The system may be initiated with an empty trie, wherein each
server is assigned a bucket containing the file's records, the trie
itself, and an interval min, max. Initially, only server 0 is
present, with an empty bucket and a trie. The number of servers
is regarded as infinite, with each server being either determined
statically or dynamically. In the event of an addressing error, a
portion of the server's trie is transferred to the client for its trie
to be updated.

MongoDB [21] is a NoSQL document-based data store
with extensive capabilities that bear resemblance to those of
traditional databases. The database utilizes Binary JavaScript
Object Notation (BSON) for storage and supports atomic
access for individual documents. MongoDB employs a
sharding technique to distribute data across a cluster of servers,
with the configuration server overseeing the management of all
shards. MongoDB's facilitates communication between clients
and instances, abstracting shard status. The data are stored on
reliable media, such as disk drives, and access is facilitated by
the use of journals and cache mechanisms. MongoDB
facilitates efficient data storage via Grid File System (GridFS)
[22], which manages data in two collections: fs.files and
fs.chunks. The SD2DS data structure, which has recently been
proposed, addresses the limitations of SDDS by implementing

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16178-16184 16180

www.etasr.com Maabed et al.: Optimizing Data Availability and Scalability with RP*-SD2DS Architecture for …

a two-layer architectural model comprising a file layer and a
storage layer. The file layer is responsible for the management
of data keys, including the assignment of locators that point to
the specific data locations. The storage layer, in contrast, is
tasked with the storage of the complete data set, comprising not
only the data itself but also the associated keys and attributes.
The two layers are managed independently. The SD2DS
employs the SDDS LH* to manage its first layer, utilizing
headers as records. This design strategy aims to minimize the
amount of data transferred during the expansion of the first
layer. Table I provides a summary of the principal differences
between the LH*-SD2DS, MongoDB and the introduced
system design (RP*-SD2DS).

TABLE I. A COMPARISON BETWEEN LH*-SD2DS,
MONGODB, AND RP*-SD2DS

Approaches
Need special

nodes

Max blob

size

scale out

(splitting)
Access method

LH*-SD2DS
Splitting

coordinator
Not-fixed Auto Linear hashing

MongoDB Router (mongos) Fixed Manual Hash/range
RP*-SD2DS
(proposed)

N/A Not-fixed Auto Rrange

III. THE PROPOSED ARCHITECTURE

The implemented system comprises a cluster of multi-
computers, which includes several servers and clients.
Applications establish a direct connection with the clients,
providing an Application Programming Interface (API) that
enables the execution of a range of queries, including get, put,
and delete. A server is constituted of two components, known
as buckets, which are the first and second layers of buckets.
The principal operational phases of the system are illustrated in
Figure 1 where: (1) the application sends requests (put, set,
update, delete, scan(range)) towards the client, (2) the client
gets the target server from its image, (3) the server answers
with an Image Adjustment Message (IAM), (4) the server
forwards the request to the right server, (5) forwarding of the
body is performed if it does not have enough capacity, (6)
refers to the sending of the locator to the first layer, (7) is the
split process in case the first layer bucket is full, (8) responds to
the client with confirmation of insertion and a Capacity
Adjustment Message (IAM_c), and (9) the client responds to
the application. The proposed method employs RP*-SD2DS to
enhance data availability, ensuring the efficient management of
both the file and storage layers. The file layer is responsible for
the management and storage of data keys, along with locators
that point to the data. In contrast, the storage layer is tasked
with retaining the complete data set. The following subsections
provide a detailed account of each layer.

A. First Layer

The initial layer comprises a receptacle with a header that
includes the bucket ID, the maximum number of records, the
actual number of records, the range, a pointer to the root index
(B-tree), and the index size. The data are composed of key-
locator pairs. This layer incorporates algorithms for insertion,
splitting and the processing of both search and range queries,
ensuring efficient data management and retrieval.

Fig. 1. Our proposed system architecture.

a) Insertion

Upon receipt of a request from a client, the system proceeds
to differentiate the request into two distinct components: the
header and the body. Subsequently, the server saves the file. If
the second layer is unable to accommodate the request due to
insufficient available space, the server initiates a transfer to an
alternative server. Once the locator address is received, the key
along with the locator is stored in the first layer. Subsequently,
the client is furnished with confirmation of the successful
insertion via an IAM. The primary stages involved in the
processing of insertion requests are outlined in Algorithm (1).
During the process of insertion, the client utilizes its localized
image to transmit requests to the initial layer. In the case of an
outdated client image, the server will issue an IAM and redirect
the request to the relevant server.

Algorithm 1: Insert Query

Input:

1 key: record’s key

2 file: data in MiB

3 nb: current number of records

4 nbMax: Max number of records by bucket

5 if (key ∈ localInterval) then

6 locator ← secondLayer.storeFile(key,

file);

7 bucket.insert(key, locator);

8 sendClientSucceed();

9 if (nb > nbMax) then

10 split();

11 end if

12 else

13 S ← getImageServer(key);

14 forward(key, f ile, S);

15 sendClientIAM();

16 end if

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16178-16184 16181

www.etasr.com Maabed et al.: Optimizing Data Availability and Scalability with RP*-SD2DS Architecture for …

b) The Search Algorithm

There are two categories of search requests: precise queries
and range queries. The initial layer addresses the search request
by identifying the key, monitoring the location, and
subsequently retrieving the comprehensive data from the
second layer. In instances where addressing errors have
occurred, an IAM is obtained to prevent future occurrences. In
the case of range requests, clients submit queries to the first
layer buckets that fall within the specified interval, which they
obtain from their local image. If an addressing error occurs,
clients are furnished with IAMs, otherwise, they are provided
with locators, which enable them to access their data from the
second layer. Algorithms (2.1) and (2.2) respectively, outline
the steps involved in the management of a search request at the
client and server levels.

Algorithm 2.1: Range query (Client Side)

Input:

1 listFirstLayerServers: List of servers

from clientImage with a specified key

range.

2 keymin, keymax: Range of keys.

3 for each S in listFirstLayerServers do

4 sendServerRange(S, keymin, keymax,

S.serverInterval);

5 end for

6 // Reception Part:

7 Response.unionAll(Rep);

8 listSecondLayerServers ←

getListLocators(Rep);

9 for each Server in

listSecondLayerServers do

10 getFiles(S, keys);

11 end for

Algorithm 2.2: Range query (Server Side)

Input:

1 Req.serverInterval: Server interval from

the request.

2 B.interval: Interval of the bucket.

3 keymin, keymax: Range of keys.

4 if (Req.serverInterval ≠ B.interval)

then

5 S.next ←

serverImage.getNextServer(keymin, keymax);

6 forwardServerRange(S.next, keymin,

keymax);

7 if (Req.keymin, Req.keymax) ∩ B.interval

≠ ∅ then
8 sendClient(B.keys);

9 end if

10 else if (Req.keymin, Req.keymax) ∩

B.interval ≠ ∅ then
11 sendClient(B.keys);

12 end if

c) Splitting Process

Once a bucket (B) has reached its maximum capacity for
storing records, the splitting procedure is initiated by requesting

the allocation of a new server. A request is then sent to a server
bucket (M), which is assumed to be available. The destination
server responds with an acknowledgement (ACK) if the split is
approved, otherwise, the request is rejected. Subsequently,
buckets B and M are designated as the left and right siblings,
respectively. In the event of acceptance, half of the data from
bucket B are transferred to the newly designated server, with
the interval set to (λM, ΛM), where λM and ΛM represent the
middle and maximum record keys of bucket B, respectively. If
rejected, the splitting server continues to change server’s ID
until it identifies an available one. Algorithm (3) describes the
steps of the splitting process.

B. Second Layer

The storage layer, or second layer, assumes the majority of
server space and is a fixed partition, ensuring that data are
permanently saved in this layer. Upon reaching its maximum
capacity, the system requires to allocate additional storage. In
this architectural configuration, the second layer maintains the
capacity to process inserts and respond to specific GET
requests in a manner that is independent of the first layer. This
design optimizes server availability during the splitting process
in the first layer. The storage algorithm commences with the
current server verifying the availability of the requisite
capacity. Once data and the associated key have been
successfully inserted, the server updates its capacity and returns
the locator. If the insertion cannot be accommodated due to
insufficient capacity, the server denies the request and sends an
IAM_c to prompt an update of the sender's capacity status. The
system then proceeds to find another available server or
allocate a new one to store the requested data, as depicted in the
second layer and described in Algorithm (4).

Algorithm 3: Split

Input:

1 B: the overflowing bucket

2 M: a new bucket

3 Header: bucket header

4 keym: bucket middle key

5 Repeat

6 ack ← createNewBucket(M);

7 if (ack) then

8 λM ← keym(B);

9 ΛM ← ΛB;

10 Header(M, λM, ΛM);

11 copyRecords(B, M, λm, Λm);

12 removeRecords(B, λm, Λm);

13 else

14 M++;

15 end if

16 until ack

17 ΛB ← keym(B);

18 Header(B, λB, ΛB);

Algorithm 4: Storage

Input:

1 server.currentCapacity: Current capacity

of the server.

2 file.size: Size of the file to store.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16178-16184 16182

www.etasr.com Maabed et al.: Optimizing Data Availability and Scalability with RP*-SD2DS Architecture for …

3 if server.currentCapacity ≥ file.size

then

4 Store(file);

5 server.currentCapacity −= file.size;

6 return locator;

7 else

8 return IAM_c;

9 end if

Splitting data is restricted to the initial layer, whereas the
expansion of servers, when necessary, is performed in the
second layer. If the system’s servers reach full capacity during
a new insertion, the insertion will be directed to a new server or
another server with sufficient capacity. The server that received
the request will be given priority.

IV. SIMULATION RESULTS AND DISCUSSION

In order to demonstrate the scalability of the system,
simulations were conducted using large files of varying sizes
(1, 2, 5, and 10 MiB) and different client counts (1, 2, 4, 8, 16,
and 32). The system configuration was established using four
client personal computers (Dell 5 i5, 8 GB RAM) and multiple
servers (i5, 16 GB RAM) to form a cluster. A comparison was
carried out between the proposed method and MongoDB, with
the former being tested against the latter using one and three
Mongos, respectively. The split process remains a critical
operation, consuming significant time and resources in data
storage systems.

A. Split-Process Results

An evaluation of the system was performed using a cluster
comprising four client PCs and three server PCs. The consistent
splitting time indicates that the procedure for splitting the data
consistently takes the same amount of time, regardless of
whether data are inserted simultaneously, based on the amount
of data stored. In the simulated scenarios, the duration of the
split period ranged from 133 milliseconds to 217 milliseconds.
The efficacy of the method was evaluated using 512 records of
varying file sizes (1 MiB, 2 MiB, 5 MiB, and 10 MiB) and
different workloads, represented by the number of clients (1, 8,
and 32 clients) working simultaneously. In essence, the
splitting procedure is applicable to the entire data collection,
whereby the data are divided into two portions and transferred
to a distinct server.

The time required for the splitting process, depends on the
configuration of the network and the volume of data being
transported. The time required for this process can be estimated
by considering the amount of data to be transported and the
available throughput. The primary criterion was the amount of
data sent. The storage space was divided into two sections: the
first section contains the complete set of data, while the second
section holds the locator, which serves as a reference to the
data key. Figure 2 presents three distinct scenarios, each
characterized by a varying number of clients (1, 8, and 32) and
record sizes. The results demonstrate that the proposed strategy
accurately predicts the splitting time for each scenario, with a
few milliseconds of precision, while maintaining stability.

Fig. 2. A scenario with 512 records inserted.

Tables ΙΙ and ΙΙΙ show the insertion of 512 records, with and
without accounting for the average splitting time, respectively.
Upon reaching its maximum capacity, a node will undergo a
split. Therefore, the insertion of the 513th record will be
postponed until the completion of the split and insertion
processes, as nodes undergo a split at the 512th insertion. If the
split time is 133 ms and the insertion time is 44.75 ms, the total
time would be 177.75 ms, as demonstrated in (2):

�� =
∑ ��

�
���

�
 (2)

where Ti is the insertion time, ti is the insertion time by record
and R the number of inserted records.

TABLE II. INSERT TIME FOR DIFFERENT BODY SIZE WITH
SPLIT TIME

Body Size 1 MiB 2 MiB 5 MiB 10 MiB

1 client 106.95 212.103 531.199 1056.25
2 clients 173.54 273.3 653.66 1291.83
4 clients 255.109 385.015 840.57 1617.25
8 clients 374.95 627.21 1660.03 3165.53

16 clients 821.34 1378.93 3678.4 7174.093
32 clients 1902.25 2911.93 9095.062 12953.000

TABLE III. INSERT TIME FOR DIFFERENT BODY SIZES
WITHOUT SPLIT TIME

Body Size 1 MiB 2 MiB 5 MiB 10 MiB

1 client 106.4305 211.5522 530.6521 1055.676
2 clients 172.9619 272.7688 653.0194 1291.256
4 clients 254.4957 384.4173 840.0388 1616.707
8 clients 374.1922 626.4678 1659.327 3164.729
16 clients 820.6408 1378.094 3677.822 7173.515
32 clients 1901.645 2911.11 9094.382 12952.15

Time lost, due to inserting a single record is equal to the

sum of the insertion time and the split time, when the latter is
divided among the 512 insertions as evidenced in (3).
Therefore, the system will pause for approximately 0.25 ms for
each record, which is roughly 133 ms divided by 512
insertions.

����, �� =
∑ ������∗���

���

�
 (3)

where ts is a split time record and S is the number of split
operations. The mean split time is taken into account in the
insertion times for a set of records (R), as outlined in (2) and
(3). Table IV demonstrates that this discrepancy remains
approximately constant.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16178-16184 16183

www.etasr.com Maabed et al.: Optimizing Data Availability and Scalability with RP*-SD2DS Architecture for …

TABLE IV. DIFFERENCES BETWEEN EACH INSERTION
WITH AND WITHOUT SPLIT TIME

Body Size 1 MiB 2 MiB 5 MiB 10 MiB

1 client 0.51 0.55 0.54 0.57
2 clients 0.57 0.53 0.64 0.57
4 clients 0.61 0.59 0.53 0.54
8 clients 0.75 0.74 0.70 0.80
16 clients 0.69 0.83 0.57 0.57
32 clients 0.60 0.82 0.67 0.84

The results of the simulation exhibit that the proposed

approach's split process is reliable and efficient for large-file
storage systems. Furthermore, the split process ceases only
upon the insertion of the initial layer of the split node, while the
second layer continues to operate uninterrupted. To ascertain
the efficacy of the solution introduced in comparison to
alternative systems, this study conducted an experiment where
the average time spent was measured by inserting 512 records,
each containing a 1 MiB blob. Figure 3, illustrates the
reduction in insertion time for MongoDB with one and three
Mongos, respectively.

Fig. 3. 512 records of 1 MiB file size insertions.

Figures 4-6 depict the same simulations as those of Figure
3, but with files of varying sizes (1, 2, 5, and 10 MiB). They
present the efficiency of the system in processing file insertions
rapidly, whether using one or three Mongos, in comparison to
MongoDB.

Fig. 4. 512 records of 2 MiB file size insertions.

Fig. 5. 512 records of 5 MiB file size insertions.

Fig. 6. 512 records of 10 MiB file size insertions.

Figure 7 portrays the insertion of 512 entries for a single
client with one mebibyte (MiB) file size, demonstrating the
rapid response to insertion requests. The graphical
representations manifest that the insertion occurred at the point
of splitting.

Fig. 7. 512 records of 10 MiB file size insertions for one client.

The configuration of clients allows for the input of multiple
records, each of which is composed of 1 MiB. It is imperative
that all insertions occur on the same server, specifically server
0. To achieve this, a scenario is established for each client, and

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16178-16184 16184

www.etasr.com Maabed et al.: Optimizing Data Availability and Scalability with RP*-SD2DS Architecture for …

the triggers for these scenarios are identified in order for the
waiting period and the split process to be determined. The
system is designed to accommodate multiple insertions from a
range of client counts with optimal efficiency. Upon reaching
its capacity, a server node undergoes a rapid splitting process.
In case an insertion request coincides with the splitting time,
the system requires only a brief additional interval of a few
milliseconds to complete the insertion. This constitutes a
significant advantage over traditional systems, which require
for operations to be halted until the splitting process is
complete. The latter typically takes a considerably longer time.

V. CONCLUSION AND FUTRURE WORK

Range Partitioning Scalable Distributed Two-Layer Data
Structures (RP* SD2DS) data store is scalable, distributed and
supports range queries, improving both availability and
scalability. It uses the RP* access technique within an SD2DS
structure, optimizing the system for efficient data handling. The
system consists of two tiers: one that stores keys with locators
pointing to data in the second tier, improving availability
during the partitioning process. It also expands dynamically
without the need for a coordinator or master node. The RP*-
SD2DS achieved superior performance over MongoDB in
terms of record insertion for different numbers of clients (1, 2,
4, 8, 16 and 32), regardless of whether one or three Mongo
instances are used. Future work must focus on extending RP*-
SD2DS to handle large and complex multidimensional data.

REFERENCES

[1] A. Albugmi, "Digital Forensics Readiness Framework (DFRF) to Secure
Database Systems," Engineering, Technology & Applied Science
Research, vol. 14, no. 2, pp. 13732–13740, Apr. 2024, https://doi.org/
10.48084/etasr.7116.

[2] C. Gomes, M. N. de O. Junior, B. Nogueira, P. Maciel, and E. Tavares,
"NoSQL-based storage systems: influence of consistency on
performance, availability and energy consumption," The Journal of
Supercomputing, vol. 79, no. 18, pp. 21424–21448, Dec. 2023,
https://doi.org/10.1007/s11227-023-05488-6.

[3] M. M. Sadeeq, N. M. Abdulkareem, S. R. M. Zeebaree, D. M. Ahmed,
A. S. Sami, and R. R. Zebari, "IoT and Cloud Computing Issues,
Challenges and Opportunities: A Review," Qubahan Academic Journal,
vol. 1, no. 2, pp. 1–7, Mar. 2021, https://doi.org/10.48161/qaj.v1n2a36.

[4] G. Mahmood, N. Hassoon, H. N. Abed, and B. Jalil, "An Efficient and
Secure Auditing System of Cloud Storage Based on BLS Signature,"
International Journal of Computing and Digital System, vol. 12, no. 01,
pp. 1491–1501, Jul. 2021, https://doi.org/10.12785/ijcds/1201120.

[5] S. Amghar, S. Cherdal, and S. Mouline, "Which NoSQL database for
IoT Applications?," in 2018 International Conference on Selected
Topics in Mobile and Wireless Networking (MoWNeT), Jun. 2018, pp.
131–137, https://doi.org/10.1109/MoWNet.2018.8428922.

[6] F. Chang et al., "Bigtable: A Distributed Storage System for Structured
Data," ACM Transactions on Computer Systems, vol. 26, no. 2, pp. 1–
26, Jun. 2008, https://doi.org/10.1145/1365815.1365816.

[7] A. Ergüzen and M. Ünver, "Developing a File System Structure to Solve
Healthy Big Data Storage and Archiving Problems Using a Distributed
File System," Applied Sciences, vol. 8, no. 6, Jun. 2018, Art. no. 913,
https://doi.org/10.3390/app8060913.

[8] A. Petrov, Database Internals: A Deep Dive into How Distributed Data
Systems Work, 1st ed. Sebastopol, CA, USA: O’Reilly Media, Inc.,
2019.

[9] M. B. Ahmad and S. Sagheer, "Issues and Algorithm of Distributed
Shared Memory," in 2021 International Conference on Innovative
Computing (ICIC), Lahore, Pakistan, Nov. 2021, pp. 1–9,
https://doi.org/10.1109/ICIC53490.2021.9693062.

[10] W. Litwin, M.-A. Neimat, and D. A. Schneider, "LH: Linear Hashing for
distributed files," ACM SIGMOD Record, vol. 22, no. 2, pp. 327–336,
Jun. 1993, https://doi.org/10.1145/170036.170084.

[11] K. Sapiecha and G. Lukawski, "Scalable Distributed Two-Layer Data
Structures (SD2DS)," International Journal of Distributed Systems and
Technologies (IJDST), vol. 4, no. 2, pp. 15–30, Apr. 2013,
https://doi.org/10.4018/jdst.2013040102.

[12] A. Krechowicz, A. Chrobot, S. Deniziak, and G. Łukawski, "SD2DS-
Based Datastore for Large Files," in Proceedings of the 2015 Federated
Conference on Software Development and Object Technologies, Cham,
2017, pp. 150–168, https://doi.org/10.1007/978-3-319-46535-7_13.

[13] A. Ali, S. Naeem, S. Anam, and M. M. Ahmed, "A State of Art Survey
for Big Data Processing and NoSQL Database Architecture,"
International Journal of Computing and Digital Systems, vol. 14, no. 1,
pp. 297–309, May 2023, https://doi.org/10.12785/ijcds/140124.

[14] W. Litwin, M.-A. Neimat, and D. A. Schneider, "RP*: A Family of
Order Preserving Scalable Distributed Data Structures," in Proceedings
of the 20th International Conference on Very Large Data Bases, San
Francisco, CA, USA, Sep. 1994, pp. 342–353.

[15] W. Litwin, M.-A. Neimat, and D. A. Schneider, "LH*—a scalable,
distributed data structure," ACM Trans. Database Syst., vol. 21, no. 4,
pp. 480–525, Dec. 1996, https://doi.org/10.1145/236711.236713.

[16] M. Bedla and K. Sapiecha, "Scalable Store of Java Objects Using Range
Partitioning," in Advances in Software Engineering Techniques, Berlin,
Heidelberg, 2012, pp. 84–93, https://doi.org/10.1007/978-3-642-28038-
2_7.

[17] D. E. Zegour, "Scalable distributed compact trie hashing (CTH*),"
Information and Software Technology, vol. 46, no. 14, pp. 923–935,
Nov. 2004, https://doi.org/10.1016/j.infsof.2004.04.001.

[18] A. Mohammed, "Framework for Parallel Processing of Very Large
Volumes of Data," International Journal of Computing and Digital
Systems, vol. 08, no. 01, pp. 43–50, Jan. 2019, https://doi.org/
10.12785/ijcds/080105.

[19] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on
large clusters," Communications of the ACM, vol. 51, no. 1, pp. 107–
113, Jan. 2008, https://doi.org/10.1145/1327452.1327492.

[20] A. Mohamed and D. Zegour, "TH*:Scalable Distributed Trie Hashing,"
IJCSI International Journal of Computer Science Issues, vol. 7, no. 6,
pp. 109–115, Nov. 2010.

[21] S. Bradshaw, E. Brazil, and K. Chodorow, MongoDB: The Definitive
Guide: Powerful and Scalable Data Storage, 3rd ed. Beijing Boston
Farnham: O’Reilly Media, 2019.

[22] S. Wang, G. Li, X. Yao, Y. Zeng, L. Pang, and L. Zhang, "A Distributed
Storage and Access Approach for Massive Remote Sensing Data in
MongoDB," ISPRS International Journal of Geo-Information, vol. 8, no.
12, Dec. 2019, Art. no. 533, https://doi.org/10.3390/ijgi8120533.

