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ABSTRACT 

This work introduces Range Partitioning Scalable Distributed Two-Layer Data Structures (RP*-SD2DS), 

an innovative data storage architecture with the objective of enhancing data availability and scalability in 

distributed systems. By employing SD2DS and preorder-preserving RP*, this design avoids the need for a 

router or coordinator, ensuring dynamic adaptability. The main goal is to minimize system downtime by 

efficiently distributing data across two layers and increasing availability during partitioning operations in 

traditional SDDSs, thereby avoiding the bottlenecks associated with master- or coordinator-based systems. 

The proposed solution offers significant improvements over MongoDB, a well-known and robust system, 

with a single or three Mongos instances. 

Keywords-range partioning; multi-computers; large files; Scalable Distributed Two-Layer Data Structures 

(SD2DS); Non - Structured Query Language (NoSQL)  

I. INTRODUCTION  

It is becoming increasingly clear that dependable data 
storage systems are essential for maintaining the development 
of Internet of Things (IoT) infrastructures, considering the 
exponential growth of data both processed and stored online 
[1]. Delays in data transmission can result in substantial 
financial losses and reduced productivity, while the permanent 
loss of data can have severe and far-reaching consequences [2]. 
It is therefore evident that dependable and effective data 
storage solutions are of great importance for a multitude of 
applications, including those pertaining to business, social 
networking platforms, multimedia and cloud services [3, 4]. In 
order to enhance scalability and efficiency, a considerable 
number of applications are migrating their data to Non-
Structured Query Language (NoSQL) systems [5].  

However, these systems are often optimized for large 
datasets, leaving substantial amounts of data in flat file formats 
[6]. The management of large volumes of files necessitates the 
implementation of distributed storage solutions [7]. Typically, 

in NoSQL systems, data and metadata are stored separately, 
which poses difficulties in data aggregation and increases 
maintenance complexity [8]. Nevertheless, multi-computer 
systems remain the most cost-effective solution for high-
performance applications [9]. 

Scalable Distributed Data Structures (SDDS), designed to 
improve performance within a client-server architecture, 
represent a significant innovation in this field [10]. However, 
SDDSs encounter difficulties with large files, particularly 
during the process of splitting them. Recently, research has 
indicated that it may be more efficient to store only the 
metadata on a dynamic partition, while the actual data are 
stored in a fixed partition on the outside [11]. In order to 
efficiently manage large files, a distributed data storage system 
based on Scalable Distributed Two-Layer Data Structures 
(SD2DS) [11], which supports simple and scalable key-value 
access is proposed. This system is particularly effective for 
medium and large files, as it employs Linear Hashing (LH*) 
SDDS to manage the initial layer [12]. Although SDDS LH* 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16178-16184 16179  
 

www.etasr.com Maabed et al.: Optimizing Data Availability and Scalability with RP*-SD2DS Architecture for … 

 

employs a linear hash function to facilitate efficient access, it 
encounters difficulties in handling range requests and 
necessitates multicasting, which is a resource-intensive process. 
Furthermore, the process of sorting results is costly, and the 
necessity of a coordinator for splitting introduces a single point 
of failure. The SD2DS LH* employs a linear hash function for 
accessing the first layer, which, although effective, encounters 
difficulties with range queries and necessitates multicast for 
their processing. Furthermore, the process of sorting the results 
is also costly, and the system is dependent on a coordinator to 
oversee the splitting process, which presents a significant 
challenge if the coordinator is unable to perform its duties. 
Considering that many NoSQL systems, such as MongoDB, 
employ a multitude of access methodologies, including hashing 
and sharding, Range Partitioning (RP*) has been integrated 
into the initial layer [14]. This enhancement addresses the 
previous issues within a system that does not require a 
coordinator. 

This study developed an SD2DS-based architectural 
framework with the specific objective of addressing the 
challenges posed by range requests. The header is managed 
within the scalable section, thereby streamlining the process. 
The storage of large files is facilitated by the use of fixed 
bucket partitions at each node, thereby enhancing scalability 
and minimizing the amount of data transmitted during the 
splitting process. This process involves the transfer of half of 
the stored data in a node to a new one. This design enables the 
system to efficiently manage large files with minimal 
transmission costs. A comprehensive description of the 
principal elements of the global system architecture is 
provided, followed by an overview of both recent and 
established research in the field. Subsequently, a detailed 
account of the RP*-SD2DS system for the management of 
large files is given, succeeded by a comparison of the simulated 
results with those of MongoDB. 

II. RELATED WORK 

The system consists of three main categories of nodes: 
servers, clients, and a split coordinator, as outlined in the 
SDDS. The servers are responsible for storing data in discrete 
units, which are collectively referred to as "buckets." The 
combination of these buckets constitutes the storage file. A 
bucket may be used to store both headers and bodies either 
simultaneously or separately, with the option of storing them 
on the same node or on different ones. The responsibility for 
data processing is assigned to the clients, while the split 
coordinator is tasked with monitoring the status of the two-
layer system. The coordinator plays a significant role in 
maintaining the scalability of the system. SDDS is divided into 
categories, including SDDS LH* [15], SDDS RP*, and 
trees/tries. The LH* variant, which is particularly suitable for 
data access, employs a splitting mechanism that is coordinated. 
In contrast, the RP* variant employs range queries, thereby 
capitalizing on the benefits of pre-ordered data. In order to 
address records, SDDS LH* employs a hashing function, such 
as a straightforward modulo division: 

ℎ��� = � ��	 2�     (1) 

where C is a key, and i is the file level, which increases as the 
file grows. 

It should be noted that the file does not require the use of 
buckets whose numbers are powers of two. Consequently, at 
most, two successive levels (i and i + 1) can be utilized 
simultaneously. However, SDDS is inadequately equipped to 
process large files (exceeding 1 MB), particularly in the context 
of data transfer. The RP* classification [16], employs Binary 
Trees (B-Trees) to maintain order. This category comprises the 
RP*N, RP*C, and RP*S structures, all of which have been 
designed for preserving order in SDDSs that employ range 
partitioning. RP*N deploys multicast messages across local, 
ATM, and wireless networks to implement range partitioning 
without the necessity for an index. The RP*C, enhancement to 
the RP*N structure, incorporates indexes, thereby facilitating 
point-to-point messaging for key searches, inserts, and deletes. 
Furthermore, RP*S enhances throughput by constructing 
indexes on servers. 

Authors in [17] introduced Scalable Distributed Compact 
Trie Hashing (CTH*), a novel distributed data structure 
designed for multicomputer systems. The CTH* data structure 
is designed to maintain record order, operate without multicast, 
and use only three bytes to address a server, making it suitable 
for dynamic workloads. It was applied in the context of 
distributed databases, file systems and caching systems. In 
[18], the MapReduce (MR2P*) framework is introduced, which 
incorporates a distributed range partitioning algorithm into the 
MapReduce framework [19]. This approach is focused on the 
dynamic scheduling of data, with the objective of optimizing 
the shuffle phase between mapping and reducing operations. 
These enhancements are achieved through the utilization of a 
partitioning function based on the SDDS-RP framework. 
Authors in [20]  introduced (TH*), a client/server architectural 
model. It is the responsibility of each client to maintain a 
partial trie that represents its own view of the distributed file. 
The system may be initiated with an empty trie, wherein each 
server is assigned a bucket containing the file's records, the trie 
itself, and an interval min, max. Initially, only server 0 is 
present, with an empty bucket and a trie. The number of servers 
is regarded as infinite, with each server being either determined 
statically or dynamically. In the event of an addressing error, a 
portion of the server's trie is transferred to the client for its trie 
to be updated. 

MongoDB [21] is a NoSQL document-based data store 
with extensive capabilities that bear resemblance to those of 
traditional databases. The database utilizes Binary JavaScript 
Object Notation (BSON) for storage and supports atomic 
access for individual documents. MongoDB employs a 
sharding technique to distribute data across a cluster of servers, 
with the configuration server overseeing the management of all 
shards. MongoDB's facilitates communication between clients 
and instances, abstracting shard status. The data are stored on 
reliable media, such as disk drives, and access is facilitated by 
the use of journals and cache mechanisms. MongoDB 
facilitates efficient data storage via Grid File System (GridFS) 
[22], which manages data in two collections: fs.files and 
fs.chunks. The SD2DS data structure, which has recently been 
proposed, addresses the limitations of SDDS by implementing 
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a two-layer architectural model comprising a file layer and a 
storage layer. The file layer is responsible for the management 
of data keys, including the assignment of locators that point to 
the specific data locations. The storage layer, in contrast, is 
tasked with the storage of the complete data set, comprising not 
only the data itself but also the associated keys and attributes. 
The two layers are managed independently. The SD2DS 
employs the SDDS LH* to manage its first layer, utilizing 
headers as records. This design strategy aims to minimize the 
amount of data transferred during the expansion of the first 
layer. Table I provides a summary of the principal differences 
between the LH*-SD2DS, MongoDB and the introduced 
system design (RP*-SD2DS). 

TABLE I.  A COMPARISON BETWEEN LH*-SD2DS, 
MONGODB, AND RP*-SD2DS 

Approaches 
Need special 

nodes 

Max blob 

size 

scale out 

(splitting) 
Access method 

LH*-SD2DS 
Splitting 

coordinator 
Not-fixed Auto Linear hashing 

MongoDB Router (mongos) Fixed Manual Hash/range 
RP*-SD2DS 
(proposed) 

N/A Not-fixed Auto Rrange 

 

III. THE PROPOSED ARCHITECTURE 

The implemented system comprises a cluster of multi-
computers, which includes several servers and clients. 
Applications establish a direct connection with the clients, 
providing an Application Programming Interface (API) that 
enables the execution of a range of queries, including get, put, 
and delete. A server is constituted of two components, known 
as buckets, which are the first and second layers of buckets. 
The principal operational phases of the system are illustrated in 
Figure 1 where: (1) the application sends requests (put, set, 
update, delete, scan(range)) towards the client, (2) the client 
gets the target server from its image, (3) the server answers 
with an Image Adjustment Message (IAM), (4) the server 
forwards the request to the right server, (5) forwarding of the 
body is performed if it does not have enough capacity, (6) 
refers to the sending of the locator to the first layer, (7) is the 
split process in case the first layer bucket is full, (8) responds to 
the client with confirmation of insertion and a Capacity 
Adjustment Message (IAM_c), and (9) the client responds to 
the application. The proposed method employs RP*-SD2DS to 
enhance data availability, ensuring the efficient management of 
both the file and storage layers. The file layer is responsible for 
the management and storage of data keys, along with locators 
that point to the data. In contrast, the storage layer is tasked 
with retaining the complete data set. The following subsections 
provide a detailed account of each layer. 

A. First Layer 

The initial layer comprises a receptacle with a header that 
includes the bucket ID, the maximum number of records, the 
actual number of records, the range, a pointer to the root index 
(B-tree), and the index size. The data are composed of key-
locator pairs. This layer incorporates algorithms for insertion, 
splitting and the processing of both search and range queries, 
ensuring efficient data management and retrieval. 

 
Fig. 1.  Our proposed system architecture. 

a) Insertion 

Upon receipt of a request from a client, the system proceeds 
to differentiate the request into two distinct components: the 
header and the body. Subsequently, the server saves the file. If 
the second layer is unable to accommodate the request due to 
insufficient available space, the server initiates a transfer to an 
alternative server. Once the locator address is received, the key 
along with the locator is stored in the first layer. Subsequently, 
the client is furnished with confirmation of the successful 
insertion via an IAM. The primary stages involved in the 
processing of insertion requests are outlined in Algorithm (1). 
During the process of insertion, the client utilizes its localized 
image to transmit requests to the initial layer. In the case of an 
outdated client image, the server will issue an IAM and redirect 
the request to the relevant server. 

Algorithm 1: Insert Query 

Input: 

1 key: record’s key 

2 file: data in MiB 

3 nb: current number of records 

4 nbMax: Max number of records by bucket 

5 if (key ∈ localInterval) then 

6 locator ← secondLayer.storeFile(key, 

file); 

7 bucket.insert(key, locator); 

8 sendClientSucceed(); 

9 if (nb > nbMax) then 

10 split(); 

11 end if 

12 else 

13 S ← getImageServer(key); 

14 forward(key, f ile, S ); 

15 sendClientIAM(); 

16 end if 
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b) The Search Algorithm 

There are two categories of search requests: precise queries 
and range queries. The initial layer addresses the search request 
by identifying the key, monitoring the location, and 
subsequently retrieving the comprehensive data from the 
second layer. In instances where addressing errors have 
occurred, an IAM is obtained to prevent future occurrences. In 
the case of range requests, clients submit queries to the first 
layer buckets that fall within the specified interval, which they 
obtain from their local image. If an addressing error occurs, 
clients are furnished with IAMs, otherwise, they are provided 
with locators, which enable them to access their data from the 
second layer. Algorithms (2.1) and (2.2) respectively, outline 
the steps involved in the management of a search request at the 
client and server levels. 

Algorithm 2.1: Range query (Client Side) 

Input: 

1 listFirstLayerServers: List of servers 

from clientImage with a specified key 

range. 

2 keymin, keymax: Range of keys. 

3 for each S in listFirstLayerServers do 

4 sendServerRange(S, keymin, keymax, 

S.serverInterval); 

5 end for 

6 // Reception Part: 

7 Response.unionAll(Rep); 

8 listSecondLayerServers ← 

getListLocators(Rep); 

9 for each Server in 

listSecondLayerServers do 

10 getFiles(S, keys); 

11 end for 
 

Algorithm 2.2: Range query (Server Side) 

Input: 

1 Req.serverInterval: Server interval from 

the request. 

2 B.interval: Interval of the bucket. 

3 keymin, keymax: Range of keys. 

4 if ( Req.serverInterval ≠ B.interval ) 

then 

5 S.next ← 

serverImage.getNextServer(keymin, keymax); 

6 forwardServerRange(S.next, keymin, 

keymax); 

7 if (Req.keymin, Req.keymax) ∩ B.interval 

≠ ∅  then 
8 sendClient(B.keys); 

9 end if 

10 else if (Req.keymin, Req.keymax) ∩ 

B.interval ≠ ∅ then 
11 sendClient(B.keys); 

12 end if 
 

c) Splitting Process 

Once a bucket (B) has reached its maximum capacity for 
storing records, the splitting procedure is initiated by requesting 

the allocation of a new server. A request is then sent to a server 
bucket (M), which is assumed to be available. The destination 
server responds with an acknowledgement (ACK) if the split is 
approved, otherwise, the request is rejected. Subsequently, 
buckets B and M are designated as the left and right siblings, 
respectively. In the event of acceptance, half of the data from 
bucket B are transferred to the newly designated server, with 
the interval set to (λM, ΛM), where λM and ΛM represent the 
middle and maximum record keys of bucket B, respectively. If 
rejected, the splitting server continues to change server’s ID 
until it identifies an available one. Algorithm (3) describes the 
steps of the splitting process. 

B. Second Layer 

The storage layer, or second layer, assumes the majority of 
server space and is a fixed partition, ensuring that data are 
permanently saved in this layer. Upon reaching its maximum 
capacity, the system requires to allocate additional storage. In 
this architectural configuration, the second layer maintains the 
capacity to process inserts and respond to specific GET 
requests in a manner that is independent of the first layer. This 
design optimizes server availability during the splitting process 
in the first layer. The storage algorithm commences with the 
current server verifying the availability of the requisite 
capacity. Once data and the associated key have been 
successfully inserted, the server updates its capacity and returns 
the locator. If the insertion cannot be accommodated due to 
insufficient capacity, the server denies the request and sends an 
IAM_c to prompt an update of the sender's capacity status. The 
system then proceeds to find another available server or 
allocate a new one to store the requested data, as depicted in the 
second layer and described in Algorithm (4). 

Algorithm 3: Split 

Input: 

1 B: the overflowing bucket 

2 M: a new bucket 

3 Header: bucket header 

4 keym: bucket middle key 

5 Repeat 

6 ack ← createNewBucket(M); 

7 if (ack) then 

8 λM ← keym(B); 

9 ΛM ← ΛB; 

10 Header(M, λM, ΛM); 

11 copyRecords(B, M, λm, Λm); 

12 removeRecords(B, λm, Λm); 

13 else 

14 M++; 

15 end if 

16 until ack 

17 ΛB ← keym(B); 

18 Header(B, λB, ΛB); 
 

Algorithm 4: Storage 

Input: 

1 server.currentCapacity: Current capacity 

of the server. 

2 file.size: Size of the file to store. 
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3 if server.currentCapacity ≥  file.size 

then 

4 Store(file); 

5 server.currentCapacity −= file.size; 

6 return locator; 

7 else 

8 return IAM_c; 

9 end if 
 

Splitting data is restricted to the initial layer, whereas the 
expansion of servers, when necessary, is performed in the 
second layer. If the system’s servers reach full capacity during 
a new insertion, the insertion will be directed to a new server or 
another server with sufficient capacity. The server that received 
the request will be given priority. 

IV. SIMULATION RESULTS AND DISCUSSION 

In order to demonstrate the scalability of the system, 
simulations were conducted using large files of varying sizes 
(1, 2, 5, and 10 MiB) and different client counts (1, 2, 4, 8, 16, 
and 32). The system configuration was established using four 
client personal computers (Dell 5 i5, 8 GB RAM) and multiple 
servers (i5, 16 GB RAM) to form a cluster. A comparison was 
carried out between the proposed method and MongoDB, with 
the former being tested against the latter using one and three 
Mongos, respectively. The split process remains a critical 
operation, consuming significant time and resources in data 
storage systems. 

A. Split-Process Results 

An evaluation of the system was performed using a cluster 
comprising four client PCs and three server PCs. The consistent 
splitting time indicates that the procedure for splitting the data 
consistently takes the same amount of time, regardless of 
whether data are inserted simultaneously, based on the amount 
of data stored. In the simulated scenarios, the duration of the 
split period ranged from 133 milliseconds to 217 milliseconds. 
The efficacy of the method was evaluated using 512 records of 
varying file sizes (1 MiB, 2 MiB, 5 MiB, and 10 MiB) and 
different workloads, represented by the number of clients (1, 8, 
and 32 clients) working simultaneously. In essence, the 
splitting procedure is applicable to the entire data collection, 
whereby the data are divided into two portions and transferred 
to a distinct server.  

The time required for the splitting process, depends on the 
configuration of the network and the volume of data being 
transported. The time required for this process can be estimated 
by considering the amount of data to be transported and the 
available throughput. The primary criterion was the amount of 
data sent. The storage space was divided into two sections: the 
first section contains the complete set of data, while the second 
section holds the locator, which serves as a reference to the 
data key. Figure 2 presents three distinct scenarios, each 
characterized by a varying number of clients (1, 8, and 32) and 
record sizes. The results demonstrate that the proposed strategy 
accurately predicts the splitting time for each scenario, with a 
few milliseconds of precision, while maintaining stability. 

 

 
Fig. 2.  A scenario with 512 records inserted. 

Tables ΙΙ and ΙΙΙ show the insertion of 512 records, with and 
without accounting for the average splitting time, respectively. 
Upon reaching its maximum capacity, a node will undergo a 
split. Therefore, the insertion of the 513th record will be 
postponed until the completion of the split and insertion 
processes, as nodes undergo a split at the 512th insertion. If the 
split time is 133 ms and the insertion time is 44.75 ms, the total 
time would be 177.75 ms, as demonstrated in (2): 

�� =
∑ ��

�
���

�
     (2) 

where Ti is the insertion time, ti is the insertion time by record 
and R the number of inserted records. 

TABLE II.  INSERT TIME FOR DIFFERENT BODY SIZE WITH 
SPLIT TIME 

Body Size 1 MiB 2 MiB 5 MiB 10 MiB 

1 client 106.95 212.103 531.199 1056.25 
2 clients 173.54 273.3 653.66 1291.83 
4 clients 255.109 385.015 840.57 1617.25 
8 clients 374.95 627.21 1660.03 3165.53 

16 clients 821.34 1378.93 3678.4 7174.093 
32 clients 1902.25 2911.93 9095.062 12953.000 

TABLE III.  INSERT TIME FOR DIFFERENT BODY SIZES 
WITHOUT SPLIT TIME 

Body Size 1 MiB 2 MiB 5 MiB 10 MiB 

1 client 106.4305 211.5522 530.6521 1055.676 
2 clients 172.9619 272.7688 653.0194 1291.256 
4 clients 254.4957 384.4173 840.0388 1616.707 
8 clients 374.1922 626.4678 1659.327 3164.729 
16 clients 820.6408 1378.094 3677.822 7173.515 
32 clients 1901.645 2911.11 9094.382 12952.15 

 
Time lost, due to inserting a single record is equal to the 

sum of the insertion time and the split time, when the latter is 
divided among the 512 insertions as evidenced in (3). 
Therefore, the system will pause for approximately 0.25 ms for 
each record, which is roughly 133 ms divided by 512 
insertions. 

����, �� =
∑ ������∗���

���

�
    (3) 

where ts is a split time record and S is the number of split 
operations. The mean split time is taken into account in the 
insertion times for a set of records (R), as outlined in (2) and 
(3). Table IV demonstrates that this discrepancy remains 
approximately constant. 
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TABLE IV.  DIFFERENCES BETWEEN EACH INSERTION 
WITH AND WITHOUT SPLIT TIME 

Body Size 1 MiB 2 MiB 5 MiB 10 MiB 

1 client 0.51 0.55 0.54 0.57 
2 clients 0.57 0.53 0.64 0.57 
4 clients 0.61 0.59 0.53 0.54 
8 clients 0.75 0.74 0.70 0.80 
16 clients 0.69 0.83 0.57 0.57 
32 clients 0.60 0.82 0.67 0.84 

 
The results of the simulation exhibit that the proposed 

approach's split process is reliable and efficient for large-file 
storage systems. Furthermore, the split process ceases only 
upon the insertion of the initial layer of the split node, while the 
second layer continues to operate uninterrupted. To ascertain 
the efficacy of the solution introduced in comparison to 
alternative systems, this study conducted an experiment where 
the average time spent was measured by inserting 512 records, 
each containing a 1 MiB blob. Figure 3, illustrates the 
reduction in insertion time for MongoDB with one and three 
Mongos, respectively. 

 

 
Fig. 3.  512 records of 1 MiB file size insertions. 

Figures 4-6 depict the same simulations as those of Figure 
3, but with files of varying sizes (1, 2, 5, and 10 MiB). They 
present the efficiency of the system in processing file insertions 
rapidly, whether using one or three Mongos, in comparison to 
MongoDB. 

 

 
Fig. 4.  512 records of 2 MiB file size insertions. 

 
Fig. 5.  512 records of 5 MiB file size insertions. 

 
Fig. 6.  512 records of 10 MiB file size insertions. 

Figure 7 portrays the insertion of 512 entries for a single 
client with one mebibyte (MiB) file size, demonstrating the 
rapid response to insertion requests. The graphical 
representations manifest that the insertion occurred at the point 
of splitting. 

 

 
Fig. 7.  512 records of 10 MiB file size insertions for one client. 

The configuration of clients allows for the input of multiple 
records, each of which is composed of 1 MiB. It is imperative 
that all insertions occur on the same server, specifically server 
0. To achieve this, a scenario is established for each client, and 
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the triggers for these scenarios are identified in order for the 
waiting period and the split process to be determined. The 
system is designed to accommodate multiple insertions from a 
range of client counts with optimal efficiency. Upon reaching 
its capacity, a server node undergoes a rapid splitting process. 
In case an insertion request coincides with the splitting time, 
the system requires only a brief additional interval of a few 
milliseconds to complete the insertion. This constitutes a 
significant advantage over traditional systems, which require 
for operations to be halted until the splitting process is 
complete. The latter typically takes a considerably longer time. 

V. CONCLUSION AND FUTRURE WORK 

Range Partitioning Scalable Distributed Two-Layer Data 
Structures (RP* SD2DS) data store is scalable, distributed and 
supports range queries, improving both availability and 
scalability. It uses the RP* access technique within an SD2DS 
structure, optimizing the system for efficient data handling. The 
system consists of two tiers: one that stores keys with locators 
pointing to data in the second tier, improving availability 
during the partitioning process. It also expands dynamically 
without the need for a coordinator or master node. The RP*-
SD2DS achieved superior performance over MongoDB in 
terms of record insertion for different numbers of clients (1, 2, 
4, 8, 16 and 32), regardless of whether one or three Mongo 
instances are used. Future work must focus on extending RP*-
SD2DS to handle large and complex multidimensional data. 
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