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ABSTRACT 

A Gas Turbine (GT) is a combustion engine that converts fuel into mechanical energy. None of the 

conventional models has utilized the stator hub, rotor tip leakage, and inter-stage flow for the optimum 

design of GT. This study performs an effective design parameter analysis for GT with heat transfer rate 

and fluid flow detection using Betadecay with cloglog-based Long Short-Term Memory (Beta-clog2-LSTM) 

and Griewank Siberian Tiger Optimization (G-STO). Initially, the design parameters were taken and the 

geometry of those parameters was created. Afterward, mesh generation was performed using the Linear 

Weighted Gradient Smoothing Sliding Mesh Interface (LWGSSMI). Then, the boundaries of the generated 

mesh were detected. Next, numeric modeling was performed deploying Finite Element Analysis (FEA), 

followed by flow behavior analysis. The optimal parameters were selected by G-STO. Similarly, the data in 

a heat transfer rate dataset were preprocessed and the features were extracted. Prediction of heat rate was 

performed using Beta-clog2-LSTM. Finally, the thermal loss was calculated, and a heat exchanger was 

utilized to mitigate it. The performance analysis demonstrated the robustness of the proposed method by 

achieving 0.98 prediction accuracy. 
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I. INTRODUCTION  

A Gas Turbine (GT) is an internal combustion engine that 
converts fuels, such as natural gas or fluids, to mechanical 
energy [1, 2]. This mechanical energy is then used to drive a 
generator to produce electrical energy and power machinery, 
such as an aircraft engine [3]. GT is widely emplloyed in power 
generation, aviation, and marine propulsion. GT operates in 
three phases: compression, combustion, and expansion. Fuel is 
first drawn into the GT through an inlet and then passed 
through a compressor. Compression aims to increase air 
pressure and make it more reactive with the fuel in the 
combustion stage [4]. Then, compressed air enters the 
combustion chamber, where fuel is also injected. In the 
chamber, the fuel is mixed with high-pressure air [5]. The fuel-
air mixture is then ignited using some ignition sources. 
Combustion occurs by releasing a large amount of heat energy, 
which results in high-temperature and high-pressure 
combustion gases. Combustion aims to convert the chemical 
energy of the fuel into thermal energy in the form of hot and 
high-pressure gases [6]. A high temperature or heat is produced 
as an outcome of the combustion of fuel in the presence of 
compressed air. Thus, transferring the heat generated is an 
essential step in enhancing the GT durability. Furthermore, 
managing the heat generated in GT is crucial for efficient and 
safe operation [7]. High-pressure gases expand rapidly as they 
exit the combustion chamber [8]. These gases flow through the 

turbine, which consists of multiple stages of blades and vanes 
mounted on a shaft [9]. The expansion of gases drives the 
turbine blades, which in turn convert thermal energy into 
mechanical energy [10]. Mechanical energy from the rotating 
turbine shaft is used to drive GT in a closed loop and other 
machinery, such as an electrical generator or a propulsion 
system in an aircraft [11]. After passing through the turbine, the 
exhausted gases lose their energy due to work on the turbine 
blades and are expelled through an exhaust outlet [12]. In 
combined-cycle power plants, these exhaust gases can be 
utilized to produce steam for additional power generation, 
which improves the overall efficiency of the GT [13].  

In GT, flow irreversibility is an inherent loss that occurs 
during energy conversion and prevents complete recovery of 
the input energy [14]. Therefore, analyzing and mitigating fluid 
flow issues is essential. In [15], a model was developed to 
analyze the flow irreversibility and heat transfer effects on 
turbine efficiency. Aerodynamic and aerothermal efficiency 
expressions were employed to assess the shaft power with the 
heat transfer effect. The experimental analysis showed that this 
model was effectively used to develop reduced-order fluid 
machinery models. However, this model had thermal losses. A 
Computational Fluid Dynamics (CFD) simulation model was 
introduced to analyze the activating processes of the rotor 
dynamics of a horizontal axis wind turbine [16]. The 
momentum analysis theory and the blade element momentum 
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model were deployed to predict the power generation rate. The 
evaluation findings exhibited that this model achieved better 
results, even in the low wind speed range. However, this model 
was inefficient during unsteady flow behavior.  

In [17], a small-scale single-stage axial flow turbine model 
was presented for organic Rankine cycle application. Turbine 
pressure ratios and working fluids were analyzed through 
energy analysis and optimization with low computational 
intensity. The analysis showed that this model effectively 
enhanced the overall loss coefficient of the turbine. However, 
this model did not accurately predict the heat transfer rate. A 
non-axisymmetric end wall with non-axisymmetric contouring 
and GT purge flow was demonstrated in [18]. This model 
utilized aerodynamic loss, film cooling effectiveness, and the 
heat transfer coefficient as the objective function for aero-
thermal optimization. The experimental results stated that this 
model significantly reduced the aerodynamic loss of GT. 
However, this model had increased the thermal load of the rear 
part on the end wall. In [19], a data-driven model was 
implemented for the conjugate heat transfer analysis of a GT 
vane. In this model, an experimental database of film cooling 
units was employed under multiple parameters to analyze the 
heat transfers of GT. The evaluation results revealed that this 
model achieved high heat rate prediction accuracy. However, it 
was time-consuming due to the utilization of a complicated 
cooling structure.  

In [20], a high-temperature rotor blade model of a heavy 
GT was presented to analyze the rotation effect on flow and 
heat transfer [20]. The composite inner cooling structures of the 
rotor blades were modeled by coupling heat transfer 
simulation. The analysis disclosed that this model had 
increased the slope of the limiting streamline, which had a 
decisive influence on the heat transfer rate. However, the 
complexity of the model was high due to the detection of flow 
and heat transfer in the rotation state. In [21], a Bayesian model 
was introduced to analyze the 2D inverse heat transfer problem 
of GT discs, estimating both the upstream and downstream disc 
surfaces. A maternal covariance matrix was employed with the 
Gaussian prior distribution to evaluate the Bayesian model. The 
results manifested that the model had robust performance in 
detecting the problem of inverse heat transfer with better 
accuracy. However, data quality affected Bayesian results. In 
[23], a topology of the vortex structure and heat transfer 
analysis was employed on the internal tip of the GT blades. 
Delta-Winglet Vortex Generators (DWVG) were arranged at 
multiple tip locations to analyze the common-flow-up and 
common-flow-down configurations. The results showed that 
the common-flow-down configuration significantly enhanced 
the heat transfer rate. However, this model had slower 
execution due to the limited capacity of the heat transfer 
structure.  

In [23], the internal surface of the tip wall was developed 
with a DWVG for the flow behavior and heat transfer rate 
analysis of GT blades. A smooth internal cooling channel was 
considered as the baseline and the fluid flow was identified by 
topological analysis in the skin friction field. The evaluation 
results exhibited that this model robustly achieved better heat 
transfer augmentation. However, adjusting the leading edge 

spacing in DWVG significantly affected the heat transfer 
performance. In [24], a hydrogen-fueled GT model was 
presented for the precool and intercool analysis of a 
compression system, integrated with heat management 
concepts using Liquid-Hydrogen2. Brayton cycle-based 
turbofans and staggered tube compact heat exchangers were 
deployed in this model. The experimental evaluation of this 
model demonstrated that specific fuel consumption was 
improved, enhancing the effectiveness of the heat exchanger. 
However, the reduction in the Mach number of the external 
airflow led to pressure dropout in the heat exchanger. 

Several studies analyzed the heat transfer rate and fluid 
flow in GTs using CFD, FEA, Conjugate Heat Transfer (CHT), 
heat balance methods, thermodynamic cycle analysis, Multi-
Disciplinary Optimization (MDO), and various Machine 
Learning (ML) and Deep Learning (DL) models [25, 26]. 
However, these models had some thermal losses, which in turn 
reduced the GT's efficiency. The current study proposes an 
effective heat transfer rate and fluid flow analysis on GT design 
parameters using Beta-clog

2
-LSTM and G-STO. 

A. Problem Statement 

 A multi-stage optimum design for a typical cycle gas 
turbine, considering the stator hub, rotor tip leakage, and 
inter-stage flow, was not investigated in any previous study. 

 The adiabatic process in [15] was free from aerodynamic 
losses. However, it was not free from thermal losses, which 
degraded the potential efficiency of the turbine. 

 The heat transfer rate in [17] was not accurately predicted, 
which was the key factor in designing the cooling system, 
as the wall absorbed some heat from the flow of the fluids. 

 Due to the non-fully irreversible process of the flow across 
the mixing plane, errors might have occured in previous 
studies. 

 The conventional Moving Reference Frame (MRF) method 
in [16] was inefficient during unsteady flow and blade-
vortex interactions that took place at a high tip speed ratio. 

B. Objectives 

 Effectively employ optimal designs of stator hub, rotor, and 
inter-stage. 

 Detect the thermal losses by EPC-FLS. 

 Accurately predict the heat transfer rate using Beta-clog
2
-

LSTM. 

 Reduce the error across the mixing plane by calculating the 
shear stress in CFD and FEA. 

 Accurately capture the unsteady flow by the proposed 
LWGSSMI. 

II. METHODOLOGY 

The heat transfer rate and fluid flow of the GT were 
analyzed using Beta-clog2-LSTM and G-STO methods. The 
design parameters for the stator hub, rotor, and inter-stage were 
analyzed and optimized utilizing G-STO. Subsequently, the 
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heat rate prediction was performed deploying Beta-clog
2
-

LSTM. Figure 1 shows the architecture of the proposed 
framework. 

 

Fig. 1.  Architecture of the proposed framework. 

A. Design Parameter Initialization 

Initially, the design parameters of the stator hub, rotor, and 
inter-stage are defined. The design parameters of the stator hub ���  are the stator blade numbers, blade angle, and blade 
profile. For the rotor ���, the design parameters are the blade 
profiles, lean stacking line, twist stacking line, and rotor blade 
numbers. Also, the parameters used for designing inter-stage ��� are the geometry of the inter-stage passage and the sealing 
between stages. Thus, the total design parameters ��� used to 
design the GT are described as: 

� � �� ⊕ � ⊕ �
    (1) 

Then, based on �, the GT is further designed by analyzing 
and optimizing the parameters. Afterwards, the parameters are 
inputted into the CFD simulation. 

B. CFD Simulation 

The CFD simulation is implemented to generate the GT 
model with �  to analyze the fluid flow process by creating 
geometry models, mesh generation, and boundary detection. 
The CFD simulation process is described as follows. 

1) Geometry creation 

This is a process to define and develop the three-
dimensional shapes and configurations of �. Geometry creation 
describes the control sections and blade stacking line in �. The 
created geometry of � is denoted as ���. 

2) Mesh Generation 

Afterwards, the mesh of ��� is generated using 
LWGSSMI. The conventional Sliding Mesh Interface (SMI) 
captures the intricate interaction between the stationary and 
rotating parts in a turbine. The complex interaction information 
helps to understand the pressure fluctuations, boundary layer 
effects, and flow separation around blades or vanes in the 
turbine. However, the distorted mesh in SMI can produce 
inaccurate outcomes. To overcome this issue, a linear weighted 
gradient smoothing function is employed. At first, the 
LWGSSMI process decomposes the computational domain of ���  into stationary and rotating parts. Then, the fluid's flow 

through ��� is governed by the Navier-Stokes equation as in 
[27]. 

�̂ ⋅ ���� � �� ⋅ ∇�� � �� ∇� � �∇�� � �  (2) 

where � denotes the velocity vector, � is the fluid density, �  
and �  represent the pressure and kinematic viscosity, 
respectively, �  denotes time, �  represents the body force of ��� , and �̂  denotes the linear weighted gradient smoothing 
function. Then, the mesh is generated as stationary (stator 
mesh), rotating (rotor mesh), and interface mesh between the 
stator and rotor. 

3) Boundary Detection 

Then, the boundary of   is determined using the Deep 
Boundary Detection Algorithm (DBDA). DBDA can 
effectively detect the edges or boundaries within a distributed 
system. The boundary of   is detected based on the following 
steps: 

1. Initially, the nodes, which are the slides of  , are initialized 
with their own data �!� and position �"� information. Thus, 

the data value is represented as !�. 

2. The nodes communicate with the neighbor nodes �#�  to 
share the local data. 

3. Each node performs local computation to detect if the node 
is lying on a boundary by using gradient calculation and 
thresholding process. The gradient �$�  is computed to 

determine the changes in !� as in [28]. 

$!� � %&'&()� , &'&+)�,    (3) 

where - and  . indicate the axis of the gradient. Then, the 

magnitude of the gradient /0$!�01 is compared with the 

threshold �2�, represented as in [28]. 

0$!�0 � 3%&'&()�,� � %&'&+)�,�
   (4) 

4 � 56�/0$!�0 7 21, �ℎ9: 49;<9, =�ℎ9>?6<9    (5) 

where 4 indicates the boundary.  

4. The boundary nodes collaborate to refine the detected 
boundaries by exchanging boundary information to achieve 
the global consensus, illustrated as: 

��@A� � �BCA� /��@ � ∑ �E@E∈B 1  (6) 

where �  denotes the boundary status, ;  denotes the 
iteration, and G denotes one neighbor node. 

5. Finally, each node reports the �  to the aggregation node. 
Thus, using the above process, the boundary of the 
generated   is detected. Hence, the CFD simulation model �!� is effectively designed. 
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C. Numerical Modeling 

Subsequently, ! is numerically verified utilizing FEA based 
on   and 4 . The partial differential equation is employed to 
define the modeling problem. Then, the domain is divided into 
subdomains called finite elements. Then, the stiffness matrix 
and load vector of   are estimated. The boundary conditions 
from 4 are applied to enforce the known forces of GT. Finally, 
the shear stress �H� is calculated to minimize the error in the 
GT design, defined as in [27]. 

H � � I�IJ     (7) 

where K denotes the distance, and � is the dynamic viscosity. 
Then, the flow behavior of the fluids in the error-minimized 
GT design �9� is further analyzed. 

D. Flow Behavior 

The flow behavior �L� of 9 is analyzed using the Directed 
Graph (DG). The DG is also known as a digraph in which the 
edges of the graph are represented with an arrow indicating the 
direction of one vertex to another. The DG is described as: 

L � �MN, O��     (8) 

where MN and  O indicate the number of nodes and edges in 9, 
respectively. Thus, the flow behavior of the fluid is effectively 
attained from DG. 

E. Parameter Optimization 

The parameters ! and  L  are optimized using G-STO and 
combined, indicated as ℘ . The traditional Siberian Tiger 
Optimization (STO) incorporates two phases that mimic the 
hunting behavior of Siberian tigers. STO is deployed to 
optimize the design parameters because it provides an effective 
balance between the exploration and exploitation phases. 
However, STO gets stuck in local optima, so it might not give 
better solutions. To mitigate this problem, the Griewank 
function is used in the exploration phase. Let, the input for G-
STO be ℘, which is described as the population of Siberian 
tigers. The process of G-STO is described as follows: 

1. Initialization: At first, the population of the Siberian tigers 
is initialized as: 

℘ � �℘�, ℘�, . . . . . . . . , ℘R
   (9) 

where ℘ denotes the number of Siberian tigers in the 
population. Then, the initial position �S�  of the Siberian 
tiger in the search place �T� is determined as in [29]. 

SUV,I = ;I + W × ��I − ;I� (10) 

where SUV,I
 denotes the Z�[  position of the \�[  Siberian 

tiger in T, W represents the random number, and �I  and  ;I 
denote the upper and lower boundaries of T. The fitness �]� 
of the Siberian tigers is determined as the minimum �^6:� 
systematic error �ℏ� and gross error �"9�, as: 

] = ^6:℘`
�ℏ, "9
    (11) 

2. Prey hunting: The position of the Siberian tiger changes to 
hunt the prey. Based on ], the position of the Siberian tiger 

is updated in the first exploration phase to attack the prey 
as: 

SU,�V,I = SUV,I + W ⋅ /a − W ⋅ SUV,I1   (12) 

where SU,�V,I
 denotes the new position of the Siberian tiger in 

the first phase and a represents one Siberian tiger. This new 
position is updated only after analyzing the fitness of the 
Siberian tiger in that new position, and it is described as: 

SUV,I = bSU,�V,I , 6�]/SU,�V,I1 > ]/SUV,I1
SUV,I , 9;<9   (13) 

where ]/SU,�V,I1  and ]/SUV,I1 denote the fitness of the 

Siberian tiger in the new and old positions, respectively. 
Next, based on the chase process to hunt the prey, a new 
position for the Siberian tiger is estimated as: 

SU,�V,I = SUV,I + c⋅/�de@d1
f     (14) 

where SU,�V,I
 denotes the new position of the Siberian tiger in 

the second phase and g denotes the number of iterations.  

3. Fighting with bear: Based on the attack and conflict 
between the bear and the Siberian tiger, the exploitation 
phase is categorized into two stages. In stage 1, one 
member from the population is selected by using the 
Griewank function [30], described as: 

h = �
ijjj ∑ hk� − ∏ m=< nop

√kr + 1Ikt�Ikt�   (15) 

where 6 denotes the position of the h�[ member in T. Then, 
the new position of the Siberian tiger in the first stage of the 
exploitation phase is generated as: 

SuU,�V,I = SUV,I + W ⋅ /hUV,I − W ⋅ SUV,I1  (16) 

where SuU,�V,I
 is the new position of the Siberian tiger andhUV,I

 

denotes the position of the selected population member.  

The above process continues until the maximum iteration is 
reached. Finally, the candidate's best solution is obtained, 

which is the optimal parameter /℘v�1. 

ALGORITHM 1: PSEUDO-CODE FOR G-STO 

Input: Parameters �℘� 
Output: Optimal parameters/℘v�1 
 

Begin 

Initialize Population �℘�,], iteration �g�, T, and 
upper ��� and lower �;� bounds 
For each ℘ do 
  Initialize position 

  Formulate ] = ^6:℘`
�ℏ, "9
 

  # Hunting prey phase 

  Calculate new position based on φ, 

  SU,�V,I = SUV,I + W ⋅ /a − W ⋅ SUV,I1 
  Update new position 

  Evaluate new position based on chase process, 

  SU,�V,I = SUV,I + c⋅/�de@d1
f  

  Update new position 

  #Fighting with bear phase 
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  Estimate new position based on bear’s location,  

  SuU,�V,I = SUV,I + W ⋅ /hUV,I − W ⋅ SUV,I1 
  Update new position 

  Compute new position based on simulation of the 

  conflicts, 

  SuU,�V,I = SUV,I + c
f ⋅ ��I − ;I� 

  Update new position 

End For 

Return Optimal parameters 

End 

F. Thermal Loss Prediction 

The thermal loss is calculated using the data from the heat 
transfer dataset. Then, the heat rate is predicted first and the 
thermal losses in the heat rate are detected followed by the 
proper heat exchanger to mitigate the loss. 

1) Preprocessing 

Initially, the m number of data �ℓ� is collected from the heat 
transfer rate dataset, described as: 

ℓ = �ℓ�, ℓ�, . . . . . . , ℓx
    (17) 

Thereafter, ℓ is preprocessed using the missing value 
imputation and normalization processes. 

a) Missing Value Imputation 

The missing values in ℓ are imputed deploying the mean 
value technique. The mean �ℓy�Uz� of ℓ is taken and imputed 
to the missing place in ℓ, described as: 

ℓy�Uz � ℓ`{|
ℓ}~}      (18) 

where ℓR�y  and  ℓ�� denote the sum of ℓ and total number of 
data in ℓ, respectively. Thus, the obtained ℓy�Uz   replaces the 
missing values in ℓ , and the missing value imputed data is 

represented as ℓykR. 

b) Normalization 

The normalization of ℓykR  is performed employing the min-
max normalization technique, described as: 

� � ℓ|p`eykz/ℓ|p`1yU�/ℓ|p`1eykz/ℓ|p`1   (19) 

where ^6:  and ^\�  denote the minimum and maximum 
values, respectively, and � represents the normalized data. 

2) Feature Extraction 

From �, the features of the heat transfer coefficient of the 
fluid, Nusselt number for the fluid side, thermal conductivity, 
heat capacity ratio, mass flow rate of the cold fluid, mass flow 
rate of the hot fluid, heat transfer rate, heat transfer rate of the 
fluid, total heat transfer rate, heat transfer area for the fluid 
side, total heat transfer area, heat transfer area for the bulk side, 
mass flow rate of the fluid, relative change in heat transfer rate, 
change in heat transfer rate per unit mass flow rate, heat 
transfer coefficient for the shell side, fin efficiency, exact 
efficiency, nominal efficiency, and overall heat transfer 
resistance are extracted to train the proposed heat rate 
prediction system. The extracted features are represented as ƛ. 

 

3) Heat Rate Prediction 

Based on ƛ, the heat rate is predicted using the Beta-clog
2
-

LSTM. The traditional LSTM has a specific architecture with 
gated mechanisms that control information flow, mitigating 
vanishing gradient problems and allowing them to learn from 
longer sequences. However, LSTMs are susceptible to 
overfitting, especially with insufficient data. To overcome the 
issue, the Beta decay regularization method and the cloglog 
activation function are employed. Figure 2 depicts the structure 
of the Beta-clog

2
-LSTM. 

 

 

Fig. 2.  Structure of the proposed Beta-clog2-LSTM. 

1. Forget gate: The unused information in the previous cell 

state is removed by the forget gate /��1. ��  determines 

which data should passed through the cell by: 

�� � �� ⋅ /�� ⋅ �ℎ�e�, ƛ� � ��1  (20) 

where �  denotes the beta decay regularization, ℎ�e� 

denotes the previous hidden state, �� denotes the weight 

factor, ��  represents the bias factor, and �  denotes the 

cloglog activation. 

2. Input gate: The input gate ��k� controls the information 
that flows into the cell state ��x�, described as: 

�k � � ⋅ 2ux/�k ⋅ �ℎ�e�, ƛ� � �k1  (21) 

where �k  \:T �k denote the bias and weight factors of the 

input gate, respectively, and ��x  denotes the vector 
function of �x. 

3. Cell state: �x  is considered as the network memory to 

store the data. ��x and �x are represented as: 

��x � �\:ℎ⋅ /�x ⋅ �ℎ�e�, ƛ� � �x1  (22) 

�x � �� ∘ �xe� � �k ∘ ��x   (23) 

where �xe� denotes the previous cell state and �x and �x 
are the weight and bias terms of �x, respectively. 

4. Output gate: The output gate ���  regulates the 
information in �x  and generates the next hidden state /ℎ�1. 

� � � ⋅ /� ⋅ �ℎ�e�, ƛ� � �1 (24) 
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ℎ� � � ⋅ �\:ℎ��x� (25) 

where ℎ�  denotes the next hidden state, � denotes the 

weight factor of �, and � represents the bias factor of �. Then, the loss function��� is determined to estimate 
the reliability of the Beta-clog

2
-LSTM. Thus, �  is 

obtained with the heat rate ���. Algorithm 2 shows the 
pseudo-code for Beta-clog

2
-LSTM. 

ALGORITHM 2: PSEUDO-CODE FOR BETA-CLOG2-LSTM 

Input: Extracted features �ƛ� 
Output: Heat rate ��� 
 

Begin 

Initialize bias factor ��� and weight factor ��� 
For each ƛ do 
  Estimate forget gate function 

  Activate � � 1 − 9Ne���ƛ� 
  Formulate � � ;="/∑ 9N��ƛx�ƛt� 1 � a����ƛ� 
  Compute input gate function,  

  �k � � ⋅ 2ux/�k ⋅ �ℎ�e�, ƛ� � �k1 
  Evaluate �x � �� ∘ �xe� � �k ∘ ��x 
  Process output gate  

  Generate next hidden state,  

  ℎ� � � ⋅ �\:ℎ��x� 
  Determine � 
  If �� � <\�6<�69T�{ 
    Terminate 

  } 

  else { 

    Tune the parameters 

  } 

  End If 

End For 

Return Heat rate 

End 

 

G. Thermal Loss Detection 

The thermal loss in �  is detected using EPC-FLS. Fuzzy 
Logic Systems (FLS) are less susceptible to noise or errors in 
the input data compared to crisp logic systems. Even with 
slight variations in the inputs, the fuzzy system can still provide 
a reasonable output. This makes them robust and adaptable to 
real-world conditions, where data may not always be perfectly 
accurate. However, the specific output reached by the FLS 
system is complex because of the interplay of multiple fuzzy 
rules and membership functions. The exponential polyhedral 
conic membership function is applied to overcome this 
drawback. At first, the condition for identifying the thermal 
loss is determined as: 

� � 56�/� � ℘v�1, �ℎ9: 09;<9, �ℎ9: 1    (26) 

where 0 and  1 indicate the absence and presence of thermal 
loss, respectively. Afterwards, the fuzzification block �ℜ� of 
EPC-FLS maps the input ��� into a fuzzy value ��N� using: 

�  ℜ �⎯⎯� �N     (27) 

Then �N  is forwarded to the inference engine, and it is 
responsible for decision-making based on EPC-FLS using the 
exponential polyhedral conic membership function given as: 

� � 9���� ∗ �� ∗ �N − � �   (28) 

where �  and  �  describe the scaling parameter and threshold 
vector, respectively, �  represents the coefficient matrix, and 9��  indicates the standard exponential function. Finally, the 
fuzzy value from � is transformed into the original crisp input ��� in the defuzzification block �ℑ�, represented as: 

�  ℑ �⎯⎯� �     (29) 

The presence or absence of thermal loss is estimated from �. 
Finally, the heat exchanger �ℵ�is used to mitigate the thermal 
loss based on:  

£ � 5� � 1, �ℎ9: ℵ� � 0, =�ℎ9>?6<9   (30) 

where 1 and  0 indicate the presence and absence of thermal 
loss, respectively.  

III. RESULTS AND DISCUSSION 

The efficacy of the proposed model was compared with 
existing models. The proposed model was implemented in 
MATLAB. 

A. Dataset Description 

The heat transfer dataset was implemented to train and 
evaluate the reliability of the proposed model. The dataset [31] 
consists of 100 heat transfer rate data of the turbines. Among 
all data, 80% are used to train the proposed system, and the 
remaining 20% are used to test its efficiency. 

B. Performance Analysis 

The performance of the proposed method was analyzed and 
compared with those of the existing models. Figure 3 portrays 
the power output and the efficiency of the proposed model. 

 

 

Fig. 3.  Power and efficiency analysis of the proposed model. 

Figure 3 exhibits the whole power output from the designed 
GT and the efficiency rate of the proposed model. The output 
power from the proposed model is 48.65 MW and the 
efficiency rate is 42.9%. These results were achieved by 
effective heat transfer rate prediction and mitigation of the 
thermal losses occurring on the heat rate of the GT using Beta-
clog

2
-LSTM and EPC-FLS, respectively. 
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1) Performance Evaluation of the Proposed Beta-clog2-LSTM 

The efficiency of the proposed Beta-clog
2
-LSTM was 

compared with that of existing models, such as Long Short-
Term Memory (LSTM), Deep Neural Network (DNN), 
Convolutional Neural Network (CNN), and Artificial Neural 
Network (ANN). 

(a) 

 

(b) 

 

Fig. 4.  Performance evaluation of the proposed Beta-clog2-LSTM method 

based on (a) sensitivity, specificity, and accuracy and (b) precision, recall, and 

F-measure. 

The proposed model effectively reduced the overfitting 
issue in the conventional model by employing the cloglog 
activation function. The proposed Beta-clog

2
-LSTM achieved 

98.56% sensitivity, 98.91% specificity, 98.55% accuracy, 
98.9% precision, 98.56% recall, and 99.01% f-measure values. 
The other existing models had significantly lower performance 
measures, proving the robustness of the proposed model. 

TABLE I.  FPR AND FNR ANALYSIS 

Technique FPR FNR 

Proposed-Beta-clog2-LSTM 0.007185 0.00678 

LSTM 0.009292 0.00815 

DNN 0.01463 0.01348 

CNN 0.01894 0.01812 

ANN 0.02577 0.02678 

TABLE II.  NPV AND MCC ASSESSMENT 

Methods NPV MCC 

Proposed-Beta-clog2-LSTM 0.9841 0.9879 

LSTM 0.9581 0.9683 

DNN 0.9286 0.9361 

CNN 0.9156 0.9058 

ANN 0.8867 0.8931 

 
Tables I and II illustrate the False Positive Rate (FPR), 

False Negative Rate (FNR), Negative Predictive Value (NPV), 
and Matthews Correlation Coefficient (MCC) analysis of the 

proposed Beta-clog
2
-LSTM and existing models. The FPR, 

FNR, NPV, and MCC of the exiting LSTM were 0.009292, 
0.00815, 0.9581, and 0.9683, respectively. However, the 
proposed model had FPR, FNR, NPV, and MCC of 0.007185, 
0.00678, 0.9841, and 0.9879, respectively. This robust 
performance is achieved using the beta decay regularization 
method, showing that the proposed model is less error-prone. 

2) Performance Assessment of the Proposed EPC-FLS 

The performance of the proposed EPC-FLS and that of 
other existing models, such as Triangular FLS, FLS, Adaptive 
Neuro-fuzzy Inference System (ANFIS), and Decision rule 
were also evaluated, as evidenced in Figure 5. 

 

 
Fig. 5.  Performance of the proposed EPC-FLS. 

The performance of the proposed was better than that of the 
existing models, as the proposed EPC-FLS reduced the 
complexity of the conventional model by using the exponential 
polyhedral conic membership function. Thus, the proposed 
model took a minimum time of 1345 ms, 1247 ms, and 1568 
ms for fuzzification, defuzzification, and rule generation, 
respectively. Decision rule took 5111 ms, 4960 ms, and 4999 
ms time for fuzzification, defuzzification, and rule generation, 
which are considerably longer than the minimum time taken by 
the proposed model. 

3) Performance Analysis of the Proposed G-STO 

The performance of the proposed G-STO was analyzed and 
compared with that of traditional models, such as STO, Sea 
Horse Optimization (SHO), Ant Colony Optimization (ACO), 
and Scalp Swarm Optimization (SSO). Figure 6 shows a fitness 
vs. iteration analysis. The proposed G-STO dynamically 
overcame the local optima solution problem in the conventional 
STO model and achieved minimum systematic and gross error 
values. For 20 iterations, the fitness of the proposed G-STO 
was 0.21245, while the existing SSO had 0.3451. For 50 
iterations, the fitness of the proposed and existing SSO models 
was 0.123 and 0.26456, respectively. The other models 
achieved higher error values than those of the proposed model. 
Thus, the fitness of the proposed model was more effective. 

C. Comparative Analysis with Related Works 

A comparative analysis of the proposed model and previous 
studies was carried out on the heat transfer rate and fluid flow 
analysis of a GT. 
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Fig. 6.  Fitness vs. iteration analysis. 

TABLE III.  COMPARATIVE ANALYSIS WITH RELATED 
WORKS 

Ref. Objective Methodology 
Power 

(MW) 

Efficiency 

(%) 

Proposed 
Heat transfer and fluid flow 

analysis of GT 

Beta-clog2-

LSTM 
48.65 42.9 

[32] 
Dynamic simulation of GT 

for heat recovery 

Graphical 

modular 

modeling 

11.35 - 

[33] 

Heat Transfer 

intensification in radial 

channels of GT blades 

Asymmetric 

method 
- 33 

[34] 

Performance optimization 
and exergy analysis of 

thermoelectric heat 

recovery system for GT 

Thermoelectric 

system 
10.5 - 

[35] 

Optimal structure design of 

supercritical carbon dioxide 

power cycle for GT waste 

heat recovery 

Super-structure 

optimization 

model 

46.36 21.47 

[36] 

Finite physical dimensions 

thermodynamics analysis 

and design of closed 

irreversible cycles for GT 

Finite physical 

dimensions 

thermodynamics 

- 35 

 
Table III provides a comparative analysis of the proposed 

and related works. Previous works utilized several methods, 
such as graphical modular modeling, asymmetric method, 
thermoelectric system, super-structure optimization model, and 
finite physical dimensions thermodynamics to analyze the 
efficiency of GT. The proposed model effectively overcame the 
limitations of traditional models with 48.65 MW power output 
and 42.9% efficiency. Other models, such as those presented in 
[32] and [33], had only 11.35 MW power and 33% efficiency, 
respectively. Similarly, the other models also attained lower 
output power and efficiency than the introduced one. 

IV. CONCLUSIONS 

This study proposed a significant GT modeling framework 
based on design parameter optimization along with heat 
transfer rate identification and fluid flow effect analysis. The 
reliability of the proposed model was proven by implementing 
it in MATLAB. The experimental analysis revealed that the 
proposed Beta-clog

2
-LSTM model achieved 98.55% and 

99.01% detection accuracy and f-measure, respectively. The 
proposed EPC-FLS takes a minimum time of 1345 ms, 1247 
ms, and 1568 ms for the fuzzification, defuzzification, and rule 

generation of thermal loss detection, respectively. The fitness 
of the proposed G-STO was also better than that of existing 
models, showing that it is less error-prone. The overall analysis 
proved the robustness of the proposed model in designing a GT 
model with minimum error and maximum efficiency. The 
proposed model designed a GT model by optimizing the 
parameters and also predicting the heat rate and thermal losses. 
In the future, the efficiency of the model introduced will be 
improved by analyzing the turbine's fuel mass flow and rotation 
speed to realize the power balance using 3D CFD. 
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