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ABSTRACT 

Detecting liver tumors in large heterogeneous datasets is vital for accurate diagnosis and treatment to be 
performed. However, existing segmentation models struggle with multimodal tumor detection, variability 

in tumor shapes, over-segmentation, and noise in border regions. These issues lead to inconsistent and 

inaccurate results. The current study introduces a novel multiclass ensemble feature extraction and 

ranking-based deep learning framework to address these challenges. This framework efficiently identifies 

key tumor regions with a high true positive rate and maintains runtime efficiency, making it suitable for 

real-time liver tumor detection. Comparative evaluations using diverse liver imaging databases 

demonstrate the framework's superiority over existing models in terms of various classification metrics 
and runtime efficiency. These results highlight the framework's potential for enhancing real-time liver 

tumor detection applications. 
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I. INTRODUCTION  

Liver and tumor image segmentation is an exciting research 
area that relies on collaboration between engineers and 
physicians. Utilizing medical imaging techniques offers 
invaluable insights for diagnosing and planning treatments for 
liver diseases, including tumor detection [1]. Collaborations 
extend across research institutes to effectively address 
biomedical research problems. Diverse hardware and software 
solutions have been developed to analyze biomedical data, with 
medical imaging playing a pivotal role in various fields of 
research and therapy. Researchers analyze images of different 
modalities, employing contemporary visualization methods [2]. 
Traditional approaches to identifying abnormal growths within 
the liver, such as tumors, require significant human 
involvement, leading to time constraints, especially for large 
populations. Thus, an automated method becomes imperative 
for timely liver tumor detection. Analyzing the functional 
insufficiency of liver cancer patients involves identifying the 
location and type of cancer lesions. The accurate classification 
of liver cancer types by clinicians for appropriate treatment 
heavily depends on early and precise lesion examination [3]. 

The primary objective of diagnostic methods is to detect cancer 
presence and accurately delineate cancerous tissue types.  

Currently, physicians use various imaging modalities to 
diagnose and treat liver cancer. Computed Tomography (CT) 
scans are an affordable and widely employed technique for 
identifying cancerous regions. CT scans offer excellent spatial 
resolution and can comprehensively examine the entire liver in 
a single slice, which makes them optimal for abdominal 
diagnostics. Advanced CT technologies, such as helical CT and 
multi-detector row helical CT, have emerged, providing 
superior picture resolution and faster image acquisition 
compared to typical CT scanners, thereby enhancing diagnostic 
capabilities in liver tumor imaging research. In liver anatomy 
research, diverse CT images provide researchers with valuable 
insights, facilitating precise analysis. Medical imaging is an 
integral part of diagnostic methods, where clinicians employ 
computer-aided processes to guide the monitoring of disease 
progression [4-6]. The analysis of medical images is essential 
for accurate identification and prediction of malignant cells. 
Biomedical image segmentation, a complex domain within 
image processing, plays a crucial role. Segmentation divides 
images into uniform sections based on intensity attributes, 
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aiding in the detection of tumors and pathological 
abnormalities in organs. 

Image segmentation helps physicians accurately identify 
lesions, which is crucial for early cancer detection in oncology. 
Conventional manual segmentation techniques often fail to 
identify the smallest areas within CT scans. Therefore, the use 
of automated segmentation algorithms is imperative for precise 
cancer lesion detection during CT scan data processing [7]. 
Previous studies have focused extensively on CLIVER systems 
for identifying cancerous lesions in liver CT scans. Various 
segmentation approaches, including edge-based, region-based 
[8], thresholding [9], and clustering-based [10] methods, have 
been presented. Figure 1 shows different shapes and 
orientations of liver tumors in large databases. 

 

 
Fig. 1.  Different shapes and orientations of liver tumors in large databases. 

In the realm of liver and tumor image segmentation, 
methods leveraging edge or contour detection often utilize 
statistical and geometrical active shape models. A liver 
segmentation technique, combining the level set method with 
the watershed transform, achieved a segmentation accuracy of 
92% [11]. The vibrating level setting method has displayed that 
employing a maximum number of filters produces superior 
segmentation results [12]. An automated Computer-Aided 
Design (CAD) method focused on diagnosing liver disorders, 
including cysts, hemangiomas, hepatocellular carcinoma, and 
focal metastatic liver disorders using ultrasound images [13]. 
Liver disorders and malignancies can be distinguished in 
ultrasound pictures [14]. Region-based segmentation 
algorithms group pixels based on similar properties, employing 
either region-growth or region-splitting approaches. Volumetric 
region growth deploys automated 3D seed point selection with 
threshold values for automatic stop conditions [15]. In [16], a 
confidence-connected region growth approach was proposed to 
autonomously segment liver and cancer lesions on CT images, 

evaluating results against manual segmentation using various 
measurement factors. In [17], three semi-automatic seeded 
region-growth methods were presented for liver tumor 
segmentation: 2D region-growing with constraints, 
proportional learning with 2D voxel classification, and 
Bayesian rule with 3D region-growing. In [18-19], different 
methods for breast cancer detection were introduced. 

This study proposes a dynamic multivariate multi-region 
tumor filtering approach for feature extraction and tumor 
segmentation on a real-time database. 

II. MULTI-VARIATE LIVER AND TUMOR 
SEGMENTATION AND CLASSIFICATION 

A. Multivariate Liver Data Filtering 

In liver image analysis, liver image filtering is substantial 
for feature selection, denoising, and compression. Sparse 
filtering works well in eliminating sparse noise, but frequently 
misses intricate relationships and data structures. This is 
addressed by Multi-variate Non-linear Gaussian Estimation 
(MNGE), which makes it possible to describe non-linear 
relationships by estimating the parameters of a non-linear 
Gaussian model. MNGE can be combined with sparse filtering 
to produce a non-linear Gaussian model with sparsity. 

To appropriately describe the distribution of liver image 
data, the method begins with the estimation of non-linear 
Gaussian parameters using MNGE. After sparse noise has been 
eliminated, sparse filtering is applied to keep important features 
and eliminate unnecessary ones, improving the accuracy of 
further analysis. Depending on the features of the dataset and 
the intended results, several techniques are followed to 
implement MNGE and sparse filtering. For MNGE, these 
techniques include variational Bayesian or expectation-
maximization algorithms, while for sparse filtering, they entail 
L1 regularization or sparse coding. This combination method 
improves the detection of liver diseases and hepatic image 
analysis for better diagnostic results. Liver image filtering 
increases the accuracy of analysis by removing features and 
noise from liver image datasets. The steps involved in the 
filtering process are listed below. 

1) Initialize Variables 

Input: Liver image dataset �, initial parameters �0. 

Initialize: Normalized Laplacian Graph (NLG) calculations, 
observed and expected frequency calculations. 

2) Calculate Normalized Laplacian Graph (NLG) 

For each numerical feature � in �:NLG = max{�∣�≤�}, 
where � is a user-defined parameter. 

3) Probabilistic GMM 

For non-fatty liver samples, the probability that a tumor's 
characteristics (si) belong to the GMM is represented by the 
GMM as_nf(si, Θnf). It is calculated by adding together the 
weighted Probability Density Functions (PDFs) of every GMM 
component. The weight (wnf, k), mean (μnf, k), and covariance 
(σnf, k, k) are assigned to each component k. 

4) GenerateProbabilityMap Function 
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1. Based on the entered non-fatty liver samples, the 
function optimizes the GMM parameters (Θnf) utilizing 
the optimize GMMParameters function (using 
expectation maximization). 

2. The probability values linked to each tumor are stored 
in a blank 3D array called the probability map. 

3. Each tumor in the volume has its features extracted 
deploying the extractFeatures function. 

4. Next, by employing the calculateGMMProbability 
function, the probability (probabilitynf) of the tumor 
features corresponding to the GMM nf is determined. 

5. The probabilitynf value is assigned to the matching 
tumor in the probability map. 

6. Finally, the log probability estimate for each image is 
returned. 

5) Multilevel Kernel Coefficient Index 

The purpose of a multilevel kernel-correlation coefficient 
index for image filtering is to extract complex features that are 
highly informative for tasks such as disease identification or 
texture analysis. The kernel-correlation coefficient index serves 
as a foundational building block for this purpose, measuring the 
similarity between two sequences and providing a way to 
capture intricate patterns in the image data. This is particularly 
useful for identifying subtle variations in tumor textures or 
colors that may be indicative of a tumor condition. The kernel-
correlation Kc(p,q) is given by: 

��	,�(
) = ∑ ��
���� (�)�∗(� − 
)  (1) 

where p and q are two sequences of size s samples, and l is the 
lag variable. The local adaptive kernel block image descriptor 
is : 

���(�, �) = ∑ ∑ �
 �!
��"

#�!
	�" ($, %)&local 

∗ ($ − �, % − �) (2) 

where  �local 
∗ ($ − �, % − �)  is the conjugate complex of the 

local adaptive kernel at position ($ − �, % − �). 

The goal is to extract complex features from these images 
that can be highly informative for tasks such as disease 
identification or texture analysis. In other words, the objective 
is to analyze tumor images to identify patterns or characteristics 
that may indicate a tumor. The kernel-correlation index can 
achieve these objectives. It is a mathematical function that 
measures the similarity between two sequences. In this context, 
it is used to capture intricate patterns in tumor image data. It is 
particularly useful for identifying subtle variations in tumor 
textures or colors, which can be indicative of a tumor 
condition. The local adaptive kernel block image descriptor is 
utilized to describe image content locally. It involves 
computing a sum of products between the input image I and a 
local adaptive kernel K_ at different positions. 

B. Multivariate Feature Extraction Measure 

1) Multivariate Gaussian Mixture Model (GMM) Features 

1. Initialize Variables. 

Input: Tumour features �$, GMM parameters Θnf. 

Initialize: Probabilities 'nf(�$, (nf, σnf). 

2. Calculate PDF. 

For each component ) in GMM:  

�*�+ = ,(-, (+, .+)   (3) 

3. Compute the weighted sum of PDFs. 

Compute probability ' for block region features: 

' = .++ = /+ ⋅ �*�+   (4) 

4. Optimize GMM parameters. 

Using expectation maximization: 

123 ∗= 456�4-123789 = :;;23(�9; 123) (5) 

2) Generative Probabilistic Map Features 

1. Initialize variables. 

Input: Non-fatty liver samples. 

Initialize: GMM parameters Θnf, empty probability 
map. 

2. Optimize GMM Parameters, using the 
optimizeGMMParameters function. 

3. Calculate the probability for each tumor. 

For each tumor in the volume: 

�5=>4>$
$?@23 =  

�4
�A
4?B:;;'5=>4>$
$?@(?A�=A5CB4?A5B�, 123)  

4. Update the probability map. 

Assign probabilitynf to the corresponding tumor in the 
probability map. 

C. Multivariate Feature Ranking Algorithm 

Accurate identification and segmentation of liver tissue is 
made possible by multivariate joint probabilistic feature 
extraction approaches, which are essential in liver picture 
segmentation. These techniques enable precise segmentation by 
extracting pertinent characteristics using probabilistic models. 
A well-known method is the Hidden Markov Model (HMM), 
which shows a liver picture as a series of observable 
characteristics and hidden states. The underlying structure of 
the liver image is captured by hidden states, and the pixel 
values match the detected features. HMM efficiently divides 
liver tissue into discrete sections by computing the probability 
distribution of hidden states given the detected data. The Theta-
regulated Gaussian Mixture Model (TGMM) is another notable 
technique. TGMM treats the liver image as a mixture of 
Gaussian distributions, each of which represents a distinct kind 
of liver tissue. To accurately segment tissues, it computes the 
liver image's probability distribution based on the detected 
features. 

Furthermore, the Markov Random Field (MRF) model with 
theta control is employed for probabilistic feature extraction. 
This model views the liver image as a graph, in which the 
pixels are nodes and the edges stand in for spatial interactions. 
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Given the observed features, the MRF model determines a 
likelihood function and a prior distribution to compute the 
probability distribution of the image. The likelihood function 
evaluates the adherence to the prior distribution, whereas the 
prior distribution includes statistical features and spatial 
arrangement. By combining these components, the liver tissue 
is precisely segmented by the MRF model. 

Using probabilistic models and distributions to improve the 
identification and segmentation of liver tissue, these 
probabilistic feature extraction techniques are extremely 
helpful in the segmentation of liver images. 

1) Adaptive Kernel Gray Level Co-occurrence Matrix 

(KGLCM) 

In the context of image analysis, the adaptive KGLCM 
method is deployed to capture complex texture patterns within 
an image. This method is particularly adaptive, adjusting its 
parameters based on the local characteristics of each pixel in 
the image. For each pixel, the method considers a local region 
around it, the size and orientation of which are determined by 
adaptive distance and direction parameters. These parameters 
are chosen based on the local spatial scale and texture 
orientation at each pixel, making the method highly sensitive to 
local variations. Within this local region, the method computes 
a matrix that captures the co-occurrence of intensity values 
between the central pixel and its neighbors. This matrix serves 
as a feature descriptor that encapsulates the local texture and 
intensity variations around each pixel. The adaptive nature of 
this method makes it highly versatile and effective for tasks 
that require capturing subtle and complex patterns, such as 
identifying tumors in medical images. 

D. Multi-Variate Multi-Level Boosting Classifier 

1) Proposed NL-SVM U-Net Model 

The UNet architecture combined with a non-linear Support 
Vector Machine (SVM) is a powerful framework for liver 
tumor segmentation. This approach uses the strengths of deep 
learning for feature extraction and the robustness of SVM for 
classification, resulting in improved accuracy and efficiency. 

a) Encoder Path 

The encoder path follows a typical convolutional network 
structure. The convolutional layer applies convolution 
operations employing the ReLU activation function, and max 
pooling is utilized to down-sample the feature maps. Let X be 
the input image, and Fi be the feature maps at the $

th
 layer.  

C9 = FB�G(H=�I(C9 − 1))   (6) 

b) Decoder Path 

The decoder path reconstructs the image using up-
sampling. Up-sampling increases the resolution of the feature 
maps, concatenation is deployed to combine the up-sampled 
features with the corresponding features from the encoder path, 
and the convolutional layer applies convolution operations. Let 
Ui be the up-sampled feature maps at the $th layer, and Ci be the 
concatenated feature maps: 

G9 = G�K4��
B(G9 L 1)   (7) 

H9 = H=��4?(G9 , C9)    (8) 

c) Feature Extraction 

After the UNet processes the input image, a high-
dimensional feature vector H is obtained from the final layer of 
the encoder path. This feature vector serves as the input to the 
SVM classifier. 

M = G,B?(N)    (9) 

d) Non-Linear SVM 

The SVM classifier is trained to distinguish between tumor 
and non-tumor regions using the extracted features. 

III. EXPERIMENTAL ANALYSIS 

The 3D Image Reconstruction for Comparison of 
Algorithm Database (3DIRCADB) was used. The former is 
known for its diversity and complexity in liver and lesion 
images and consists of CT scans from different patients with a 
significant number of slices and expert segmentations provided 
by radiologists [20]. 

 

 
Fig. 2.  Comparative analysis of the proposed LT segmentation-based 

classification approach and existing models using F-measure for noisy lesion 

detection on different heterogeneous images. 

 
Fig. 3.  Comparative analysis of the proposed LT segmentation-based 

classification approach and existing models using accuracy for noisy lesion 
detection on different heterogeneous data. 

The F1 measure balances precision and recall in 
classification tasks. With an F-score of 96.7%, the proposed 
model performed best, successfully detecting and capturing 
liver tumors. With a 95.5% F1-score, the GFANet model 
exhibited good performance, indicating its efficacy in reducing 
false positives and negatives. The DT model obtained an 
impressive 93.7% F1 score, while the SVM model achieved 
94.6%, demonstrating balanced precision and recall. The KNN 
model was reasonably accurate, although it had a slightly lower 
F1 score of 93.2%. 

In classification tasks, accuracy measures the percentage of 
accurate predictions. With an accuracy of 96.4%, the proposed 
model was the most successful in detecting liver tumors. The 
GFANet model demonstrated reliability in liver tumor 
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identification, as it achieved 95.47% accuracy, followed by the 
SVM model at 95%. Despite being marginally less accurate 
than the others, the KNN model disclosed competence with an 
accuracy of 94%. With 93% accuracy, the DT model did well 
but trailed behind the others. 

The capacity to distinguish positive cases from real 
positives is measured by evaluating different models according 
to their recall. With a recall of 96.8%, the proposed model was 
the best at detecting positive cases. The efficacy of GFANet 
and SVM was further evidenced by their strong recall values of 
95.2% and 95%, respectively. Even with recall scores of 
93.4%, KNN and DT demonstrated a high potential in 
detecting affirmative cases. These results show that while all 
models displayed reasonably good recall scores, indicating 
their efficacy in detecting liver tumors, the proposed model 
performed better in lesion detection than the other models. 

 

 
Fig. 4.  Comparative analysis of the proposed LT segmentation-based 

classification approach and existing models using recall for noisy lesion 
detection on different heterogeneous data. 

 
Fig. 5.  Comparative analysis of the proposed LT segmentation-based 

classification approach and existing models using precision for noisy lesion 

detection on different heterogeneous data. 

The proposed model had the best precision score of 96.5%. 
It was particularly good at detecting liver tumors and making 
accurate positive predictions. With a precision of 95.2%, 
GFANet also achieved good performance, demonstrating its 
efficacy in reducing false positives. With a precision of 
95.13%, the SVM model demonstrated its ability to make 
accurate positive predictions. The KNN model achieved a 
precision of 93.6%, which was just below the top models. With 
a precision of 93.13%, the DT model was marginally less 
precise than the others, but it nevertheless demonstrated 
competency. 

As evidenced in Figures 6 and 7, the proposed model 
performed well in detecting liver tumors, showing an error rate 
of 3.2% and an impressive accuracy of 96.8% with a fast 

runtime of 1934 ms. GFANet attained a 4% error rate, or 96% 
accuracy, with a respectable runtime of 2014 ms, designating it 
as a reliable choice. The SVM model manifested dependability 
in liver tumor diagnosis even with a 5% error rate and a slightly 
longer duration of 2132 ms. The KNN and DT models both 
showed error rates of 7%, but the former was marginally faster 
at 2043 ms. 

 

 
Fig. 6.  Comparative analysis of the proposed LT segmentation-based 

classification approach and existing models using error rate for noisy lesion 
detection on different heterogeneous data. 

 
Fig. 7.  Comparative analysis of the proposed LT segmentation-based 

classification approach and existing models using runtime (ms) for noisy 
lesion detection on different heterogeneous data. 

IV. CONCLUSION 
This study proposed a novel multiclass ensemble feature 

extraction and ranking deep learning architecture that enables 
real-time liver tumor diagnosis. The proposed model excelled 
in statistical metrics and runtime performance, addressing 
issues such as multi-modal tumor identification and 
segmentation noise. These findings demonstrate its potential 
for real-time detection of liver tumors, promising better 
diagnosis and treatment across diverse datasets. By improving 
tumor detection precision, the proposed framework promotes 
clinical practice and medical imaging. More studies in the 
detection and treatment of liver cancer could improve patient 
outcomes and healthcare delivery. 
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