
Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16242

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

Distributed Streaming Storage Performance
Benchmarking: Pravega and Pulsar

Ramesh Kadaba Vasudevamurthy

Airspan Networks, Visvesvaraya Technological University, Belagavi, India
kvramesh@gmail.com (corresponding author)

G. T. Raju

Department of Computer Science and Engineering, SJC Institute of Technology, Visvesvaraya
Technological University, Belagavi, India
gtraju1990@yahoo.com

Received: 10 June 2024 | Revised: 27 June 2024 | Accepted: 5 July 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8076

ABSTRACT

Massive data shoving can reach the greatest throughput, which is necessary for distributed streaming

storage to function at its best. The comparison of the distributed streaming storage systems Pulsar and

Pravega for a given number of producers and data packet size is covered in detail in this study. This

analysis' benchmark tool accommodates several producers and consumers. When connection pooling is

enabled and 0.5 million records are thrust at a 10 Mbps data rate, both streaming storages are assessed for

latency percentile comparison. A novel idea called sbk-charts is introduced in the current study, which can

create practical charts from CSV files. Multiple CSV files can be joined by sbk-charts to construct a single

combined xlsx file with helpful charts. The outcomes of the experiment are then evaluated for performance

comparison in a number of dimensions.

Keywords-benchmarking, throughput; Pravega; Pulsar; storage benchmarking kit; latency; connection

pooling

I. INTRODUCTION

Pravega [1, 2] and Pulsar [3] are two distributed streaming
platforms that offer dependable real-time data processing and
storage. While their architectures, functionalities, and use cases
are somehow similar, they differ significantly. Choosing
between them depends on certain factors, including the
necessity for robust ordering, preferred data models, integration
requirements, and the platform ecosystem [4]. This study
conducts a thorough set of tests to determine the performance
comparison between Pulsar and Pravega. In all scenarios, SBK
is utilized to push data to the two storage systems under test.

II. STORAGE BENCHMARK KIT

An open-source software framework for measuring storage
performance and providing real-time analytics on any type of
storage system is the Storage Benchmark Kit (SBK) [5]. It is
written in Java with some of its utilities developed in Python.
Popular storage systems can be measured for performance
using SBK. Any payload, including strings, byte arrays, and
byte buffers, can be used with SBK. SBK does performance
measurements with precision in ms, μs, and ns deploying any
time stamp. Throughput, different latency percentiles, and
Grafana [6] graphs are produced by SBK to facilitate simple
visual analysis of performance statistics. Given that SBK is
very scalable in terms of CPU and memory, greater system

resources on an SBK server will result in higher performance
metrics. SBK also provides a framework to add any new
storage systems. The Gradle command on SBK creates a
template where the developer must fill in the read/write Java
APIs for the new storage system. The SBK application has the
below variants:

 SBK-YAL (Argument Loader): It takes the yml file as
argument which will have all the arguments fed in.

 SBK-RAM (Results Aggregation Monitor): It runs in a
GRPC server, collects the performance results from
multiple SBK instances, and produces consolidated
throughput and latency values along with graphs.

 SBK-GEM (Group Execution Monitor): It combines SBK
RAM and SBK. In the former the SBK instances can be just
executed on multiple hosts with a single SBK-GEM
command.

The SBK operates in 4 different modes.

 Burst Mode: In this mode, SBK pushes/pulls the messages
to/from the storage client (device/driver) as much as
possible. This mode is used to find the maximum
throughput that can be obtained from the storage device or
storage cluster (server). This mode can be utilized for both

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16243

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

writers and readers. By default, the SBK runs in the Burst
Mode.

TABLE I. PULSAR - PRAVEGA COMPARISON

 Pravega Pulsar

Architecture

Built on top of Apache
Bookkeeper. Uses streams

which are unbounded sequences
of events that can be written to
and read from. Supports high

write and read throughput.

Designed on concepts of topics
and subscriptions. Uses Apache
Bookkeeper [7] for storage and

Apache Zookeeper [8, 9] for
coordination. Supports multi-

tenancy to manage workload on
same cluster.

Data model

Provides a byte-oriented
storage model, where data are
written and read as a sequence

of bytes. Supports arbitrary
payload formats and gives users

full control over the data
representation

Supports both byte-oriented and
message-oriented storage

models. In the message-oriented
model, data are encapsulated in

messages with metadata, making
it easier to work with structured

data and enforce schema
validation.

Durability

and

consistency

Offers strong durability
guarantees by persisting data to
multiple BookKeeper nodes. It
ensures that data are reliably

stored and available even in the
event of failures. Supports
exactly once processing

semantics, which provides
consistency guarantees for data

consumption

Provides similar durability
guarantees by storing data in the

Apache BookKeeper, which
replicates data across multiple
nodes. It supports at-least-once
message delivery semantics by

default, but it also provides
mechanisms for achieving

exactly once semantics through
deduplication

Ecosystem

and

integration

Relatively smaller ecosystem.
Provides client libraries in

multiple programming
languages and supports

integration with Apache Flink
[10], Apache Samza [11], and

other stream processing
frameworks

Vibrant and growing ecosystem.
Offers a wide range of client
libraries, including Java and

Python, C++. Pulsar integrates
well with popular stream

processing frameworks like
Apache Flink, Apache Beam,

and Apache Spark.

Use cases

Suitable for scenarios that
require precise ordering of
events and strong durability

guarantees. It is well-suited for
event sourcing, real-time

analytics, and applications that
require high-throughput data

ingestion and processing

Suitable for various use cases,
including real-time messaging,
event-driven architectures, IoT

data ingestion, and microservices
communication

 Throughput Mode: In this mode, the SBK
pushes/pulls/from the messages to the storage client
(device/driver) with specified approximate maximum
throughput in terms of MB/s. This mode is implemented to
find the least latency that can be obtained from the storage
device or storage cluster (server) for given throughput.

 Rate Limiter Mode: This mode is another form of
controlling writers/readers throughput by limiting the
number of records per second. In this mode, the SBK
pushes/pulls the messages to/from the storage client
(device/driver) with specified approximate maximum
records per sec. This mode is used to find the least latency
that can be obtained from the storage device or storage
cluster (server) for events rate.

 End to End Latency Mode: In this mode, the SBK writes
and reads the messages to the storage client (device/driver)
and records the end-to-end latency. End-to-end latency
means the time duration between the beginning of the

writing event/record to stream, and the time after reading
the event/record. In this mode, the user must specify both
the number of writers and readers. The -throughput
(Throughput Mode) or -records (late limiter) options can be
used to limit the writer's throughput or records rate.

III. COMPARISON SETUP DETAILS

Pravega container clusters were run on an Ubuntu server
having 4 cores and 32 GB RAM with 2 TB Disk space storage.
Once the containers are instantiated, the cluster status can be
checked with: docker-compose up –d. Pulsar docker was run on
the same Ubuntu server. It was made sure that Pravega docker
containers are terminated when the Pulsar docker standalone
container is running. This way it was certified that the host
environments for Pulsar and Pravega were the same.

TABLE II. SYSTEM COMPORENTS AND VERSIONS

Component Remarks

SBK Version 5.1
Pravega Version 0.13.0
Pulsar Version 3.1

Zookeeper Version 3.6.1
Bookkeeper Version 4.16.3

Grafana version 9.0.6
Host server: Pravega/Pulsar 4 cores and 32 GB RAM, 2 TB disk

Running Pulsar docker: docker run -it -p 6650:6650 -p
8080:8080 apachepulsar/pulsar:latest bin/pulsar standalone

Running Pravega docker-compose result can be seen in
Figure 1.

Fig. 1. Running Pravega docker-compose result.

SBK was running on a Virtual Machine, which has the
allocation of 4 cores and 4 GB RAM. The monitoring tools
Grafana and Prometheus were running as docker containers in
the same Virtual Machine.

SBK connecting Pravega for traffic ingesion: docker run -p
192.168.1.14:9718:9718/tcp kmgowda/sbk:latest -class
Pravega -controller tcp://192.168.1.13:9090 -writers 1 -size
1000 -seconds 60

SBK connecting Pulsar for traffic ingestion: docker run -p
192.168.1.12:9718:9718/tcp kmgowda/sbk:latest -class Pulsar
-broker tcp://192.168.1.13:6650 -partitions 1 -writers 1 -size
1000 -seconds 60

The SBKs Throughput Mode and End-to-End Latency
Modes of Pravega and Pulsar were compared. For each run of
both storage systems, the data payload has been changed by ten
times and the necessary performance metrics have been
obtained. In one set of comparisons, the throughput attained
and delay were measured for the 50–90% for single versus ten

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16244

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

producers. The latency on both storage types was assessed and
throughput mode tests were run on 0.5 million records with 10
producers, 10 K bytes of payload, and a consistent throughput
of 10 Mbps.

IV. RESULTS AND DISCUSSION

A. Single Producer: Throughput with Different Data Payload
Sizes

The SBS-chart snippets of the results with Single Producer
can be evidenced in Figures 1 and 2.

(a)

(b)

(c)

(d)

(e)

Fig. 2. Throughput of Pulsar single producer data size for (a) 10, (b) 100,
(c) 1000, (d) 10000, (e) 100000 bytes.

(a)

(b)

(c)

(d)

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16245

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

(e)

Fig. 3. Throughput of Pravega single producer data size for (a) 10, (b)
100, (c) 1000, (d) 10000, (e) 100000 bytes.

TABLE III. SINGLE PRODUCER THROUGHPUT
COMPARISON

Pulsar Throughput (M/s) Data size Pravega Throughput (M/s)

2 10 2.67
18.64 100 20
104 1000 42
115 10000 40
122 100000 22

In Figure 4, the y-axis is the throughput in Mbps and the x-
axis represents the data payload size in bytes.

Fig. 4. Single produced analysis.

Figures 2 and 3 indicate that for lower data payload sizes,
such as 10 and 100 bytes, the throughput values are almost the
same, with Pravega values being slightly higher. When the
payload size increases, it can be noticed that the throughput
values were being increased more than two to three times. For
example, at 100000 payload size, Pulsar gives 122 Mbs
compared to the merely around 22 Mbps of Pravega. Clearly
the throughput values in the case of Pulsar for higher data
payload sizes are better.

B. Single Producer: Latency Comparison with Different Data
Payload Sizes

Figures 5 and 6 manifest the latency measurements for 50-
90% for different data sizes for Pulsar. Tables IV and V
tabulate the results.

(a)

(b)

(c)

(d)

(e)

Fig. 5. Latency of Pulsar single producer data size for (a) 10, (b) 100, (c)
1000, (d) 10000, (e) 100000 bytes.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16246

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

(a)

(b)

(c)

(d)

(e)

Fig. 6. Latency of Pravega single producer data size for (a) 10, (b) 100, (c)
1000, (d) 10000, (e) 100000 bytes.

TABLE IV. PULSAR SINGLE PRODUCER RESULTS

50% 60% 70% 80% 90% Data size

4 5 6 8 9 10
4 5 6 8 9 100
8 9 10 12 16 1000

71 74 79 83 153 10000
725 908 1038 1158 1265 100000

TABLE V. PRAVEGA SINGLE PRODUCER RESULTS

50% 60% 70% 80% 90% Data size

120 135 154 200 288 10
225 245 268 344 390 100
346 396 448 497 608 1000
476 654 683 700 744 10000

5709 6602 6813 6869 7177 100000

Fig. 7. Single producer latency summary- Pulsar.

Fig. 8. Single producer latency summary- Pravega.

When assessing the from 50 to 90% levels, the latency
values for Pravega are in the range from 120 ms to 600 ms,
whereas for Pulsar they are less than 20 ms for smaller data
payload sizes, such as 10, 100, and 1000 bytes. The 10000
pulsar latency ranges from 70 to 153 ms, whereas the Pravega
latency ranges from 400 to 750 ms. When a payload size of
100,000 is used, the highest latency for Pulsar is 1265 ms,
whereas for Pravega it is 7177 ms. One commonality between
the two scenarios is that when comparing payload sizes of
10,000 and 100,000, there is a significant increase in both
cases. It is evident that the latency numbers of Pulsar are
significantly better for all data payload sizes.

C. Ten Producers: Throughput with Different Data Payload
Sizes

Tests were conducted with different data payload sizes with
10 producer configurations on Pravega and Pulsar storage
systems. Figures 9 and 10 and Table VI display the results. In
Figure 11, the y-axis represents the throughput in Mbps and the
x-axis denotes the data payload size in bytes.

As it would be expected, Figures 9-10 reveal that the
throughput rose for numerous producers. This anticipated
behavior is seen in the case of Pulsar, however when Pravega is
taken into account, the numbers drop when compared to single
producer throughput figures. Another finding is that throughput

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16247

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

is lower for payload sizes of 100,000 than it is for payload sizes
of 10,000 in the Pulsar instance. A minor rise appears to have
occured in Pravega's speed ranging from 28 Mbps to 36 Mbps.
It can be stated that Pravega performs marginally better in
multi-producer cases, but only for very large payload sizes.

(a)

(b)

(c)

(d)

(e)

Fig. 9. Pulsar 10 producers throughput data size for (a) 10, (b) 100, (c)
1000, (d) 10000, (e) 100000 bytes.

(a)

(b)

(c)

(d)

(e)

Fig. 10. Pravega 10 producers throughput data size for (a) 10, (b) 100, (c)
1000, (d) 10000, (e) 100000 bytes.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16248

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

Fig. 11. Ten producers throughput summary.

TABLE VI. TEN PRODUCER THROUGHPUT COMPARISON

Pulsar Throughput (M/s) Data size Pravega Throughput (M/s)

6.67 10 0.45
51 100 1.6
82 1000 16
98 10000 28
57 100000 36

D. Ten Producers: Latency with Different Data Payload Sizes

The results can be evidenced in Figures 12-15 and Tables
VII-VIII.

(a)

(b)

(c)

(d)

(e)

Fig. 12. Pulsar 10 producers latency. Data size: (a) 10, (b) 100, (c) 1000,
(d) 10000, (e) 100000 bytes.

(a)

(b)

(c)

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16249

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

(d)

(e)

Fig. 13. Pravega 10 producers latency. Data size: (a) 10, (b) 100, (c) 1000,
(d) 10000, (e) 100000 bytes.

TABLE VII. PULSAR 10 PRODUCER LATENCY

50% 60% 70% 80% 90% Data size

11 12 15 18 22 10
14 16 19 23 27 100
108 121 146 158 171 1000
721 780 829 884 1245 10000

12600 12870 12901 13207 14186 100000

TABLE VIII. PRAVEGA 10 PRODUCER LATENCY

50% 60% 70% 80% 90% Data size

11 12 15 18 22 10
14 16 19 23 27 100
108 121 146 158 171 1000
721 780 829 884 1245 10000

12600 12870 12901 13207 14186 100000

Fig. 14. Pulsar 10 producers latency summary.

For smaller data payload sizes (10, 100, and 1000 bytes),
the latency values of Pulsar are between 11 and 170 ms,
whereas those of Pravega are between 3300 and 4800 ms.
According to Figures 14 and 15, pulsar latency for 10,000 data
size is between 700 and 1200 ms, whereas for Pravega, it is
from 8000 to 11000 ms. When a payload size of 100,000 is
used, the maximum latency for Pulsar is 14,000 ms, whereas
for Pravega it is 17,000 ms. Clearly, Pulsar's latency statistics

are significantly superior than those of Pravega for all data
payload sizes.

Fig. 15. Pravega 10 producers latency summary.

E. Latency for 0.5 Million Record Writes

Tests were carried out writing 0.5 million records at a rate
of 10 Mbps while the data payload size was being varied.
Charts and documented percentile values for Pulsar and
Pravega with 10 producers and connection pooling enabled can
be observed in Figures 16-24.

Figure 16 shows that the latency levels of Pulsar are very
low for the 5- 50 percentile levels (around 5 ms). Figure 17
discloses that the latency slightly increases to 20 ms until the
95 percentile and reaches 160 ms for the 99.99 percentile
levels. The same can also be pinpointed in Figures 18 and 19
where 5 s intervals were captured for all the percentile levels in
the Pulsar case.

Fig. 16. Pulsar latency 5 to 50 percentile.

Fig. 17. Pulsar latency 50 to 99.99 percentile.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16250

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

Fig. 18. Pulsar latency 5 to 50 percentile per 5 s intervals.

Fig. 19. Pulsar latency 90 to 99.99 percentile for 5 s intervals.

Fig. 20. Privega latency 5 to 50 percentile.

Fig. 21. Privega latency 50 to 99.99 percentile.

Figure 20 demonstrates that the 5-50 percentile latency
levels of Pravega are extremely low, ranging from 40 to 100
ms. As can be seen in Figure 21, the latency increases
marginally to 400 ms at the 95 percentile and exceeds 2000 ms
at the 99.99 percentile. The same is noticed in Figures 22 and
23, where 5 s intervals were recorded for each percentile level
in the Pravega scenario. It is evident that Pravega has
significantly greater latency levels than Pulsar when writing 0.5
million records at a 10 Mbps writing speed. Connection
pooling was enabled in each of the aforementioned tests.

Fig. 22. Pravega latency 50 to 90 percentile for 5 s intervals.

Fig. 23. Pravega latency 90 to 99.99 percentile for 5 s intervals.

V. CONCLUSION

The current study presents a comparison of two open source
distributed streaming storage systems: Pravega and Pulsar. The
Common Storage Benchmarking Kit allowed us to run a
variety of test categories, including latency measurements for
writing 0.5 million records at a 10 Mbps injection rate, both for
single and multiple producer cases, and for different data
payload sizes. Regarding the resulting data metrics plotted onto
charts, suitable conclusions can be drawn from each case once
the results are analyzed. While connection pooling improves
system resilience, it also somehow lowers system performance.
Authors in [15] examined how connection pooling affects
Pravega storage. For the purpose of this study's comparative
analysis of the two storage systems, connection pooling was
enabled. The system load in which each distributed storage
system performs better is the focus of this study. To mitigate
the performance decrease that occurs when connection pooling
is enabled, more research must be considered as a part of future
research.

REFERENCES

[1] "Pravega – A Reliable Stream Storage System." https://cncf.pravega.io/.

[2] "pravega/pravega," https://github.com/pravega/pravega.

[3] "Apache Pulsar." https://pulsar.apache.org/.

[4] N. V. Sanjay Kumar and K. Munegowda, "Distributed Streaming
Storage Performance Benchmarking: Kafka and Pravega," International
Journal of Innovative Technology and Exploring Engineering, vol. 9, no.
2S, pp. 1–8, Dec. 2019, https://doi.org/10.35940/ijitee.B1001.1292S19.

[5] "Release Storage Benchmark Kit Version 5.0 · kmgowda/SBK," GitHub.
https://github.com/kmgowda/SBK/releases/tag/5.0.

[6] "Dashboards | Grafana documentation," Grafana Labs. https://grafana.
com/docs/grafana/latest/dashboards/.

[7] "Apache BookKeeper." https://bookkeeper.apache.org/.

[8] "Apache ZooKeeper." https://zookeeper.apache.org/.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16242-16251 16251

www.etasr.com Kadaba Vasudevamurthy & Raju: Distributed Streaming Storage Performance Benchmarking …

[9] F. Junqueira and B. Reed, ZooKeeper: Distributed Process
Coordination. Sebastopol, CA, USA: O’Reilly, 2013.

[10] "apache/flink," https://github.com/apache/flink.

[11] "apache/samza." https://github.com/apache/samza.

[12] N. Sajitha and S. P. Priya, "Optimal Artificial Neural Network-based
Fabric Defect Detection and Classification," Engineering, Technology &
Applied Science Research, vol. 14, no. 2, pp. 13148–13152, Apr. 2024,
https://doi.org/10.48084/etasr.6773.

[13] T. Alshammari, "Using Artificial Neural Networks with GridSearchCV
for Predicting Indoor Temperature in a Smart Home," Engineering,
Technology & Applied Science Research, vol. 14, no. 2, pp. 13437–
13443, Apr. 2024, https://doi.org/10.48084/etasr.7008.

[14] H. T. S. Alrikabi, I. A. Aljazaery, and A. H. M. Alaidi, "Using a Chaotic
Digital System to Generate Random Numbers for Secure
Communication on 5G Networks," Engineering, Technology & Applied
Science Research, vol. 14, no. 2, pp. 13598–13603, Apr. 2024,
https://doi.org/10.48084/etasr.6938.

[15] K. V. Ramesh and G. T. Raju, "Pravega: Performance impact analysis
with Connection Pooling’," in 2nd IEEE International Conference on
Knowledge Engineering and Communication Systems (ICKECS 2024),
Karnataka, India, Apr. 2024.

