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ABSTRACT 

This study investigates a bone fracture classification system using deep learning algorithms to determine 

the best-performing architecture. The primary focus was on training the YOLOv8 model, renowned for its 

real-time object detection and image segmentation capabilities, as well as the VGG16 model. CNN 

architectures, known for their effectiveness in image recognition tasks, were chosen for their proven 

effectiveness in detecting bone fractures from X-ray images. Hyperparameter tuning was used to improve 

the system's ability to accurately detect and classify bone fractures. The FracAtlas dataset was utilized, 

which contains 4,083 X-ray images of fractured and non-fractured human bones. Integrating advanced 

deep learning techniques aims to assist surgeons with more accurate diagnostics. The performance of the 

developed system was evaluated against existing methods, showcasing its effectiveness in medical 

diagnostics and fracture treatment. The methodology employed, including data augmentation, extensive 

model training, and hyperparameter tuning, significantly improved the accuracy of bone fracture 

detection and classification, demonstrating the potential of deep learning models in aiding medical 

professionals with more precise and efficient diagnostics. 
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I. INTRODUCTION  

Bone fractures are a common and significant medical issue 
that often requires a precise and timely diagnosis for effective 
treatment [1]. Traditionally, fractures are detected and 
classified by radiologists who analyze X-ray images to identify 
their presence and type. However, this process can be time-
consuming and prone to human error, especially with the 
increasing volume of medical imaging data. The advent of 
Deep Learning (DL), a subset of artificial intelligence, has 
revolutionized the field of medical imaging by offering 
powerful tools for automated image analysis. DL algorithms, 
particularly Convolutional Neural Networks (CNNs), have 
demonstrated exceptional performance in various image 
classification tasks, making them well-suited for medical 
applications such as fracture classification [2]. 

This study focuses on classifying bone fractures from X-ray 
images of the hand, hip, and shoulder using two state-of-the-art 
DL techniques: YOLOv8 and VGG16. YOLOv8 is a cutting-

edge object detection model known for its real-time detection 
capabilities and high accuracy [3]. VGG16 is a renowned CNN 
model known for its depth and simplicity, consisting of 16 
layers that can extract intricate features from images [4]. This 
architecture is particularly effective in recognizing patterns and 
textures, which are crucial for distinguishing between fractured 
and non-fractured bones. This study examines the capabilities 
of YOLOv8 and VGG16 to develop a robust system, capable of 
accurately classifying bone fractures in X-ray images. 

In the realm of medical imaging diagnostics, recent years 
have witnessed remarkable progress in fracture detection and 
classification through the application of DL algorithms. In [5], 
CNNs were used for ankle fracture detection, exploring the 
effectiveness of training CNN models from scratch with a 
small dataset. This study collected 298 radiographs of non-
fractured bones and 298 radiographs of fractured ankle cases 
and created single- and multitier models to evaluate the impact 
of multiple views. The results showed that the ensemble of all 
five models achieved the best accuracy of 76% when using 
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single radiographic views. Using all three views for a single 
case, the ensemble of all models resulted in the best metrics, 
with an accuracy of 81%. In [6], the challenge of enhancing the 
efficiency and accuracy of bone fracture diagnoses was 
addressed through an automated system that employed DL 
techniques. A Deep Neural Network (DNN) was developed to 
classify bones as fractured or healthy. The model, developed 
using Python and Keras, incorporated an architecture that 
included convolution, pooling, flattening, and dense layers, 
specifically designed for binary classification tasks. This model 
achieved a classification accuracy of 92.44% through a five-
fold cross-validation, surpassing the performance metrics of 
previous models in the field. Further improvements were 
suggested, such as the incorporation of additional features or 
techniques to enhance the accuracy and efficiency of bone 
fracture detection and classification.  

In [7], a novel diagnostic algorithm was proposed for the 
automatic detection of osteoporosis in mandible Cone-Beam 
Computed Tomography (CBCT) images. This study utilized 
120 CBCT images of women aged 50-85, classified as normal 
and osteoporotic based on the T-score derived from Dual-
Energy X-ray Absorptiometry (DEXA). The algorithm 
incorporated image processing, feature extraction, and 
classification using an Artificial Neural Network (ANN) to 
distinguish healthy and osteoporotic mandibles. This method 
demonstrated the potential to efficiently predict osteoporosis, 
reducing the need for additional examinations and aligning 
with the wide acceptance of CBCT in dentistry. In [8], a 
diagnostic model for COVID-19 was proposed using advanced 
DL methods. This study employed wavelet analysis and Mel 
Frequency Cepstral Coefficients (MFCC) for feature 
extraction, along with Support Vector Machines (SVM) for 
classification. The dataset comprised 2400 chest X-ray images, 
split equally between normal and COVID-19 cases, sourced 
from public datasets to validate the effectiveness of the model. 
This approach offered a promising supplement to traditional 
COVID-19 diagnostic methods, demonstrating high accuracy 
in rapid diagnosis of the disease. 

In [9], a machine learning method was developed to 
identify and classify hip fractures, and its performance was 
compared to that of experienced human observers. A dataset of 
3659 hip radiographs was used, which were classified by 
expert clinicians. The results showed that the proposed method 
achieved an overall accuracy of 92%, surpassing the accuracy 
of human experts by 19%. This study highlighted the potential 
of machine learning to improve fracture classification and its 
impact on patient outcomes and treatment costs. In [10], 20 
different fracture detection procedures were compared on the 
Gazi University Hospital's dataset of wrist X-ray images. The 
results were examined from different perspectives, and six 
different ensemble models were developed to improve the 
detection results. The dynamic R-CNN model achieved the 
highest results, with an accuracy of 77.7%. 

In [11], an innovative method was proposed for detecting 
and classifying bone fractures using advanced DL techniques. 
Pre-trained deep neural networks, namely ResNeXt101, 
InceptionResNetV2, Xception, and NASNetLarge, were used 
to analyze X-ray images. The impetus behind this approach 

stems from the critical need in emergency medical settings for 
accurate and rapid fracture diagnosis, an area where traditional 
methods often fail. A diverse array of DL models was used, 
leading to notable improvements in the accuracy and efficiency 
of fracture classification. The dataset was composed of various 
X-ray images, meticulously selected to represent a wide range 
of bone fractures, such as simple, complex, and compound 
fractures. The InceptionResNetV2 model achieved an 
impressive accuracy of 94.58%. In [12], a method for detecting 
fractures in X-ray images was presented, with a particular focus 
on long-bone fractures. This approach involved modifying the 
Faster R-CNN DL algorithm and integrating a significant 
advancement through a rotated bounding box to accurately 
identify fracture locations. The impetus behind this innovation 
was to enhance fracture detection accuracy, addressing the 
diverse types and locations of long-bone fractures. Complex 
mathematical techniques, such as the Rotated Discrete 
Curvature System (RDS) and the shape directory, were 
employed to improve the precision of identifying fractures. The 
modified model achieved a high accuracy rate of 96.1%, 
demonstrating its efficacy in improving fracture detection and 
laying the groundwork for future advancements in the area.  

In [13], a model was proposed to address the significant 
challenge of hip fractures in the elderly. Recognizing the 
limitations of existing fracture registries, which often rely on 
inaccurate billing and procedural codes, a deep learning-based 
solution was proposed that analyzed 18,834 conventional 
radiographs from 2,919 patients. This model was an ensemble 
of deep learning architectures, including ResNet, VGG, 
DenseNet, and EfficientNet, designed to improve hip fracture 
detection accuracy. This model achieved accuracy between 
92% and 100% across various submodules, significantly 
reducing the time required for image annotation compared to 
traditional methods. In [14], data augmentation was used to 
improve the performance of the YOLOv8 algorithm in 
detecting pediatric wrist traumas. 20,327 X-ray images of 
pediatric wrist injuries made up the training dataset, and after 
augmenting the data, they became 28408 images. Compared to 
the Adam optimizer, the model's accuracy was higher using the 
SGD optimizer. Future plans called for expanding the 
application's usage to novice pediatric surgeons in developing 
nations and launching it on several platforms.  

In [15], an image processing system was developed, using a 
CNN architecture to diagnose bone fractures through 
automated analysis of X-ray and CT images. The results 
highlight the potential of CNN-based approaches for automated 
bone fracture detection, offering a valuable solution in the field 
of medical imaging diagnostics. In [16], a comprehensive 
investigation was presented on the feasibility of utilizing a DL-
based decision support system to address the diagnostic 
challenges associated with musculoskeletal fractures and 
enhance the detection of fractures in radiographs. The proposed 
method involved training a DL model using annotated 
musculoskeletal X-rays, specifically employing the YOLO 
architecture, and testing its performance on two datasets. The 
results showed a sensitivity (Se) of 0.910 (95% CI: 0.852-
0.946) and a specificity (Sp) of 0.557 (95% CI: 0.520-0.594), 
indicating the model's ability to correctly detect fractures. 
These findings underscore the potential of DL models to 
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improve fracture detection in radiographs. In [17], a 
sophisticated approach was presented for medical X-ray image 
classification, called Multi-Versus Optimizer with DL 
(MVODL-RMXIC). This method integrated Cross Bilateral 
Filtering (CBF) for effective noise removal, enhancing image 
quality. Feature extraction was performed using the MixNet 
architecture, which utilizes mixed depthwise convolutional 
kernels to capture a broad range of features from images. The 
Multi-Versus Optimizer (MVO) algorithm was then employed 
to optimize hyperparameters, improving model performance 
through advanced optimization techniques inspired by 
cosmological phenomena. This combination of noise reduction, 
feature extraction, and optimization significantly enhanced the 
accuracy and robustness of the image classification framework. 

TABLE I.   LITERATURE REVIEW 

Study Year Dataset Techniques Accuracy 

[1] 2019 596 radiographs of ankles CNN 81% 

[2] 2020 
100 X-ray images of 

different types of human 

bones 

(DNN) 92.44% 

[22] 2020 120 CBCT images ANN - 

[21] 2021 2400 chest X-ray images SVM - 

[3] 2022 

- 429 radiographs of non-

fractured bones 

-2,364 radiographs of 

fractured bones 

CNN 92% 

[4] 2022 
Gazi University Hospital's 

dataset + 542 images 
Dynamic R-CNN 77.7% 

[5] 2023 
Range of bone fractures 

from X-ray images 
DL 94.58% 

[6]  2023 
200 X-ray images of long 

bone fractures 
Faster R-CNN 96.1% 

[7] 2023 
18,834 conventional 

radiographs 

DL architectures, 

including ResNet, 

VGG, DenseNet, 

and EfficientNet 

92% 

[8] 2023 20327 X-ray images YOLOv8 73.4% 

[9] 2023 
100 cracked and 100 

normal bone images 
CNN 99.5% 

[20] 2023 Medical X-ray images MVODL-RMXIC - 

[10] 2024 

Combination of the 

MURA and the FracAtlas 

dataset 

YOLOv7 99.5% 

 
Some studies used limited datasets and implemented 

various algorithms to improve accuracy. These limitations 
emphasize the importance of having a large dataset and 
exploring different algorithmic approaches to achieve better 
accuracy when classifying and identifying fractures. This study 
aims to assist radiologists by providing reliable second 
opinions to reduce diagnostic errors and enhance the efficiency 
of the diagnostic process. By improving the accuracy and speed 
of fracture classification, the proposed model aims to facilitate 
timely and appropriate medical intervention, improving patient 
outcomes. 

II. METHODOLOGY 

Figure 1 shows the methodology steps, offering a clear and 
structured overview of the entire process. 

 

Fig. 1.  Methodology. 

A. Data Acquisition and Preprocessing 

This study used the FracAtlas dataset [18], which consists 
of 4,083 X-ray images showing various types of bone fractures, 
including hand, leg, shoulder, and hip fractures. This dataset 
provides annotations for tasks such as classification [19], 
segmentation, and localization, and supports multiple formats, 
including COCO, VGG, and YOLO. The dataset was split into 
training, validation, and testing sets with a ratio of 70:15:15 to 
ensure proper model evaluation. 

B. Model Development 

Comparing the classification capabilities of YOLOv8 and 
VGG-16 can provide an evaluation of their effectiveness in 
accurately identifying and classifying bone fractures from X-
ray images. These techniques have balancing strengths in 
feature extraction and object detection and also permit full-
bodied precise fraction cataloging. This comparative analysis is 
crucial to understanding the potential of these DL models in 
real-world medical diagnostics and enhancing their accuracy 
through systematic training and hyperparameter tuning. 

1) YOLO  

YOLO stands for You Only Look Once and is a widely 
used algorithm recognized for its outstanding object detection 
and classification capabilities. Its main goal is to accurately 
identify and locate objects within an image by predicting 
bounding boxes and class probabilities. The distinctive 
approach of YOLO lies in processing the entire image in a 
single pass, utilizing global context to make predictions, which 
grants it remarkable speed [20]. 

YOLOv8 is an advanced object detection algorithm in 
computer vision. It has revolutionized the field by achieving 
superior detection accuracy and real-time performance using a 
single end-to-end neural network. YOLOv8 is widely used in 
various applications, such as autonomous driving, surveillance 
systems, and robotics, where rapid and accurate object 
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detection is crucial. Its impressive performance and versatility 
have made it popular among researchers and practitioners in 
the computer vision community [21]. 

2) VGG-16 

VGG-16, or Visual Geometry Group 16, is a renowned 
deep CNN architecture, known for its simplicity and 
effectiveness in image classification tasks. With 16 layers, 
including 13 convolutional layers and 3 fully connected layers, 
VGG-16 captures complex features from input images. 
Although newer models surpass its performance, VGG-16 
remains a popular choice for transfer learning due to its strong 
feature extraction capabilities and publicly available pre-trained 
weights [19]. 

C. Training 

This study aimed to evaluate the performance of YOLO in 
detecting bone fractures. Additionally, the VGG-16 model was 
employed to perform the same task, but with classification. A 
comparative analysis can help evaluate the effectiveness of 
these models in the context of bone fracture detection and 
classification. The models were trained using the FracAtlas 
dataset, and several hyperparameters, including epochs varying 
from 20 to 50 and batch sizes of 32 for YOLOv8 and 16 for 
VGG16. 

D. Evaluation Metrics 

This study used training and validation accuracy and loss to 
compare the performance of the models. In addition, the 
confusion matrix sheds light on the classification results of 
VGG16. 

III. RESULTS 

When comparing the performance of YOLOv8 and VGG16 
based on their respective training and testing accuracies, 
several key differences emerge. Table II shows the best 
hyperparameter settings for both models. For YOLOv8, key 
parameters include an input image size of 640, 50 epochs, a 
batch size of 16, and the use of the SGD optimizer. The initial 
and final learning rates were both at 0.00001, with a 
momentum of 0.937 and a weight decay of 0.0005. These 
settings were crucial in achieving the best performance levels, 
highlighting the importance of hyperparameter tuning. 

TABLE II.  HYPERPARAMETER VALUES 

Hyperparameter Value for YOLOv8 Value for VGG16 

Input image size 640 224 

Epochs 50 40 

Batch size 32 32 

Optimizer SDG Adam 

Initial learning rate 0.00001 0.00001 

Final learning rate 0.00001 0.00001 

Momentum 0.9 - 

Weight decay 0.0005 - 

 
The results of YOLOv8 show that the model achieved its 

peak training accuracy of 81% at 50 epochs, with a 
corresponding testing accuracy of 80%. This indicates that 
YOLOv8 performs consistently well at this point, making this 
number of epochs optimal. However, as the number of epochs 
increases beyond 50, both training and test accuracies decline, 

suggesting possible overfitting or other issues affecting the 
model's performance over extended training periods. Table III 
shows the accuracies of YOLOv8 and VGG16 for different 
training epochs, learning rates, and batch sizes.   

TABLE III.  MODELS RESULTS 

Model Epochs 
Learning 

rate 

Batch 

size 

Training 

accuracy 

Testing 

accuracy 

YOLOv8 

10 0.00001 32 72.61% 73.88% 

15 0.00001 32 75.44% 76.31% 

20 0.00001 32 78.65% 78.89% 

50 0.00001 32 81% 80% 

80 0.00001 32 70.54% 72.33% 

100 0.00001 32 64.83% 62.65% 

VGG16 

10 0.001 64 37.25% 45% 

20 0.001 32 60.36% 53.96% 

40 0.001 32 64.54% 65.0% 

60 0.001 32 69.62% 69.84% 

10 0.00001 32 70.62% 72.22% 

15 0.00001 32 75.20% 72.22% 

25 0.00001 32 82.37% 72.22% 

35 0.00001 32 84.16% 72.22% 

40 0.00001 32 86.55% 70.63% 

60 0.00001 32 82.97% 69.84% 

25 0.00001 64 73.11% 66.66% 

30 0.0001 32 73.71% 72.22% 

40 0.0001 32 83.33% 73.01% 

50 0.0001 32 84.06% 71.42% 

60 0.0001 32 82.17% 71.42% 

60 0.01 32 37.45% 44.44% 

60 0.02 164 38.94% 38.01% 

30 0.02 32 38.94% 38.01% 

 
Figures 2 and 3 demonstrate the loss and accuracy for 

training and validation for YOLOv8, for different numbers of 
epochs. Initially, performance improves as the number of 
epochs increases, indicating that it is learning and capturing 
more meaningful features from the data. However, after 
reaching the peak performance at 50 epochs, accuracy starts to 
decline. This decline suggests that the YOLOv8 may have 
started to overfit the training data, meaning that it becomes too 
specialized in recognizing the training examples but fails to 
generalize well to new, unseen data. Overfitting is a common 
challenge in machine learning, and it is crucial to monitor the 
model's performance to prevent it. 

 

 

Fig. 2.  YOLOv8 validation and training loss. 
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Fig. 3.  YOLOv8 validation and training accuracy. 

The performance of the VGG16 model varies significantly 
based on the hyperparameters used during training. The results 
in Table III highlight the impact of two key hyperparameters: 
learning rate and batch size. In VGG16, lower learning rates 
generally led to improved performance. For example, when the 
learning rate was set to 0.00001, the model achieved higher 
training and validation accuracy compared to the initial 
learning rate of 0.001. This suggests that a smaller learning rate 
allows the model to converge more effectively and learn better 
representations from the data. The batch size also influenced 
the model's performance. Smaller batch sizes, such as 32, tend 
to result in better performance compared to larger batch sizes, 
such as 64. This indicates that smaller batch sizes allow the 
model to make more frequent weight updates, which can help it 
converge faster and potentially achieve better accuracy. Figure 
4 shows the training and validation accuracy of VGG16, while 
Figure 5 shows the confusion matrix of its results. Figures 6, 7, 
and 8 show some visual results of the predictions made by 
YOLOv8. Figure 6 shows the classification results for fractured 
and non-fractured hands, demonstrating the model's ability to 
accurately distinguish between these two classes. Figure 7 
presents the classification results for fractured and non-
fractured hips, further highlighting the model's precision in 
identifying fractures in different types of bones. Figure 8 
displays the results for fractured and non-fractured shoulders, 
completing the set of classifications for the primary bone 
fracture categories considered in this study. These images 
underscore the effectiveness of YOLOv8 in accurately 
detecting and classifying bone fractures from X-ray images, 
showcasing its potential in medical diagnostics. 

 

 

Fig. 4.  VGG16 training and validation accuracy. 

 

Fig. 5.  VGG16 confusion matrix. 

 

Fig. 6.  Fractured and non-fractured hands. 

 

Fig. 7.  Fractured and non-fractured hips. 

 
Fig. 8.  Fractured and non-fractured shoulders. 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16640-16645 16645  
 

www.etasr.com Alshahrani & Alsairafi: Bone Fracture Classification using Convolutional Neural Networks from … 

 

IV. CONCLUSION  

This study developed a bone fracture detection system 
using DL, specifically focusing on the YOLOv8 and VGG16 
models, unlike previous studies that specifically focused on a 
specific type of bone fracture. These results suggest significant 
advancements in accuracy compared to similar studies. After 
training for 50 epochs, the YOLOv8 model exhibited 
remarkable performance, achieving an 81% training accuracy 
and an 80% testing accuracy. Its ability to perform real-time 
object detection and image segmentation makes it highly 
suitable for medical diagnostics. In comparison, the VGG16 
model achieved a maximum testing accuracy of 73.01%. 
Although this is lower than the performance of YOLOv8, 
VGG16 still demonstrated the ability to identify fractures 
effectively. The choice of hyperparameters significantly 
influences the performance of these models. Optimal results 
were achieved with smaller learning rates and batch sizes. In 
general, YOLOv8 outperformed VGG16 in accuracy and 
consistency, making it a superior choice for real-time medical 
diagnostics. However, VGG16, despite its lower accuracy, can 
benefit from larger datasets and further hyperparameter tuning 
to enhance its effectiveness. 
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