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ABSTRACT 

This study introduces an innovative enhancement to the U-Net architecture, termed Modified DRU-Net, 

aiming to improve the segmentation of cell images in Transmission Electron Microscopy (TEM). 

Traditional U-Net models, while effective, often struggle to capture fine-grained details and preserve 

contextual information critical for accurate biomedical image segmentation. To overcome these challenges, 
Modified DRU-Net integrates dense residual connections and attention mechanisms into the U-Net 

framework. Dense connections enhance gradient flow and feature reuse, while residual connections 

mitigate the vanishing gradient problem, facilitating better model training. Attention blocks in the up-

sampling path selectively focus on relevant features, boosting segmentation accuracy. Additionally, a 

combined loss function, merging focal loss and dice loss, addresses class imbalance and improves 

segmentation performance. Experimental results demonstrate that Modified DRU-Net significantly 

enhances performance metrics, underscoring its effectiveness in achieving detailed and accurate cell image 
segmentation in TEM images. 

Keywords-U-Net; DRU-NET; dense connections; attention blocks; SEM images 

I. INTRODUCTION  

Cell image segmentation is a critical process in biomedical 
research and clinical diagnostics, providing insights into 
cellular structures and their functions [1]. Accurate 
segmentation of cell images allows detailed analysis of cell 
morphology, which is essential to understanding various 
biological processes, diagnosing diseases, and developing 
targeted therapies. The segmentation process involves 
partitioning an image into meaningful regions, typically 
isolating individual cells or cellular components from the 
background [2]. This task is particularly challenging because of 
the complexity of cell structures, variations in cell shapes and 
sizes, and the presence of noise and artifacts in the images. 
Transmission Electron Microscopy (TEM) has been a 
transformative technology in the field of cellular imaging [3]. 
TEM offers unparalleled resolution, enabling researchers to 
visualize cellular structures at the nanometer scale. This high-
resolution imaging is crucial for studying the ultrastructure of 
cells, including organelles, membranes, and macromolecular 
complexes. TEM images provide a wealth of information on 
cellular architecture and have been instrumental in advancing 
our understanding of cell biology, pathology, and the 
mechanisms of various diseases. However, the detailed and 
complex nature of TEM images also poses significant 
challenges for segmentation, necessitating the development of 
advanced image-processing techniques. 

The U-Net architecture has emerged as a powerful tool for 
biomedical image segmentation. U-Net is a type of 
Convolutional Neural Network (CNN) designed specifically 
for segmentation [4]. It features a symmetric encoder-decoder 
structure, where the encoder path captures the context of the 
image, and the decoder path enables precise localization. Skip 
connections between corresponding layers of the encoder and 
decoder paths help preserve spatial information, which is 
crucial for accurate segmentation. U-Net has demonstrated 
remarkable performance in various biomedical imaging tasks, 
including cell segmentation, due to its ability to learn from 
relatively small datasets and its flexibility in handling different 
imaging modalities. Despite its success, the U-Net architecture 
has certain limitations as it can struggle to capture fine-grained 

details and maintain contextual information over long 
distances, which are essential for the accurate segmentation of 
complex TEM images. Additionally, traditional U-Net may 
face challenges in training convergence and feature reuse, 
leading to suboptimal segmentation performance. 

To address these challenges, this study proposes a 
modification of the DRU-Net architecture, termed Modified 
DRU-Net, that integrates dense residual connections and 
attention mechanisms to enhance its segmentation capabilities. 
Dense connections, inspired by DenseNet architectures, allow 
for improved gradient flow and feature reuse by connecting 
each layer to every other layer in a feed-forward fashion. This 
dense connectivity promotes the learning of robust features and 
mitigates the problem of vanishing gradients, facilitating better 
training convergence. Residual connections are incorporated to 
further address the vanishing gradient issue and enable the 
learning of residual functions, which has been shown to 
improve the training of deep neural networks. These residual 
connections help maintain identity mappings and ensure that 
gradient information flows directly through the network, 
enhancing the overall learning process. 

In addition to dense and residual connections, the proposed 
architecture introduces attention blocks into the upsampling 
path of the DRU-Net. Attention mechanisms have gained 
popularity in various deep-learning applications due to their 
ability to focus on the most relevant parts of the input. In the 
context of image segmentation, attention blocks help the 
network selectively emphasize important features and suppress 
irrelevant ones. By incorporating attention mechanisms, 
Modified DRU-Net can effectively capture fine-grained details 
and contextual information necessary for accurate cell image 
segmentation. To further enhance the training process, a poly-
learning rate policy was employed, where the learning rate is 
dynamically adjusted based on the training progress. This 
approach helps in achieving better convergence and improving 
the model's performance. Additionally, L2 regularization is 
applied to reduce overfitting and ensure that the model 
generalizes well to unseen data. To address the issue of class 
imbalance, which is common in biomedical image 
segmentation, a combined loss function is used to combine 
focal and dice loss. Focal loss focuses more on hard-to-classify 
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examples, while dice loss ensures that the segmentation is 
accurate by maximizing the overlap between the predicted and 
ground truth masks. Combining these loss functions provides a 
robust optimization framework for training the Modified DRU-
Net. Figure 1, shows the experimental method followed. 

 

 
Fig. 1.  Workflow of the MDRU-Net validation. 

II. LITERATURE SURVEY 

Traditional image segmentation techniques before the 
advent of deep learning included thresholding, edge detection, 
region-based methods, and clustering algorithms [5]. Clustering 
methods and contour extraction were also commonly used in 
the early segmentation of biomedical images [6]. The U-Net 
architecture includes an encoder-decoder structure with skip 
connections, allowing for precise localization and context 
integration. Various enhancements have been proposed, such as 
U-Net++, which introduces nested and dense skip connections 
to further improve segmentation performance [7, 8]. Attention 
U-Net incorporates attention mechanisms to focus on relevant 
parts of the image, improving segmentation results [9]. 
Comparative studies show that variants such as U-Net++ and 
Attention U-Net offer improved performance in terms of 
accuracy and robustness, particularly for complex biomedical 
images [10]. SD-UNet is a lightweight variant designed for 
low-resource environments, maintaining high accuracy with 
reduced computational requirements [11]. Several studies have 
successfully applied U-Net and its variants to cell image 
segmentation. The U-Net_dc model significantly improves the 
segmentation accuracy of endometrial cancer cells, 
demonstrating the model's effectiveness in complex biomedical 
tasks [13]. 

Common challenges in cell image segmentation include 
varying cell shapes, overlapping cells, and low-contrast images. 
Data augmentation, advanced pre-processing methods, 
attention mechanisms, and dense connections have been 
proposed to address these issues [14]. Variants such as 
Condensed U-Net (Cu-Net) tackle high-density and variable-
shaped cells using improved pooling and convolution layers 
[15]. Different methods have been used in conjunction with U-
Net for cell segmentation, including active contour models, 
statistical shape models, and machine learning techniques [16-
19]. In [19], shape priors were used to provide robust and 
precise cell segmentation. Used for capturing anatomical 
variability, these models enhance segmentation accuracy in 
various biomedical applications. Performance metrics such as 
accuracy, precision, recall, specificity, and Intersection over 
Union (IoU) are commonly used to evaluate segmentation 
methods, and variable performance is reported based on the 
dataset and the segmentation technique used. Standardized 
datasets are essential for fair comparison and benchmarking 
[20]. 

Recent research focuses on improving U-Net with 
techniques such as transfer learning, reinforcement learning, 
and hybrid models combining multiple deep learning 
architectures for improved performance [21]. Combining U-
Net with other architectures has shown significant 
improvements in segmentation accuracy and robustness [22]. 
U-Net has been integrated with advanced technologies to 
enhance its segmentation capabilities, such as Generative 
Adversarial Networks (GANs), and applied in multimodal 
imaging contexts [23-24]. Attention U-Net and its variants 
leverage attention mechanisms to focus on relevant image 
regions, improving segmentation quality [25]. Although U-Net 
and its variants have shown significant strengths in 
segmentation accuracy and efficiency, limitations include 
sensitivity to hyperparameters and the requirement for large 
annotated datasets for training, which can be resource-intensive 
[25-26]. Identified research gaps include the need for more 
robust methods to handle low-quality images, techniques to 
reduce the dependency on large annotated datasets, and further 
exploration of U-Net variants for different biomedical 
applications [27]. 

III. MATERIALS AND METHODS 

This study presents an enhanced image processing model 
for cell image segmentation based on the DRU-Net architecture 
to achieve superior performance in accurately segmenting 
complex and variable cellular structures in TEM images. The 
proposed method integrates dense residual connections, 
attention mechanisms, multi-scale feature extraction, and 
boundary refinement techniques to address the limitations of 
existing segmentation methods. The U-Net architecture 
employs an encoder-decoder structure with skip connections to 
preserve spatial information and enhance segmentation 
accuracy. However, it faces challenges in capturing fine-
grained details and handling geometric transformations due to 
its regular convolutional structure.  

The proposed Modified DRU-Net incorporates deformable 
convolutions, Reshape-Upsampling Convolution (RUC), and 
focal loss. Deformable convolutions are incorporated into the 
encoder of the proposed Modified DRU-Net to dynamically 
adapt the receptive field based on the input image. This 
adaptation allows the network to handle geometric 
transformations more effectively, capturing complex shapes 
and structures that are often present in biomedical images. By 
allowing the convolutional kernels to adjust their shape and 
size, deformable convolutions provide the network with a 
greater ability to learn and represent intricate geometric 
variations within the data. Attention mechanisms are integrated 
into the network to improve its ability to focus on relevant 
features. These mechanisms work by selectively highlighting 
important areas of the input images while suppressing less 
significant regions. This selective focus helps the network 
focus on the critical features required for accurate 
segmentation, thus improving overall performance. Attention 
mechanisms are particularly beneficial in biomedical image 
segmentation, where the relevant structures can be small and 
difficult to distinguish from the background. 

Dense residual connections are employed to improve the 
flow of gradients through the network and enhance feature 
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reuse. By connecting each layer to every other layer in a feed-
forward fashion, they facilitate better information flow and 
gradient propagation during training. This design mitigates the 
vanishing gradient problem, allowing deeper networks to train 
without a significant increase in computational complexity. The 
result is a more robust network that can capture and utilize 
features more effectively. Multi-scale feature extraction is 
another critical improvement in the Modified DRU-Net. 
Biomedical images often contain structures of varying sizes, 
making it essential for the network to capture features at 
multiple scales. To achieve this, Atrous Spatial Pyramid 
Pooling (ASPP) is employed to allow the network to 
simultaneously extract features at different scales. This multi-
scale approach ensures that the network can effectively capture 
both fine details and broader contextual information, leading to 
improved segmentation accuracy. 

Finally, boundary-refinement techniques are integrated to 
enhance the accuracy of boundary segmentation. In biomedical 
image segmentation, accurately delineating the boundaries of 
structures is crucial for precise analysis. This approach includes 
methods such as Conditional Random Fields (CRFs) to refine 
the segmentation boundaries. These techniques help the 
network produce sharper and more accurate boundaries, 
reducing the likelihood of merging or splitting errors. The 
integration of deformable convolutions, attention mechanisms, 
dense residual connections, multi-scale feature extraction, and 
boundary refinement techniques results in a robust and efficient 
network capable of delivering superior segmentation 
performance on complex and variable cell structures in TEM 
images. This approach can not only improve segmentation 
accuracy but also enhance the network's generalization ability 
and computational efficiency. 

The first step involves data pre-processing to ensure that the 
images are in a suitable format for training the model. Initially, 
all images were converted to grayscale, as intensity information 
is crucial for TEM image analysis. The pixel values were then 
normalized to [0, 1], standardizing the data and facilitating the 
training process by ensuring that the neural network operates 
within a consistent numerical range. Data augmentation 
techniques are employed to enhance the robustness and 
generalizability of the model, including random rotations, 
horizontal and vertical flipping, and elastic deformations. Data 
augmentation helps prevent overfitting and allows the network 
to learn invariant features that are not specific to the training 
data but generalize well to unseen images. 

In the feature extraction stage, the encoder uses deformable 
convolutions. Unlike traditional convolutions with fixed 
receptive fields, deformable convolutions allow the receptive 
field to adapt based on the input image. This adaptive nature 
enables the network to capture complex geometric 
transformations and intricate structures that are common in 
TEM images. The deformable convolution layers are 
particularly effective in learning spatial hierarchies and 
relationships, making them ideal for biomedical image 
segmentation, where the shapes and sizes of the structures can 
vary significantly. 

A. Model Architecture 

Figure 2 shows the architecture of the proposed Modified 
DRU-Net, which builds upon the existing DRU-Net framework 
by integrating dense residual connections, attention 
mechanisms, deformable convolutions, multi-scale feature 
extraction, and boundary refinement techniques. The input 
layer of the model accepts grayscale images with dimensions of 
512×512 pixels, normalized to the range [0, 1] 

 

 
Fig. 2.  Modified DRU-Net architecture 

1) Encoder 

 Deformable Convolutions: Each convolutional layer in the 
encoder is replaced with deformable convolution layers. 
These layers adapt the receptive field dynamically based on 
the input image, enhancing the model's ability to capture 
complex shapes and geometric variations. 

 Dense Residual Connections: Each layer in the encoder is 
connected to every other layer in a feed-forward fashion. 
This dense connectivity facilitates improved gradient flow 
and feature reuse, addressing the vanishing gradient 
problem and enabling better training convergence.  

 Max-Pooling Layers: Following the deformable 
convolutional layers, max-pooling layers reduce the spatial 
dimensions, allowing the network to learn hierarchical 
feature representations at multiple scales. The encoder 
comprises a series of deformable convolutional layers 
followed by max-pooling layers for downsampling. The 
standard convolution operation is given by: 

����� �  ∑ 	��
�. ���� 
 �����∈�   (1) 

where ����� represents the output at position � of the input 
image, � is the weight of the convolutional kernel, and � is 
the receptive field. However, in deformable convolution, 
the receptive field is dynamically modified as follows: 

����� �  ∑ 	����. ���� 
 �� 
 ∆�����∈� ………..(2) 

Here, Δ��  is a learnable offset, allowing the network to 
better capture local features and geometric transformations 
in the input images. This adaptability is crucial for 
accurately segmenting complex cellular structures in TEM 
images. The max-pooling layers are used to reduce the 
spatial dimensions of the feature maps, allowing the 
network to learn hierarchical feature representations at 
multiple scales. This reduction is essential for managing 
computational complexity and enabling the extraction of 
high-level features. The bottleneck layer consists of 
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deformable convolutions with dense residual connections to 
maintain high-level feature representations while mitigating 
information loss during downsampling. 

2) Decoder 

 Reshape Upsampling Convolution (RUC): The decoder 
employs RUC to restore the spatial resolution of feature 
maps while reducing the number of channels. This 
technique preserves spatial integrity and efficiently 
reconstructs high-resolution segmentation maps.  

 Attention Mechanisms: Integrated into the upsampling path, 
attention mechanisms selectively highlight important 
features, enhancing the network's focus on critical areas of 
the input images. This improves segmentation accuracy by 
suppressing irrelevant information.  

 Dense Residual Connections: Similar to the encoder, the 
decoder also uses dense residual connections to ensure 
efficient gradient propagation and feature reuse. The 
decoder employs RUC to restore the spatial resolution of 
feature maps while reducing the number of channels. The 
RUC operation is defined as: 

������ � ���ℎ������
�2!��, 2��# →  

    ��%�&�'� → ���ℎ���   (3) 

This method avoids the use of zero-padding, thus 
preserving the spatial integrity of the features and 
efficiently reconstructing high-resolution segmentation 
maps from the downsampled feature representations 
obtained from the encoder. 

 Attention Mechanisms: The upsampling path of the decoder 
integrates attention mechanisms to selectively focus on 
important features. The attention mechanism can be 
represented by: 

())�
)*�
��, +� �  ,���
�2!�+� 
 ��
�2!���� (4) 

where ,  represents the sigmoid activation function. This 
mechanism improves the network's ability to weigh the 
contributions of different feature maps, emphasizing 
relevant parts of the image and suppressing irrelevant ones. 
Attention mechanisms improve the network's ability to 
discriminate between different structures, leading to more 
accurate segmentation. 

 Dense Residual Connections are employed to further 
enhance the flow of information and gradients through the 
network. A dense residual connection is given by: 

-��� � .��, /012� 
 �   (5) 

where -���  is the output, .��, /0*2�  is the residual 
mapping function with weights 01 , and �  is the input. 
These connections facilitate better gradient propagation and 
feature reuse, mitigating the vanishing gradient problem 
and enabling the training of deeper networks. This design 
ensures that the network can learn more complex features 
and relationships, ultimately improving segmentation 
performance.  

 Multi-scale Feature Extraction: ASPP is incorporated to 
capture features at different scales simultaneously. This 
multi-scale approach ensures that both fine details and 
broader contextual information are effectively captured, 
leading to improved segmentation accuracy. Multi-scale 
feature extraction techniques are employed to capture 
features at various scales. This is particularly important in 
biomedical imaging where structures vary significantly in 
size. ASPP is defined as: 

���� �  ∑ ��� 
 3. 4�. ��4�5    (6) 

where 3 is the dilation rate that expands the receptive field 
without increasing the number of parameters. This allows 
the network to effectively capture both fine details and 
broader contextual information. 

 Boundary refinement techniques, such as CRFs, are used to 
enhance the precision of boundary segmentation. The CRF 
model is defined as:  

6��|�� �  
8

9�:�
exp �∑ >?��?,:# 
 ∑ @?A?BA ��?, �A , ��? � 

      (7) 

where 6�� ∣ �� is the probability of label assignment given 
the input �, >?  is the unary potential, @?A  is the pairwise 
potential, and D��� is the partition function. CRFs consider 
the contextual dependencies between labels, leading to 
more accurate boundary delineation. 

 Loss Functions and Learning Rate Policy: The combined 
loss function optimizes the model by balancing the dice loss 
and focal loss: 

EA1?F � 1 − I|J∩L|M8

|J|M|L|M8
    (8) 

ENO?PQ �  −R�1 − �S�Tlog ��S�   (9) 

E?OXY1�FA � ENO?PQ 
 EA1?F   (10) 

The poly-learning rate policy further stabilizes training: 

'��3
*
+3�)� �  

    *
*)*�''��3
*
+3�)���1 − 1SFZ

[\]_1SFZ
��O_FZ  (11) 

In this equation, the initial learning rate is the starting 
learning rate, *)�3  is the current iteration number, 
&��_*)�3  is the maximum number of iterations, and 
����3 is a hyperparameter that controls the rate of decay. 
This policy helps in stabilizing the training process and 
achieving better convergence by gradually decreasing the 
learning rate as training progresses. 

B. Differences between Modified DRU-Net and DRU-Net 

The key differences between the proposed Modified DRU-
Net and the original DRU-Net include:  

 Deformable Convolutions: The Modified DRU-Net 
employs deformable convolutions in both the encoder and 
bottleneck layers, allowing adaptive receptive fields to 
capture complex structures, whereas DRU-Net uses 
standard convolutions. 
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 Reshape Upsampling Convolution (RUC): The Modified 
DRU-Net uses RUC in the decoder for efficient upsampling 
without zero-padding, unlike DRU-Net, which uses 
standard upsampling methods. 

 Attention Mechanisms: Integrated into the upsampling path 
of the Modified DRU-Net, attention mechanisms improve 
focus on relevant features. 

 Multi-Scale Feature Extraction: Modified DRU-Net 
incorporates ASPP for multi-scale feature extraction, 
enhancing its ability to handle features of varying sizes, a 
feature absent in DRU-Net. 

 Boundary Refinement: Modified DRU-Net includes 
boundary refinement techniques such as CRFs and 
boundary-aware loss functions to achieve sharper and more 
accurate boundaries, which are not used in DRU-Net. 

Together, these components create a robust and efficient 
network capable of delivering superior segmentation results for 
TEM images of cellular structures. 

IV. RESULTS AND DISCUSSION 

This study used the Segmentation Dataset for TEM Cell 
Recordings, sourced from the portal provided by the University 
of Freiburg [12, 28]. 

A. Experimental Setup and Training 

The experiments were performed on a PC with an Nvidia 
RTX 2040 GPU. The dataset was divided into training, 
validation, and test sets. The images were pre-processed by 
normalizing the pixel values to [0, 1]. Data augmentation 
techniques, such as rotation, flipping, and zooming, were 
applied to increase the variability of the training data. The 
Modified DRU-Net model was trained using the Adam 
optimizer with an initial learning rate of 0.001. A custom poly-
learning rate scheduler dynamically adjusted the learning rate 
during training. The training process was conducted for 50 
epochs with a batch size of 8. 

B. Accuracy and Loss Trends 

As shown in Table I, the accuracy of the Modified DRU-
Net improved significantly in the initial 10 epochs, reaching a 
high plateau with minimal gains beyond the 10

th
 epoch. As 

shown in Figure 3, the accuracy at epoch 10 was 0.995, with a 
marginal increase to 0.996 by epoch 50. The training loss 
showed a sharp decline in the initial epochs, stabilizing after 
the 10th epoch. The loss at epoch 10, as shown in Figure 4, was 
0.01, with a slight reduction to 0.009 at epoch 50. Validation 
accuracy and loss followed a similar trend, demonstrating that 
the model generalizes well without significant overfitting. The 
validation accuracy reached 0.994 by epoch 10 and 0.995 by 
epoch 50, while the validation loss stabilized around 0.012. U-
Net started with an accuracy of 0.235 and a loss of 4.894 at 
epoch 1, improving to an accuracy of 0.952 and a loss of 
0.4027 by epoch 10. The final accuracy at epoch 50 was 0.954. 
DRU-Net showed better initial performance with an accuracy 
of 0.435 and a loss of 2.292 at epoch 1, improving to 0.992 
accuracy and 0.103 loss by epoch 10. The final accuracy at 
epoch 50 was 0.993, showing minimal gains beyond epoch 10.  

TABLE I.  COMPARATIVE ANALYSIS OF ACCURACY 

Epoch U-Net DRU-Net Modified MDRU-Net 

1 0.235 0.435 0.256 

2 0.345 0.590 0.460 

3 0.475 0.735 0.610 

4 0.590 0.810 0.780 

5 0.695 0.875 0.850 

6 0.780 0.910 0.920 

7 0.845 0.940 0.960 

8 0.890 0.970 0.975 

9 0.920 0.985 0.985 

10 0.952 0.992 0.995 

 

 
Fig. 3.  Modified DRU-Net accuracy vs traditional models. 

 
Fig. 4.  Loss vs epochs Modified MDRU-Net and traditional models. 

C. Segmentation Results 

Figure 5 shows the segmentation results, demonstrating the 
qualitative performance of the models. The green outlines 
highlight the segmented boundaries of the cell structures in the 
TEM images. While the U-Net model provides a reasonable 
segmentation, it often struggles with fine-grained details and 
precise boundary delineation. The Modified DRU-Net marked 
improvements in capturing intricate details and maintaining 
contextual information, resulting in more accurate 
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segmentations. The Modified DRU-Net excels in both 
boundary accuracy and detail preservation, providing the most 
precise segmentation among the three models. The dense 
residual connections and attention mechanisms contribute 
significantly to these enhancements. 

 

 
Fig. 5.  Segmented test images based on the Modified DRU-Net model. 

D. Detailed Analysis of Improvements 

Dense residual connections facilitated better gradient flow 
throughout the network, ensuring effective backpropagation 
and mitigating the vanishing gradient problem. Attention 
mechanisms improved the network's ability to focus on 
relevant features, enhancing segmentation accuracy by 
suppressing irrelevant information. The deformable 
convolutions allowed the model to handle geometric variations 
and capture complex shapes more effectively, enhancing the 
learning and representation of intricate patterns. Multi-scale 
feature extraction ensured that the network could capture 
features at different scales simultaneously, leading to improved 
segmentation accuracy. The boundary refinement techniques 
improved the precision of segmentation boundaries, reducing 
errors and improving the overall accuracy. 

E. Model Performance Over 50 Epochs 

This study trained the proposed Modified DRU-Net model 
for a total of 50 epochs. The results indicate that there were no 
significant differences in model performance beyond the 10

th
 

epoch. After the 10
th
 epoch, the accuracy and loss metrics of 

the Modified DRU-Net model reached a plateau, showing 
minimal improvement in subsequent epochs. The accuracy 
improvement from epoch 10 to epoch 50 was less than 0.1%, 
which is statistically insignificant given the overall 
performance gains achieved in the initial epochs. Reporting 
results for up to 10 epochs provides a comprehensive 

understanding of the model's learning curve while keeping the 
focus on the significant improvements made during the early 
stages of training. This also aligns with best practices in deep 
learning where early stopping is often employed to prevent 
overfitting and save computational resources once the model's 
performance stabilizes. 

V. CONCLUSION 

This paper demonstrates the significant advancements 
achieved through the development of a Modified DRU-Net 
architecture for the segmentation of cell images in TEM. By 
integrating dense residual connections and attention 
mechanisms into the U-Net framework, Modified DRU-Net 
addresses critical limitations of traditional U-Net models, such 
as the difficulty in capturing fine-grained details and 
maintaining contextual information. The experimental results 
highlight the superior performance of the Modified DRU-Net 
over both the conventional U-Net and DRU-Net models. The 
Modified DRU-Net achieved an impressive accuracy of 0.995 
and a minimal loss of 0.01 by epoch 10, outperforming the 
DRU-Net and U-Net models, which reached an accuracy of 
0.992 and 0.952, respectively. Rapid convergence and 
significant loss reduction underscore the efficiency of dense 
residual connections and attention mechanisms in facilitating 
effective gradient flow, feature reuse, and selective focus on 
relevant image regions. Qualitative analysis of segmentation 
results further validates the efficacy of Modified DRU-Net. 
The model consistently produced more accurate and detailed 
segmentations, particularly in delineating complex cellular 
structures compared to its counterparts. These improvements 
are crucial for biomedical imaging applications where precision 
and detail are paramount. 

Although the Modified DRU-Net architecture demonstrates 
substantial improvements in TEM image segmentation, several 
areas for future research can be explored to further enhance its 
performance and applicability. Combining the Modified DRU-
Net with advanced imaging techniques such as multimodal 
imaging and 3D imaging can provide a more comprehensive 
analysis of cellular structures, enhancing the model's utility in 
complex biomedical research scenarios. Additionally, 
integrating these techniques with real-time applications could 
significantly advance clinical diagnostics and personalized 
medicine, allowing for more precise and timely interventions. 
Furthermore, the use of transfer learning could facilitate the 
adaptation of Modified DRU-Net to various biomedical 
imaging modalities, reducing the need for large annotated 
datasets and enabling faster deployment in diverse clinical 
settings. Automated hyperparameter tuning and model 
interpretability enhancements would also contribute to more 
robust and user-friendly implementations, fostering greater 
adoption in the biomedical field. In summary, the Modified 
DRU-Net architecture offers a powerful tool for accurate and 
efficient TEM image segmentation with potential applications 
that extend beyond the current scope. Future research efforts 
that focus on broader evaluations, real-time applications, 
advanced imaging integration, transfer learning, automated 
tuning, and interpretability will continue to advance the field of 
biomedical image segmentation and its impact on scientific and 
clinical outcomes. 
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