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ABSTRACT 

To meet the requirements of modern Computerized Numerical Control (CNC) turning processes, it is 

necessary to improve efficiency, precision and surface quality while reducing negative effects such as 
vibration and cutting force. In an attempt to minimize vibration, surface roughness, and cutting force at 

the same time, this study optimizes machining settings in CNC turning of EN8. Manufacturers can find the 

optimal parameters by using a multi-objective optimization strategy. According to the conducted 

experimental validation, by reducing vibration, improving surface roughness, and minimizing cutting 

forces, the adjusted parameters can significantly increase productivity and quality in CNC turning 

operations. This research contributes to the ongoing effort to improve machining processes to meet various 
performance goals, for industries that rely on CNC turning. 

Keywords-multi objective optimization; EN; materials; Analysis of Variance (ANOVA) 

I. INTRODUCTION  

In the context of contemporary manufacturing, the 
utilization of precision machining techniques, such as 
Computer Numerical Control (CNC) turning, is a vital 
component of the production process, facilitating the creation 
of superior-quality components for a diverse range of 
industries, including automotive and aerospace. It is of great 
importance to attain optimal machining conditions in order to 

guarantee both, product quality and durability of the tools and 
machinery. However, challenges, such as excessive vibrations, 
poor surface roughness, and high cutting forces can 
compromise the pursuit of enhanced efficiency, precision, and 
surface finish in turning. Vibrations during the machining 
process can compromise the integrity of the workpiece, leading 
to premature tool wear, reduced accuracy, and higher energy 
consumption. Furthermore, rough surfaces can have a 
detrimental impact on the functionality and appearance of 
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machined parts, underscoring the necessity to minimize 
imperfections. Furthermore, high cutting forces can strain the 
machine's structure, leading to wear and tear as well as to a 
reduction in tool lifespan. Traditionally, the optimization of 
machining parameters in CNC turning has focused on a single 
objective, such as increasing productivity or reducing 
performance indicators, while other important factors have 
often been overlooked. However, in today's competitive 
manufacturing environment, a more holistic approach is 
necessary, one that takes into account multiple objectives 
simultaneously. This paper examines the significance of a 
comprehensive approach to CNC turning by investigating the 
Multi-Objective Optimization of Machining Parameters and 
Prediction (MOO-MPP) methodology, which aims to 
simultaneously minimize vibration, surface roughness, and 
cutting force. The objective is to achieve a balance between 
high-quality results and efficient resource utilization by 
optimizing various performance criteria, thereby catering to the 
diverse needs of modern machining industries. In order to 
achieve this objective, it is essential to integrate advanced 
optimization techniques, experimental validation, and a deep 
understanding of the complex relationships between machining 
parameters and performance metrics. The goal of this study is 
to present a structured framework that combines genetic 
algorithms, response surface methodology, and practical 
experimentation to determine the optimal sets of machining 
parameters. The following sections will explore the 
methodology, experimental setup, and outcomes of the MOO 
process, providing valuable insights into achieving 
comprehensive CNC turning optimization for improved 
product quality, reduced tool wear, and increased 
manufacturing efficiency. 

The application of MOO methodologies has been an 
effective approach for identifying well-distributed Pareto 
optimal solutions, with a broad range of applications in diverse 
problem-solving contexts [1]. This paper employs 
metaheuristic MOO algorithms to generate Pareto optimal 
solutions for micro-turning and micro-milling applications. A 
comparative study is conducted to evaluate the performance of 
the Non-dominated Sorting Genetic Algorithm II (NSGA-II), 
Multi-Objective Ant Lion Optimization (MOALO), and Multi-
Objective Differential Evolution (MODE) [2]. In the 
optimization of the machining parameters for a chatter-free 
milling process, the inevitable Surface Location Error (SLE), 
which reflects the accuracy of the machined workpiece 
dimensions, has been largely overlooked as a quality indicator, 
resulting in a reduction in optimization accuracy. This paper 
presents a methodology for developing a MOO model, wherein 
the Material Removal Rate (MRR) and SLE are regarded as the 
primary objectives [3]. A MOO approach was employed using 
the Jaya algorithm to enhance the effectiveness of machining a 
curve hole in P20 mold steel through sinking Electrical 
Discharge Machining (EDM). The experimental results 
demonstrated that the current and pulse on time have a 
significant impact on material removal and tool wear diagnostic 
parameters [4]. This research proposes the development of 
novel hybrid optimization techniques for the acquisition of 
optimized wire EDM machining parameters and the analysis of 
the performance and microstructure of a hybrid treatment alloy 

20 material following its machining in wire EDM [5]. The 
optimization of process parameters in wire EDM of TiB₂ nano-
composite ceramic was performed using a fuzzy logic analysis 
coupled with a Taguchi dynamic experiment [6]. This paper 
presents a standardized methodology for determining the 
process window for ductile machining of brittle materials. The 
methodology was applied to CaF₂ and an optimized process 
window for single-point diamond turning was identified [7]. A 
review of the use of evolutionary algorithms for the 
optimization of machining parameters is provided in [8]. The 
paper discusses the application of MOO techniques to the 
problem of cutting parameter selection in turning processes. 
The approaches deployed are differential evolution and NSGA-
II [9]. In [10], a model is presented, which allows the 
optimization of multiple objectives simultaneously, namely the 
minimization of surface roughness, cutting force, and power, 
and the maximization of productivity, in the context of turning 
operations on tempered stainless steel AISI 420. This paper 
presents a Taguchi S/N-based optimization of machining 
parameters for surface roughness, tool wear, and material 
removal rate in hard turning under Minimum Quantity 
Lubrication (MQL) cutting conditions [11]. This study 
describes the optimization of cutting inserts and parameters for 
turning based on artificial neural networks and a genetic 
algorithm [12]. The performance of coated Cubic Boron 
Nitride (CBN) cutting tools in green turning of gray cast iron 
(EN-GJL-250) was modelled and optimized [13]. This research 
discusses the online prediction of the mechanical properties of 
hot rolled steel plate using machine learning [14]. This paper 
proposes a statistical approach to wire EDM that is coupled 
with artificial intelligence techniques and soft computing [15]. 
A hybrid approach combining Taguchi and NSGA-II is 
presented for the modeling and optimization of wire-EDM 
parameters for the machining of a Ni55.8Ti shape memory 
alloy [16]. The optimization of process parameters in the 
machining of Nimonic superalloy on EDM is presented, with 
the use of a genetic algorithm [17]. The process parameters 
optimization for die sinking EDM for the machining of 
SS316H is discussed in the context of the Taguchi L9 approach 
[18]. 

II. EXPERIMENTAL SETUP 

The tests were conducted on a 30 mm diameter rod of EN 8 
steel in its original state. The experiments used a multi-
functional CNC machine with specific features, including a JK 
- L1 model, CNC retrofit control, a 3 KW motor running at 
2,800 rpm, and a stepper motor controlled by Mach3 software, 
as shown in Figure 1. The CNC machine deployed for the 
experimentation work is equipped with an acceleration sensor 
and strain gauge in connection with the tool, tool post and 
compound rest schematically observed in Figure 2. The 
experimental setup evidenced in Figure 3, is equipped with an 
Arduino Uno Rev3 to measure all output parameters. The 
Arduino Uno is a microcontroller board that uses the 
ATmega328P (datasheet). It has 14 digital input/output pins (6 
of which can be utilized as PWM outputs), 6 analog inputs, a 
16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB 
connector, a power connector, an ICSP header, and a reset 
button. 
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Fig. 1.  Schematic diagram of experimental setup. 

 
Fig. 2.  Strain gauge in connection with tool, tool post and compound rest. 

It includes everything necessary to support the 
microcontroller, and it can be connected to a computer with a 
USB cable or power it with an AC-to-DC adapter or battery to 
get started. The GY-61 ADXL335 3-axis analog accelerometer 
sensor measures the forces involved in machining. The GY-61 
ADXL335 is a small, thin, low power, complete 3-axis 

accelerometer with signal conditioned voltage output. This 
product measures acceleration with a minimum full-scale range 
of ±3 g. It is capable of measuring static acceleration due to 
gravity in tilt sensing applications as well as dynamic 
acceleration caused by motion, shock, or vibration. The sensor 
operates from 1.8 V to 3.6 V DC (3.3 V is optimal) and 
typically uses 350 µA of current. However, an on-board 3.3 V 
regulator is ideal for use with 5 V microcontrollers such as the 
Arduino. Surface topography is measured by the arithmetic 
mean known as Ra. The Ra is determined using a HOMMEL 
TESTER T500 surface roughness tester and its values, for the 
machined surface, were calculated by averaging the surface 
roughness values over a 5 mm measurement length. 

III. PILOT EXPERIMENTAL WORK 

Based on initial observations, it can be concluded that 
changing certain parameters has an impact on the quality of the 
material. It is necessary to determine the optimal parameters 
that result in a satisfactory cut quality. By making a series of 
pilot experiments, it is possible to identify the effective range 
of parameter changes, as presented in Figure 4. 

 

 
Fig. 3.  Actual machining set-up. 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 4.  (a) Output trend of first five pilot, (b) output trend of the second five pilot experiment, (c) output trend of third five pilot experiment. 
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This study was designed to achieve the highest possible 
quality of cut through the implementation of primary research 
methodologies. At present, industry operators employ a trial-
and-error methodology, necessitating numerous manual 
attempts to adjust parameters and conduct experiments until the 
desired cut is achieved. A review of the data from multiple 
pilot experiments in addition with the effective range of input 
parameters is portrayed in Table I. 

TABLE I.  MACHINING PARAMETERS AND THEIR LEVELS 

Factor Symbol Level 1 Level 2 Level 3 

Cutting speed (m/min) n 354.6 471.0 628.3 

Feed rate (mm/rev) f 0.1 0.6 0.8 

Depth of cut (mm) d 0.4 0.6 0.8 

 

IV. EXPERIMENTAL WORK 

An experimental design is a plan for conducting tests with 
the objective of drawing accurate conclusions about the 
connections between different factors and also provides the 
framework in which the experiment is performed. In the 
present study, tests were carried out on a lathe utilizing a 
cutting tool for En8 steel. The way data are collected has a 
significant impact on the outcome of any experimental inquiry. 
The most prevalent experimental design is the full factorial, 
which entails conducting trials for each potential combination 
of variables. A full factorial Design of Experiments (DOE), 
allows the measurement of the outcome of all potential factor 
combinations and levels. These responses are then examined in 
order to yield details regarding each main effect and each 
interaction impact. The experimental design for the three 
turning parameters (speed, feed rate, and depth) with three 
levels was structured using Taguchi's L27 orthogonal array. 
The influence of cutting variables, including speed, feed rate, 
and depth, on surface roughness was evaluated through 
ANOVA. A total of 27 experiments were made using a specific 
orthogonal array, as shown in Table II. Once the outcome has 
been determined, it is essential to analyze the impact of the 
various parameters on all three variables and ascertain the 
percentage contribution of each parameter through the use of 
mathematical calculations and the Design Expert 13 software. 
The Response Surface Methodology (RSM) and ANOVA 
methods are employed for the analysis of the experimental 
data, with the objective of determining the impacts and relative 
importance of the cutting parameters. 

V. EXPERIMENTAL AND PREDICTED VALUES OF 
SURFACE ROUGHNESS, VIBRATION AND CUTTING 

FORCE 

The objective of engineering experiments is to ascertain the 
optimal conditions for achieving the most favorable results. 
One method for attaining optimal performance is RSM, a 
collection of mathematical and statistical procedures that can 
be used to model and analyze problems in which the response 
of interest is affected by multiple factors in order to optimize 
the response. It constitutes a perpetual assessment of design 
and optimization. The response model of independent feedback 
can be obtained through the implementation of experimental 
procedures and the subsequent application of regression 

analysis. The point that is closest to optimal can be identified as 
the standard answer. RSM is primarily employed for the 
purposes of characterization and optimization and the 
independent process can be expressed in a number of different 
forms: 

� = �� + ���� + ���� + ⋯ + �
�
 ± � (1) 

where Y is the corresponding response and xi (i =1, 2, …, n) are 
the independent input parameters. The terms b0, b1, b2, etc., are 
the second-order regression coefficients. The second term 
contributes to the linear effect, the third term contributes to the 
higher-order effects, and the fourth term contributes to the 
interactive effects of the input parameters. The coefficients' 
values are estimated using the responses collected (Y1, Y2, … 
Yn) through the design points (n) by applying the least square 
technique. This equation can be rewritten in terms of the three 
variables: 

� = �� + ���� + ���� + ���� + �����
� + �����

� + �����
� +

������� + ������� + ������� …   (2) 

The objective of employing RSM is to examine the 
response across the entire domain and identify regions of 
interest, where the response attains or approaches optimality. A 
meticulous analysis of the surface response patterns allows for 
the identification of a combination that yields the optimal 
response. 

TABLE II.  EXPERIMENTAL MEASUREMENT OF RΑ, V AND 
FC 

Ex No 
Speed n 

(m/min) 

Feed f 

(mm/ rev) 

Depth of 

cut, d (mm) 

Surface 

roughness Ra 

(µm) 

Vibration  

V (db) 

Cutting 

Force Fc 

(N) 

1 345.6 0.1 0.4 2.013 70.11 76.45 

2 345.6 0.1 0.6 1.907 71.41 160.3 

3 345.6 0.1 0.8 1.837 73.46 225.85 

4 345.6 0.2 0.4 2.797 75.91 120.25 

5 345.6 0.2 0.6 3.087 77.06 210.85 

6 345.6 0.2 0.8 2.807 78.76 280.15 

7 345.6 0.3 0.4 3.932 81.11 138.85 

8 345.6 0.3 0.6 4.221 83.22 225.25 

9 345.6 0.3 0.8 4.151 84.91 291.05 

10 471.0 0.1 0.4 1.937 73.82 73.75 

11 471.0 0.1 0.6 2.217 75.75 147.6 

12 471.0 0.1 0.8 1.954 78.07 202.05 

13 471.0 0.2 0.4 2.825 79.409 125.45 

14 471.0 0.2 0.6 3.036 80.739 200.3 

15 471.0 0.2 0.8 2.957 82.068 253.95 

16 471.0 0.3 0.4 3.68 83.398 136.75 

17 471.0 0.3 0.6 3.901 84.728 211.1 

18 471.0 0.3 0.8 3.951 86.057 264.65 

19 628.3 0.1 0.4 2.161 87.387 76.5 

20 628.3 0.1 0.6 2.337 88.717 128.6 

21 628.3 0.1 0.8 2.227 90.046 160.85 

22 628.3 0.2 0.4 2.877 91.376 126.45 

23 628.3 0.2 0.6 3.265 92.706 176.5 

24 628.3 0.2 0.8 3.487 94.035 212.85 

25 628.3 0.3 0.4 4.029 95.365 144.35 

26 628.3 0.3 0.6 4.499 96.695 195.9 

27 628.3 0.3 0.8 4.654 98.024 230.15 

 
Table III presents a comparison between the predicted and 

experimental values of surface roughness, vibration, and 
cutting force, as derived from the developed mathematical 
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model. A comparison of the predicted and measured values 
indicates that the predicted values of surface roughness are in 
close agreement with the measured values. The mean relative 
error between the experimental and predicted values for Ra, V, 
and Fc are 2.75%, 0.306%, and 1.014%, respectively. 

VI. ANOVA ANALYSIS 

It is of great importance to evaluate the appropriateness of 
the model by analyzing the observed responses for the 
specified input parameters. This may be achieved by verifying 
the regression model, model coefficient, and lack of fit value. 
The adequacy of the model is ensured by employing ANOVA, 
while a multi-output optimization technique is used to 
determine the optimal combination of input parameters. This is 
done with the aim of achieving an improved surface finish, a 
reduction in vibration, and a reduction in cutting force. The 
primary goal of data analysis is to ascertain the significant 
individual and interactive effects of independent variables on 
dependent responses. There are numerous types of regression 
models, including linear, quadratic, and interaction models. 
However, for the purposes of this study, a quadratic model was 
selected for all surface roughness, tool vibration, and cutting 
force. The results of ANOVA analysis are depicted in Table IV 
(Surface Roughness), Table V (Tool Vibration), and Table VI 
(Cutting Force), respectively. 

TABLE III.  EXPERIMENTAL AND PREDICTED VALUES OF 
RA, V AND FC 

No. 
Actual 

Ra 

Predicted 

Ra 

Actual 

V 

Predicted 

V 

Actual 

P 

Predicted 

P 

1 2.013 2.049 70.110 69.960 0.423 0.456 

2 1.907 2.088 71.410 71.870 0.866 0.964 

3 1.837 1.882 73.460 73.650 1.186 1.374 

4 2.797 2.854 75.910 75.630 0.635 0.717 

5 3.087 2.965 77.060 77.420 1.446 1.231 

6 2.807 2.832 78.760 79.070 1.902 1.646 

7 3.932 3.925 81.110 81.170 0.857 0.756 

8 4.221 4.109 83.220 82.830 1.124 1.276 

9 4.151 4.047 84.910 84.360 1.676 1.696 

10 1.937 1.903 73.420 74.040 0.736 0.635 

11 2.217 2.035 76.750 75.800 1.159 1.148 

12 1.954 1.923 78.070 77.430 1.704 1.561 

13 2.825 2.723 79.410 78.980 0.953 0.993 

14 3.136 2.928 80.740 80.600 1.580 1.511 

15 2.957 2.889 82.070 82.110 1.837 1.930 

16 3.680 3.809 83.400 83.770 1.074 1.129 

17 3.901 4.087 84.730 85.270 1.672 1.653 

18 3.811 4.120 86.060 86.650 1.921 2.077 

19 2.161 2.067 87.390 87.360 0.907 0.787 

20 2.337 2.318 88.720 88.920 1.137 1.303 

21 2.227 2.324 90.050 90.360 1.831 1.721 

22 2.677 2.907 91.380 91.360 1.115 1.266 

23 2.865 3.230 92.710 92.790 1.806 1.788 

24 3.487 3.309 94.030 94.100 2.019 2.211 

25 4.229 4.013 95.360 95.220 1.564 1.524 

26 4.499 4.408 96.690 96.530 2.135 2.052 

27 4.654 4.559 98.020 97.710 2.619 2.480 

 

. The value R
2
 for all surface roughness, tool vibration, and 

cutting force is greater than 90%, indicating a strong 
correlation between the model and the experimental data. The 
adjusted R² value for surface roughness, vibration, and cutting 
force is 98.25%, 99.76%, and 99.86%, respectively, which 

indicates a strong positive correlation. The models for surface 
roughness, vibration, and cutting force are statistically 
significant, as evidenced by p-values that are less than 0.05, 
which is consistent with a 95% confidence level. 

TABLE IV.  ANOVA FOR SURFACE ROUGHNESS 

Source 
Sum of 

squares 
df 

Mean 

square 
F-value p-value 

% 

contribution 

Model 20.101 9 2.2335 163.61 1.02E-14 98.859 

A-n Speed 0.43059 1 0.43059 31.541 3.08E-05 2.118 

B-f Feed 18.825 1 18.825 1379 1.02E-17 92.583 

C-d DOC 0.18875 1 0.18875 13.827 0.0017082 0.928 

AB-n×f 6.58E-06 1 6.58E-06 0.00048205 0.98274 0.000 

AC-n×d 0.13328 1 0.13328 9.7628 0.006171 0.655 

BC-n×d 0.12161 1 0.12161 8.9077 0.0083237 0.598 

A²-n
2
 0.17242 1 0.17242 12.63 0.0024412 0.848 

B²-f
2
 0.032856 1 0.032856 2.4067 0.13923 0.162 

C²-d
2
 0.13142 1 0.13142 9.627 0.0064665 0.646 

Residual 0.23208 17 0.013652   1.141 

Total 20.333 26    100.000 

R2 = 0.98859 R2(Adj.) = 0.9825 R2(Pred.) = 0.9726

 

Table IV demonstrates that the individual effect of feed rate 
(f) is the most significant for surface roughness, as indicated by 
the highest F value (lowest P value). In addition to the feed 
rate, the individual effect of spindle speed (n), depth of cut (d), 
the second-order effect of spindle speed (n2), depth of cut (d2), 
and the interaction effect of spindle speed-depth of cut (n-d) 
and feed rate-depth of cut (f-d) are the most significant terms 
for the model, as indicated by p-values less than 0.05. The 
interaction effect of spindle speed and feed rate (n-f) is not 
deemed significant, as the p-values of the terms fall below the 
0.05 threshold. 

TABLE V.  ANOVA FOR VIBRATION 

Source 
Sum of 

squares 
df 

Mean 

square 
F-value p-value 

% 

contribution 

Model 1,639.5 9 182.17 1,195.8 5.22E-22 99.842 

A-n Speed 1,064.2 1 1,064.2 6985.4 1.14E-23 64.807 

B-f Feed 392.74 1 392.74 2578 5.25E-20 23.917 

C-d DOC 41.709 1 41.709 273.78 6.46E-12 2.540 

AB-n×f 8.5218 1 8.5218 55.939 9.01E-07 0.519 

AC-n×d 0.3544 1 0.3544 2.3263 0.14559 0.022 

BC-n×d 0.10849 1 0.10849 0.71215 0.41045 0.007 

A²-n2 81.807 1 81.807 537 2.66E-14 4.982 

B²-f2 0.063311 1 0.063311 0.41559 0.52775 0.004 

C²-d2 0.029634 1 0.029634 0.19452 0.66474 0.002 

Residual 2.5898 17 0.15234   0.158 

Total 1,642.1 26    100.000 

R2 = 0.99842 R2(Adj.) = 0.9976 R2(Pred.) = 0.9961

 

ANOVA analysis for tool vibration is manifested in Table 
V, where the single effect of spindle speed (n) has the highest 
significance in the tool vibration model as it has the lowest p-
value. Apart from this, feed rate (f), depth of cut (d), second 
order term of spindle speed (n2), second order effect of depth of 
cut (d

2
), and interaction effect of spindle speed-feed (n-f) are 

significant terms for this model, in contrast to the remaining 
terms. ANOVA analysis for cutting force in Table VI shows 
that the individual effect of depth of cut (d) has the highest 
significance in the tool vibration model as it has the lowest p-
value. Apart from this, feed rate (f), spindle speed (n), second 
order term of feed rate (f

2
), second order effect of depth of cut 
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(d2), and interaction effect of spindle speed depth of cut (n-d) 
are significant terms for this model. The remaining terms are 
not significant. Although the models are statistically significant 
in all cases, non-significant terms can be eliminated to improve 
the performance of the models. 

TABLE VI.  ANOVA FOR CUTTING FORCE 

Source 
Sum of 

squares 
df 

Mean 

square 
F-value p-value 

% 

contribution 

Model 97,002 9 10,778 2,014.3 6.25E-24 99.906 

A-n 

Speed 
4,258.1 1 4,258.1 795.79 1.02E-15 4.386 

B-f Feed 19,090 1 19,090 3,567.7 3.37E-21 19.662 

C-d DOC 66,003 1 66,003 12,335 9.11E-26 67.979 

AB-n×f 13.189 1 13.189 2.4649 0.13484 0.014 

AC-n×d 3,551.6 1 3,551.6 663.75 4.61E-15 3.658 

BC-n×d 1.2352 1 1.2352 0.23085 0.63702 0.001 

A²-n
2
 6.5245 1 6.5245 1.2194 0.28487 0.007 

B²-f
2
 1,938 1 1,938 362.19 6.73E-13 1.996 

C²-d
2
 550.72 1 550.72 102.92 1.25E-08 0.567 

Residual 90.964 17 5.3508   0.094 

Total 97,093 26    100.000 

R2 = 0.99906 R2(Pred.) = 0.99742 R2(Adj.) = 0.99857

 

The predicted R² of 0.97261 (Table IV), is in reasonable 
agreement with the adjusted R² of 0.98254, as the difference is 
less than 0.2. Adequate precision measures the signal-to-noise 
ratio, which is desirable to be greater than four. A ratio of 
38.934 indicates an adequate signal. This model can be used to 
navigate the design space: 

�� = 2.8084 � 0.0095 � � + 4.2830 � � + 2.1344 � �   
�0.0001 � � � � + 0.0037 � � � � + 5.0333 � � � � +   7.4000 � �� �

3.7000 � ��     (3) 

The analysis shows the percentage effect of different 
parameters on surface quality. Feed contributes 92.583%, RPM 
contributes 2.118%, and DOC contributes 0.928%. The 
analysis is performed to evaluate the quality of the sample, 
specifically the surface roughness. A parametric ANOVA 
analysis reveals the individual percentage contributions of each 
parameter. The predicted R² of 0.99608 (Table V), is in 
reasonable agreement with the adjusted R² of 0.99759, as the 
difference is less than 0.2. Adequate precision measures the 
signal-to-noise ratio. A ratio greater than four is desirable. A 
ratio of 116.941 indicates an adequate signal. This model can 
be utilized to navigate the design space: 

" = 77.445 � 0.11276 �  � + 82.691 � � + 9.4155 � � � 0.059492 �
� � � � 0.0060661 � � � � � 4.7542 � � � � + 0.00018759 �  �² �

10.272 �  �² + 1.7569 �  �²    (4) 

The analysis indicates the individual parameters percentage 
contribution to vibration. Speed accounts for 64.807%, cutting 
feed for 23.917%, and DOC for 2.540%. The parametric 
analysis focuses on evaluating the quality, specifically 
vibration, of the sample. ANOVA analysis demonstrates the 
percentage contribution of each parameter displayed in the 
table above. The predicted R² of 0.99742 (Table VI), is in 
reasonable agreement with the adjusted R² of 0.99857, as the 
difference is less than 0.2. Adequate precision measures the 
signal-to-noise ratio. A ratio greater than four is desirable. A 
ratio of 155.339 indicates an adequate signal. This model can 
be employed to navigate the design space: 

%& =  �336.88 + 0.29234 � � + 999.23 � � + 883 � � +
0.074012 �  � �  � � 0.60726 �  � �  � + 16.042 �  � �  � � 5.30' �

05 �  �² � 1797.2 �  �² � 239.51 �  �²   (5) 

The preceding analysis demonstrates the extent to which 
each parameter contributes to the cutting force. The DOC 
accounts for 67.979% of the total contribution, while the feed 
and cutting speed account for 19.662% and 4.386%, 
respectively. A parametric analysis was conducted to assess the 
quality of the sample, with a particular focus on the force. The 
ANOVA method is employed to ascertain the individual 
percentage contributions of the parameters. The regression 
models developed can be utilized to predict tool surface 
roughness, vibration, and cutting force. Figure 5 depicts the 
predicted and actual values, illustrating the patterns, whereas 
Figure 6 displays the normal probability of the residuals.  

 

(a) 

(b) 

(c) 

Fig. 5.  (a) Predicted vs. actual response plot of surface roughness, (b) 

Predicted vs. actual response plot of tool vibration, (c) Predicted vs. actual 

response plot of cutting force. 
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(a) 

(b) 

(c) 

Fig. 6.  (a) Normal probability plot of residuals for surface roughness, (b) 

Normal probability plot of residuals for tool vibration, (c) Normal probability 

plot of residuals for cutting force. 

The residual points are distributed along a straight line, 
indicating that the errors are normally distributed. This shows 
that the regression model developed is an appropriate fit for the 
given experimental range. An examination of the residuals has 
verified the adequacy of the model. The residuals, defined as 
the difference between the observed response and the predicted 
response, are examined using two statistical plots: the normal 
probability plot of the residuals and the plot of the residuals 
versus the predicted response. If the model is deemed adequate, 
the points on the normal probability plots of the residuals 
should form a straight line. Conversely, the plots of the 
residuals versus the predicted response should exhibit no 
discernible pattern. The normal probability plots of the 
residuals and the plots of the residuals versus the predicted 
response for the surface roughness values are presented in 

Figures 5(a) and 6(a). The results demonstrated that the 
residuals exhibited a tendency to fall on a straight line, 
indicating that the errors were normally distributed. This 
suggests that the proposed model is adequate and that there is 
no evidence of any violation of the independence or constant 
variance assumptions.  

 

(a) 

(b) 

(c) 

Fig. 7.  (a) Surface Roughness, A: Speed, B: Feed, (b) Surface Roughness, 

A: Speed, C: DOC, (c) Surface Roughness, B:Feed, C:DOC. 

Figure 5 illustrates that the predicted and actual values of 
surface finish exhibited minimal deviation, confirming the 
efficacy of the developed mathematical model in predicting 
optimized machining process parameters. Three-dimensional 
response surface plots are constructed based on (3), (4), and (5) 
to facilitate a more comprehensive understanding of the 
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interaction effects of independent variables on responses. As 
each model comprises three independent variables, one variable 
has been maintained at its central level for each plot. Figure 7 
depicts a three-dimensional surface plot for surface roughness, 
Figure 8 represents a three-dimensional surface plot for tool 
vibration, and Figure 9 shows a three-dimensional surface plot 
for cutting force.  

 

(a) 

(b) 

(c) 

Fig. 8.  (a) Vibration, A: Speed, B: Feed, (b) Vibration, A: Speed, C: DOC, 

(c) Vibration, B: Feed, C: DOC. 

With the exception of the effect of DOC on surface 
roughness and tool vibration, all independent variables 
demonstrate a curvature trend in their responses, indicating a 
non-linear variation. The 3-D surface plots in Figure 7 are 
generated based on the regression (4). It can be observed that 
an increase in the rotational speed and feed rate results in an 
increase in surface roughness. Three-dimensional surface plots 

for tool vibration were constructed using (5). An examination 
of the plots concludes to a vibration increase for all three input 
parameters. Three-dimensional surface plots for cutting force 
were constructed using (6). From the data presented in the 
plots, it can be concluded that cutting force increases for all 
three input parameters. 

 

(a) 

(b) 

(c) 

Fig. 9.  (a) Cutting Force, A: Speed, B: Feed, (b) Cutting Force, A: Speed, 

C: DOC, (c) Cutting Force, B: Feed, C: DOC. 

The impact of the primary factor and its interactions are 
presented in Figures 10 and 11, respectively. The major impact 
of surface roughness is found to be the feed rate, which exerts 
the most significant influence on the surface roughness. The 
influence of cutting speed is considerably less substantial, and 
the impact of DOC is also inconsequential (Figure 10(a)). An 
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increase in cutting speed has proven to enhance surface quality. 
This result supports the argument that high cutting speeds 
reduce cutting forces, in conjunction with the effect of natural 
frequency and vibrations, thereby resulting in a superior 
surface finish. The optimal surface quality values can be 
attained at a low feed rate, a medium cutting speed, and a low 
DOC. The main effects of vibrations indicate that cutting speed 
has the greatest impact on vibration. The influence of feed is 
minimal, as is that of DOC, as shown in Figure 10(b). An 
increase in cutting speed results in an increase in vibration. The 
lowest vibration levels can be achieved at low speeds, feeds, 
and depths of cut. The most significant impact on cutting force 
is the depth of the cut. The effect of feed is less considerable, 
and the effect of speed is negligible, as presented in Figure 
10c). An increase in the DOC results in an increase in the 
magnitude of the cutting force. 

 

(a) 

 

(b) 

 

(c) 

 
Fig. 10.  (a) Main effect plots of Surface Roughness, (b) main effect plots of 

Vibration, (c) main effect plots of Cutting Force. 

The lowest force can be achieved at a reduced DOC, feed, 
and speed. Figure 11 exhibits the interaction plot for surface 
roughness. Surface roughness is high when there is a variation 
in the feed rate at any DOC (row 3, column 2) and at any 
cutting speed (row 1, column 2).  

 

(a) 

 

(b) 

 

(c) 

 
Fig. 11.  (a) Interaction plot for multi-objective function of Surface 

Roughness, (b) interaction plot for multi-objective function of Vibration, (c) 
interaction plot for multi-objective function of Cutting Force. 

This is evidenced by the minimum surface roughness, 
which is close to 2 µm for level 1 feed rate and all levels of 
DOC and cutting speed. Conversely, the maximum surface 
roughness is more than 4 µm for level 3 feed rate as well as all 
levels of DOC and cutting speed. The impact of DOC on 
surface roughness is inconsequential when cutting speed is 
taken into account (row 1, column 3), given the narrow spacing 
between the lines, as presented in Figure 11(b). The vibration is 
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notably elevated in conjunction with speed fluctuations at any 
feed rate (row 2, column 1) and at any DOC. Data presented in 
Figure 11(c) demonstrate that cutting force is significantly 
elevated when there is a variation in DOC, irrespective of the 
cutting speed and feed rate.  

 

 
Fig. 12.  Response surface optimization plot for optimum machining 

parameters and multi-objective function. 

TABLE VII.  CONFIRMATION RESULTS FOR SURFACE 
ROUGHNESS, VIBRATION AND CUTTING FORCE 

Methodology 
Optimum machining 

parameters 

Surface 

roughnes

s 

Vibratio

n 

Cutting 

Force 

 
n 

(m/min) 

f 

(mm/rev) 

d 

(mm) 
Ra (μm) V (db) Fc (N) 

Best 

experimental 

run 

345.60 0.10 0.40 2.0130 70.110 76.450 

Proposed 

model 
365.589 0.10 0.40 1.9885 70.2551 74.2909 

 
The primary objective of this study is to identify the 

optimal values of machining parameters that simultaneously 
minimize surface roughness, vibration, and cutting force. A 
desirability function analysis associated with RSM was 
performed using MINITAB to obtain the results. The results of 
the desirability function analysis optimization are presented in 
Figure 12. The optimal machining parameters for 
simultaneously minimizing surface roughness, minimum 
vibration, and minimum cutting force are: cutting speed of 
365.589 m/min, feed of 0.10 mm/rev, and a DOC of 0.40 mm. 
The desirability value is 0.979226, which is nearly equal to 1. 
The outcomes of the confirmation run for surface roughness are 
presented in Table VII. The optimal machining parameters 
predicted by the developed model are expected to result in 
reduced vibration, cutting force, and enhanced surface finish. 

VII. CONCLUSION 

MOO-MPP is a robust tool that can optimize the machining 
parameters for EN series materials, thereby enhancing product 
quality, reducing production costs, and increasing productivity. 
A variety of techniques for optimizing multi-objective 
parameters is available, each with its own set of advantages and 
disadvantages. The optimal technique is contingent upon the 
particular application and the desired outcomes. The 
aforementioned study presented an integrated application of 
Design of Experiments (DOE) and Analysis of Variance 
(ANOVA) techniques for the modeling and optimization of 
process parameters, with the objective of achieving a good 
surface finish, lower tool vibration, and the minimization of 
cutting force in the Computerized Numerical Control (CNC) 
turning process. The findings of the study can be summarized 
as follows: 

 The analysis of surface roughness revealed that the feed 
rate exerts a greater influence (92.583%) than the cutting 
speed (2.118%), while the Depth of Cut (DOC) has a 
negligible impact on the surface roughness.  

 In the analysis of vibration, it was determined that the 
cutting speed exhibited a greater contribution of 64.807%, 
followed by a feed rate of 19.662%. DOC demonstrated a 
comparatively minimal impact, with a value of 2.54%. 

 In the analysis of cutting force, it was determined that the 
DOC exhibited the greatest contribution, at 67.979%. The 
feed rate and cutting speed also demonstrated notable 
influence, with respective contributions of 19.66% and 
4.386%. 

 3D surface counterplots are a valuable tool for identifying 
the optimal conditions for achieving specific surface 
roughness values. The 3D surface plots of the responses 
versus the process parameters indicate the existence of 
interaction effects. The 3D surface and contour plots 
constructed during the study can be utilized to identify the 
optimal machining parameters for the attainment of specific 
surface roughness, vibration, and cutting force values. 
These findings can be utilized by machine tool 
manufacturers to provide a range of cutting speeds, feeds, 
and DOC for specific applications. 

 The response surface methodology employed in the recent 
study has been proven to be an efficacious instrument for 
the analysis of the CNC turning process. 

 The aforementioned approach may be recommended for the 
modeling and multi-output optimization of diverse 
machining processes. 

Further research could investigate the integration of real-
time adaptive control systems, enabling the optimization 
framework to modify machining parameters in response to 
real-time data. Furthermore, the inclusion of a more diverse 
range of EN series materials and machining conditions in the 
dataset would enhance the model's ability to generalize across a 
broader range of scenarios. An investigation into the 
environmental impact and sustainability of optimized 
machining processes may also prove beneficial. Ultimately, 
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collaboration with industry partners to validate the optimization 
and predictive models in real-world settings would ensure 
practical applicability and facilitate further advancements in 
machining technology. 
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