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ABSTRACT 

Production planning in supply chain management faces considerable challenges due to the dynamics and 

unpredictability of the production environment. Decision support systems based on the evolution of 

artificial intelligence can provide innovative solutions. In this paper, an approach based on machine 

learning techniques to solve the problem of scheduling the production of N products on M non-identical 

parallel machines is proposed. Using regression and classification models, our approach aims to predict 

overall production costs and assign products to the right machines. Some experiments carried out on 

simulated data sets demonstrate the relevance of the proposed approach. In particular, the XGBoost model 

stands out for its superior performance compared with the other tested ML algorithms. The proposed 

approach makes a significant contribution to the optimization of production scheduling, offering 

significant potential for improvement in Supply Chain Management. 

Keywords-decision support system; machine learning; scheduling problem; supply chain management 

I. INTRODUCTION  

Decision-making is a major challenge, especially in 
complex or conflictual situations. The use of computers to 
assist decision-makers has become indispensable when the 
amount of data and the number of constraints to be managed 
increase significantly. The concept of Decision Support 
Systems (DSS) was developed in the 1970s [1]. The work 
presented in [2] defined as computer-based technological 
solutions supporting complex decision-making and problem-
solving. Since then, DSS applications have evolved 
considerably. Once based on limited user interfaces and 
restricted databases, they were primarily aimed at individual 
decision-makers. With technological progress and increasing 
digitization, modern DSS offer advanced functionalities for 
groups of decision-makers, and even for virtual teams, enabling 
inter-organizational collaboration [2]. With the rise of Artificial 
Intelligence (AI), which is now ubiquitous, DSSs have 

benefited from various areas of AI, becoming smarter and able 
to process unstructured data and model complex relationships. 
In Supply Chain Management (SCM), the adoption of AI-based 
methods, particularly Machine Learning (ML), is providing 
innovative solutions to complex decision-making problems, 
particularly in the face of uncertainty and multiple constraints 
[1].  However, information systems dealing with production 
scheduling face considerable difficulties [2] due to the 
dynamics and unpredictability of the production environment, 
and the complexity of combinatorial problems. To meet these 
challenges, it is essential to support production planning with 
intelligent algorithms capable of analyzing and exploiting 
various types of data. 

Recent literature, circumscribed between 2018 and 2023, 
highlights the growing use of ML to refine scheduling 
processes at the heart of SCM. It shows that most research 
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works are characterized by their heterogeneity both in terms of 
methods and targeted industrial applications. 

Authors in [3] conceptualized a genetic programming-based 
heuristic for optimizing project scheduling with limited 
resources. Their distinctive approach relies on the creation of 
priority rules through genetic mutation and recombination. 
Following this innovative impulse, authors in [4] explored the 
use of the Deep Q Network algorithm for automated scheduling 
of production tasks, eliminating the need for human 
intervention. Authors in [5] took a turn towards real-time 
scheduling in a smart factory, using Reinforcement Learning to 
overcome the constraints of the MDRs method, demonstrating 
increased flexibility in the face of variations in the production 
environment. In 2019 authors in [6] presented a predictive-
reactive framework that combines ML and simulation-based 
optimization to refine production planning. Authors in [7] 
focused on a multi-objective flow shop scheduling problem, 
developing a mathematical model to minimize various 
performance indicators using opposing learning strategies and 
cluster analysis. Reinforcement learning has been successfully 
applied in the context of chemical production by [8] and in the 
integration of genetic algorithms and ant colonies by the 
authors in [9] who sought to accelerate the convergence of 
scheduling solutions. Authors in [10] presented a reordering 
framework, considering balancing schedule adjustments with 
the accumulation of delays. Authors in [11] developed a hybrid 
control solution combining Big Data techniques and ML for 
reactive management of predictive production planning 
systems. Authors in [12] took a turn towards automating the 
solution of job-shop scheduling problems, with the use of a 
graphical neural network to improve the generalization of 
solutions. Authors in [13] dealt with customer order scheduling 
using a two-stage optimization method, incorporating ML to 
refine production schedules. Authors in [14] recommended the 
use of decision trees to select priority rules, associating 
performance indicators with specific rules. The application of 
Neuro Evolution of Augmenting Topologies (NEAT) [15] in 
complex scheduling problems has demonstrated its superiority 
over traditional methods, offering a new perspective for hybrid 
two-stage workshops. Authors in [16] considered the use of 
ML for estimating processing times, thus optimizing the 
scheduling of parallel machines. Authors in [17] integrated 
predictive maintenance into production scheduling, employing 
deep learning models to predict equipment service life. 
Significant advances were made by the authors in [17, 18] who 
used the graphical neural network for applications in job-shop 
scheduling and flexible workshop planning. In addition, 
authors in [20] applied Genetic Programming to flexible shop 
scheduling, while authors in [19] combined ML with reasoning 
about domain problems to develop efficient dispatching rules. 
More recently, authors in [21] adopted a deep Q-learning 
approach to solve job-shop scheduling problems, and authors in 
[22] presented a Markov Decision Process model for 
reinforcement learning in scheduling. Authors in [23] improved 
the solution of job-shop scheduling problems by exploiting ML 
techniques to predict an initial solution. Finally, authors in [24, 
25] have pushed the boundaries of Deep Reinforcement 
Learning, combining it with graphical neural networks to 
address flexible job shop scheduling. 

This review highlights the digital transformation driven by 
ML, enabling more responsive, efficient, and flexible SCM, 
testifying to a burgeoning field of research and promising 
prospects for the future. Although previous research has 
significantly contributed to the integration of ML techniques 
into scheduling within supply chain management, certain gaps 
remain and serve as the basis for our study. Firstly, except for 
[22], the reviewed works focus on specific production 
environments and do not discuss the ability to generalize 
scheduling solutions to different industries or diversified 
production systems. Secondly, although powerful, the models 
used can present significant complexity in their configuration 
and optimization, requiring advanced technical expertise. 
Thirdly, the integration of predictive maintenance into 
scheduling is little addressed, with only [10, 16] having 
explored this aspect. These studies do not address how 
scheduling and predictive maintenance can be jointly optimized 
to improve both equipment durability and efficiency. 

Our research aims to fill these gaps by developing a 
scheduling method that dynamically adapts to variations in 
production conditions and integrates predictive maintenance, 
thereby increasing the accuracy and practical applicability of 
scheduling solutions. 

II. MATERIALS AND METHODS 

A. Scheduling Poblem Analysis 

Production scheduling is defined as the allocation of 
available production resources over time to meet some set of 
performance criteria [26]. As mentioned in [27], production 
scheduling is concerned with the efficient allocation of 
resources over time for the manufacture of goods. In general, it 
aims to satisfy cost minimization or production maximization 
objectives and to improve the efficiency of a supply chain in 
terms of delivery times and production costs.  

This paper deals with a scheduling problem where the 
resources are non-identical parallel machines, and the tasks are 
an order book containing several items to be produced. The 
problem is complex in view of the number of constraints to be 
satisfied. The constraints considered in this work are: 

1. Delivery time constraint: An order book has a delivery 
start and end date. This duration is divided into a unit of 
time called a period (an hour in our case). 

2. Constraint of heterogeneous machines: Not all machines 
are identical; there are special machines that produce only 
a few products. 

3. Production cost constraint: An item can be produced on 
several machines, with different costs, and in a different 
number of periods. The quantity produced per hour differs 
from one machine to another. The choice of machine for a 
product must therefore take this constraint into account. 

4. Maintenance schedule constraints: The various machines 
are serviced at preventive maintenance periods known in 
advance. This schedule is set by the maintenance managers 
prior to the planning of product scheduling on the 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16317-16325 16319  
 

www.etasr.com Ait Ben Hamou et al.: Design of a Machine Learning-based Decision Support System for Product … 

 

machines. No production will take place on these lines 
during these periods. 

5. Delivery window constraint for an order: The end of 
production of a product must respect the delivery window. 
In fact, the end of production must be before the final date 
set by the customer, and must not be before the delivery 
start date, to avoid stockpiling the produced items. This 
storage can be costly. 

The complexity of this problem lies in the heterogeneity of 
resources and the non-authorization of preemption, as well as 
the delivery windows imposed by customers. This classifies it 
as an NP-Hard problem. The vast majority of scheduling 
problems are NP-Hard and therefore cannot be formulated as 
linear programs [28]. Solving this scheduling problem requires 
accurate, representative data. In the context of this study, we 
have opted for the use of simulation data, generated using 
Python programs specifically developed for this purpose. The 
following section details these data sets, covering both 
structured data, data from the scheduling problems studied and 
the optimal solutions generated. 

B. Dataset   

In the absence of real data suited to our research objectives, 
we proceeded in three phases to create a dataset representative 
of scheduling problems for N products on M non-identical 
machines. 

The first phase is devoted to generating the structural data 
essential for modeling production instances. This process 
includes determining whether it is possible to produce item i on 
machine j, and quantifying the operational parameters if 
production is feasible. For each item-machine pair where 
production is possible, the program establishes the production 
rate, expressed in quantity of finished products per hour, and 
the hourly cost associated with this production for each 
machine concerned.  

In the second phase, we generated scheduling problem 
instances. Each instance is defined by a specific list of 
products, identified by Pi, which must be produced. For each 
product, the program determines not only the quantity required 
for production, but also the delivery period. In addition, the 
program assigns maintenance time slots to each machine, 
delimited by a start and end date, during which the machines 
are not available for production.  

Finally, the third phase consists of calculating the set of 
possible solutions and selecting the optimum solution in terms 
of minimum production cost.  

Algorithm 1 illustrates the method used to calculate the 
optimal solution to each instance of the scheduling problem. It 
starts by establishing a scheduling table, considering machine 
maintenance periods (line 2). For each possible permutation of 
products (line 4), the algorithm evaluates the cost and 
allocation of products to machines, rejecting unfeasible 
permutations (line 10) and selecting the machine with the 
lowest production cost for each product (line 12). The 
permutation that results in the lowest total cost is recorded as 

the optimum solution (line 19) and stored in the database (line 
22). 

Although the algorithm guarantees the discovery of the 
optimal solution, it is mainly applicable to small and medium-
sized instances due to the increasing computational complexity 
of large datasets. 

Algorithm 1: 

1 FUNCTION generate solutions(id_problem)  

2  INIT solution with maintenance periods  

3  RETRIEVE problem details for id_problem  

4  FOR EACH permutation of products  

5 INITIALIZE cost for permutation  

6 FOR EACH product in permutation  

7   FIND manufacturable machines  

8   GET list of possible machines  

9   IF no possible machines  

10  REJECT permutation  

11   ELSE  

12       SELECT least cost machine  

13  ASSIGN product to machine  

14  UPDATE solution  

15  UPDATE cost for permutation  

16 END FOR  

17 IF current cost < optimal cost  

18   SET optimal cost to current cost  

19   RECORD optimal solution & 

20      RECORD permutation  

21 END FOR  

22 STORE optimal solution in database  

23 END FUNCTION  

24 

25 FOR EACH problem instance  

26   CALL generate_solutions (instance id)  

24 END FOR 
 

Our dataset comprises a total of 25710 instances of the 
problem of scheduling 6 products on 3 machines over a 12-
period horizon, with their optimal solutions. This dataset is 
stored and managed using MongoDB, a NoSQL database 
management system renowned for its flexibility and 
performance with large amounts of data. 

C. Data Pre-Processing and Standardization  

Data pre-processing is an important step in our 
methodology, not least because of the heterogeneous nature of 
our feature types, which come in the form of vectors, matrices 
and dictionaries. To make these complex data suitable for ML 
models, specific pre-processing was necessary, as summarized 
in TABLE I for a scheduling problem involving p products on 
m machines. The total number of features is: 4p+2m+3pm+1 in 
our case, where p = 6 and m = 3, the total value is 85. To 
standardize continuous characteristics, such as product 
quantities and production rates, we used StandardAero from the 
scikit-learn library. This tool adjusts each feature so that the 
mean is zero and the standard deviation is one, making 
predictive models less sensitive to the varying scales of 
different features and contributing to faster convergence during 
learning. 
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TABLE I. DATA PRE-PROCESSING 

Features Description Count 

quantity_p{i} Quantity of product requested P{i} p 
delivery_start_hour_p{i} Delivery start time of P{i} p 
delivery_end_hour_p{i} P{i} delivery end time p 
P{i}_producible_m{j} Is P{i} productive by M{j} p * m 

P{i}_production_cost_m{j} Cost of one period of production of P{i} by machine M{j} p * m 
P{i}_production_qty_m{j} Quantity of P{i} that can be produced by M{j} per period p * m 

maint_start_hour_m{k} Machine maintenance start period M{k} m 
maint_end_hour_m{k} Machine maintenance end time M{k} m 

P{i} = k The product P{i} will be assigned to the machine M{k}. p 
optimal_cost Optimum production cost 1 

D. Proposed Methodology 

Our approach to solving the production scheduling problem 
in a supply chain that integrates ML into a structured DSS.  
Figure 1 shows an overview of the proposed DSS. Upstream, 
structural, and problem data feed the ML model. The latter then 
performs classification and regression predictions, which are 
then integrated into the ordination program to generate the final 
scheduling solution. The diagram of our methodology details 
the following components: 

1) Composition of the Dataset 

The dataset is composed of two categories of data:  

 Structural data: This data is fixed and does not vary 
between different scheduling problems. It includes 
information such as production rates and costs associated 
with producing a product on a given machine. 

 Problem data: Specific to each problem instance, this data 
includes quantities of each product to be produced, time 
windows for product delivery, and scheduled maintenance 
periods for each machine. 

2) Output Characteristics 

There are two types of output characteristics: 

 Categorical characteristics (P{i}): These represent the 
assignment of a product to a machine, where each product 
takes as its value the number of the machine assigned to it. 

 Continuous characteristic (Optimal cost): A single 
characteristic reflecting the optimal production cost for the 
entire scheduling problem. 

3) ML Models  

 Regression for optimal cost: We use regression models to 
predict the continuous characteristic of optimal cost, thus 
optimizing the selection of production parameters to 
minimize expenditure. 

 Classification for product assignment: Classification 
models are used to determine the assignment of products to 
machines, with the creation of a separate model for each 
product to predict the specific machine to which it will be 
assigned. 

 Post-prediction ordering: Having predicted the assignment 
of products to machines, a third Python program is used to 
order the products assigned to each machine, respecting the 
delivery time constraints associated with each product. 

This methodology provides a comprehensive framework for 
integrating ML into production scheduling problems, 
addressing both production assignment forecasting and 
production cost estimation. The aim is to provide optimal 
scheduling that respects all the operational and economic 
constraints inherent in SCM. 

 

 
Fig. 1.  The proposed methodology. 

4) ML Algorithms Used 

To address the two aspects of our production scheduling 
problem, optimal cost prediction and product allocation to 
machines, we have selected a suite of ML algorithms [29] 
based on their performance in regression and classification. ML 
algorithms used for regression (optimal cost prediction): 

 Linear regression: The foundation of predictive methods for 
its interpretability and speed of calculation, used here as a 
basic point of comparison. 

 KNN Regression (k=11): A decisive hyperparameter, the 
number of nearest neighbors, was chosen after an 
exhaustive search. k=11 was determined as offering the best 
performance from a range of values from 1 to 50. Figure 2 
shows the score obtained as a function of the value of k. 

 Regression Decision Tree (max_depth = 9): In a similar 
way, the maximum depth of the tree has been optimized to 
avoid overlearning while capturing the complexity of the 
data as explained in   Figure 3. 
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Fig. 2.  Performance of the KNN model as a  function of the number of 
neighbors. 

 
Fig. 3.  Decision Tree regression performance as a function of maximum 
tree depth. 

 Extreme Gradient Boosting (XGBoost) Regression: the 
model proposed by [30] renowned for its efficiency and 
accuracy, is an advanced implementation of the gradient 
boosting algorithm. 

5) ML Algorithms used for Classification (Product 
Assignment): 

 Logistic regression: Despite its simplicity, this robust model 
is the benchmark for binary and multiclass classification. 

 KNN Classification (k=11): The same k selection principle 
was applied here, ensuring consistency between our 
regression and classification models. 

 Decision Tree Classification. 

 XGBoost Classification: Employs the same powerful 
algorithm as for regression but adapted for categorical 
results. 

Each categorical output characteristic (P{i}) was addressed 
with a separate model, enabling more accurate prediction and 
fine-grained analysis of individual machine performance. 

E. Metrics Used 

To evaluate the effectiveness of the ML models, we chose 
recognized metrics that reflect the objectives of our study.  

For regression models, performance was measured by 
RMSE (Root Mean Square Error), R2 score, MAE (Mean 
Absolute Error) and Explained Variance Score: 

 RMSE: This metric is particularly informative as it 
amplifies and penalizes larger errors, providing a strict 
assessment of performance. 

���� � ��
� ∑ 
��  ���������    (1) 

 R² score (coefficient of determination): R² is a statistical 
measure that tells us how much of the variance in the data is 
explained by the model. 

�� � 1  ∑ 
������������
∑ 
������������

    (2) 

 MAE: Gives an idea of the mean error without squaring it, 
thus offering a more direct perspective of the mean absolute 
error. 

MAE � �
� ∑ |��  ���|����     (3) 

 Explained Variance Score: To see how well our model 
explains the variation in the data. This metric measures the 
proportion of response variance that can be predicted from 
the explanatory variables. 

Explained Variance � 1  +,-
��./�
0,-
��   (4) 

where yi is the true values of y, ��i is the predicted values of y 
and y� is the average value of y. 

For classification models, we evaluated performance using 
metrics that capture how effectively our models correctly 
identify target classes. In the following TP represents True 
Positives, FP represents False Positives, TN represents True 
Negatives, and FN represents False Negatives. 

 Accuracy: This metric calculates the percentage of correct 
predictions relative to the total number of predictions made, 
providing an overall measure of model performance. 

Accuracy � 34536
3789: ;<=>?@ 7A B@?CDE8D7;F  (5) 

 Precision: Reflects the proportion of actual positive 
identifications among the items labeled as positive by the 
model. It is an indicator of the reliability of the model's 
positive predictions [31]. 

Precision �  34
345J4    (6) 

 Recall (or Sensitivity): This metric measures the model's 
ability to identify all real instances of a particular class. 

Recall �  34
345J6    (7) 

 F1-Score: The harmonic mean of Precision and Recall, 
provides a single score that balances these two metrics, 
particularly useful when classes are unbalanced. 

F1  Score � 2 O  4@?EDFD7;OP?E9::
4@?EDFD7;5P?E9::  (8) 
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III. EXPERIMENTAL RESULTS 

A. Regression Results 

Table II summarizes the performance of each model 
according to RMSE, MAE, Explained Variance, and R² Score, 
allowing a direct comparison of their effectiveness in 
predicting production costs. The results indicate that XGBoost 
showed the best performance with an RMSE of 1090.16 and an 
R² Score of 0.96, suggesting a strong fit with the test data, 
which implies a superior ability of this model to model the 
complexity of production costs compared to the other models 
tested. 

TABLE II. PERFORMANCE OF ML MODELS ACCORDING 
TO RMSE, MAE, EXPLAINED VARIANCE, AND R2 SCORE 

Model ML RMSE MAE 
Explained 

Variance 

R2 

Score 

KNN regression (K=11) 2900.80 2242.57 0.74 0.74 
Decision Tree 1676.67 1099.49 0.91 0.91 

Linear regression 1415.74 880.53 0.94 0.94 
XGBoost regression 1090.16 707.51 0.96 0.96 

 
Figure 4 shows a comparative RMSE plot for each model, 

visually illustrating the relative effectiveness of each algorithm. 
XGBoost's clear superiority on this graph reflects its robustness 
under the varied conditions of our dataset. 

 

 
Fig. 4.  Graphical comparison of RMSE values. 

The poor performance of the KNN model is perhaps 
explained by the sensitivity to scale of the input features. Some 
features have much wider value ranges than others, and will 
dominate the distance between points, which can lead to poor 
performance. Before the standardization of input features, the 
score was much lower. Our data have non-linear relationships 
that KNN has difficulty capturing with its proximity-based 
prediction method, so the XGBoost model, which can capture 
non-linear relationships and interactions between features, was 
able to perform better. To visualize how close the predictions 
are to the actual values, Figure   5 shows scatter plots for the ML 
regression models used. Scatter plots show the relationship 
between model-predicted values (y-axis) and actual values (x-
axis). Ideally, predictions should be as close as possible to the 
black diagonal line, which represents a perfect prediction 
where predicted values are equal to actual values. 

 
Fig. 5.  Comparison of predicted vs. actual values for different regression 
models. 

For the Decision Tree algorithm, the points appear to be 
close to the ideal line, indicating that the model's predictions 
are relatively accurate. For the KNN, the predictions are a little 
more scattered in relation to the ideal line, which could indicate 
less precision in the predictions compared to the Decision Tree. 
The Linear Regression plot shows that predictions are tightly 
aligned around the ideal line, suggesting that this model has 
performed well and that predictions are consistent with actual 
values. Finally, the XGBoost Regression shows a distribution 
of points very close to the ideal line, suggesting that this model 
has superior predictive ability compared to other models, with 
predictions very much aligned with actual values. 

B. Classification Results 

 The metrics used to evaluate these models were Accuracy, 
Precision, Recall, and F1-Score.Table III presents these metrics 
for each product feature (P1-P6), highlighting the models' 
performance in correctly assigning products to machines. For 
example, for P1, XGBoost outperformed the other models with 
an Accuracy of 0.96 and an F1-Score of 0.84, demonstrating its 
ability to correctly classify products with great accuracy and 
efficiency. For P3, all models achieve perfection with a score 
of 1.00 on all metrics, suggesting that P3 has highly distinctive 
features that are easily learned by all models because the 
structured data shows that P3 can only be produced by the m3 
machine, and the value of P3 is the same for all dataset 
instances. Figure 6 shows the ROC curves for feature P1 
generated by different ML algorithms. These curves are a 
visual indicator of the discriminatory performance of the 
models, where an Area Under the Curve (AUC) close to 1.0 
testifies to excellent classification ability. For P1, the XGBoost 
model clearly stands out with an AUC of 0.97, denoting near-
perfect accuracy in class distinction. Next are the logistic 
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regression model and the decision tree, with respective AUCs 
of 0.90 and 0.77, indicating significant classification 
competence, albeit slightly inferior to XGBoost. The KNN 
model, despite an AUC of 0.69, shows a more moderate 
performance, suggesting a less clear distinction between classes 
for this specific model. These ROC curves confirm the 
robustness of the XGBoost approach in our classification 
context, reaffirming its potential as a predominant tool for the 
accurate allocation of products to machines in DSSs. 

TABLE III. RESULTS OF ML CLASSIFICATION MODEL 

 ML Model Accuracy Precision Recall F1-Score 

P1 

KNN 0.92 0.96 0.50 0.48 
Decision Tree 0.91 0.72 0.77 0.74 

Logistic Regression 0.92 0.77 0.60 0.63 
XGBoost 0.96 0.89 0.80 0.84 

P2 

KNN 0.88 0.63 0.33 0.31 
Decision Tree 0.87 0.57 0.55 0.56 

Logistic Regression 0.89 0.64 0.45 0.49 
XGBoost 0.92 0.75 0.61 0.67 

P3 

KNN 1.00 1.00 1.00 1.00 
Decision Tree 1.00 1.00 1.00 1.00 

Logistic Regression 1.00 1.00 1.00 1.00 
XGBoost 1.00 1.00 1.00 1.00 

P4 

KNN 0.87 0.29 0.33 0.31 
Decision Tree 0.76 0.44 0.49 0.46 

Logistic Regression 0.88 0.64 0.46 0.49 
XGBoost 0.92 0.76 0.62 0.67 

P5 

KNN 0.96 0.48 0.50 0.49 
Decision Tree 0.97 0.80 0.79 0.79 

Logistic Regression 0.96 0.75 0.52 0.53 
XGBoost 0.98 0.94 0.81 0.86 

P6 

KNN 0.97 0.48 0.50 0.49 
Decision Tree 0.98 0.80 0.85 0.83 

Logistic Regression 0.97 0.68 0.52 0.53 
XGBoost 0.99 0.98 0.79 0.86 

 

 
Fig. 6.  Receiver Operating Characteristic (ROC) curves for P1. 

The following section will explore the implications of these 
results, analyzing the performance of the different models and 
the potential reasons behind the observed trends. We will also 
discuss the models' limitations and prospects for future 
research. 

 
Fig. 7.  Confusion Matrices for P1. 

IV. DISCUSSION 

The experimental results presented highlight the robustness 
of the XGBoost approach, which consistently outperformed 
other classification models in our study. With near-perfect 
ROC curve AUCs for features P1, P5 and P6, XGBoost proved 
its ability to operate with high accuracy, even when 
classification conditions were less distinct and more complex. 

The previous section illustrated XGBoost's superiority with 
metrics such as Accuracy, Precision and F1-Score, which, in 
correlation with the ROC curves, strengthen the case for its 
adoption for similar classification tasks in production contexts. 
Notably, for features where other models faltered, such as P5 
and P6, XGBoost demonstrated exceptional performance, 
suggesting its ability to handle the variability and complexity 
inherent in production data. These results are consistent with 
the findings of other research in the field of ML on other 
problems [31-36]. However, it's important to recognize that, 
despite these successes, there are inherent limitations to the 
application of ML models in real-world environments. The 
models, while accurate, are subject to the quality of the input 
data and can be sensitive to use cases that deviate from training 
conditions.  

Furthermore, the evaluation of regression models showed 
that the XGBoost model, with the lowest RMSE and the 
highest R² Score, illustrated an exceptional ability to anticipate 
costs accurately and consistently. Scatter plots of predictions 
versus actual values confirmed XGBoost's superiority, 
reflecting a dense concentration of points along the ideal line, 
symbolizing near-perfect predictions. The linear regression and 
Decision Tree models also performed well, but with greater 
variance, indicating slightly lower accuracy in cost modeling. 
The KNN model, despite its simplicity and speed of execution, 
showed fewer convincing results in terms of RMSE and R², 
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which can be attributed to its difficulty in capturing the 
complexity and non-linearity of the data.  

Although our results highlight the power of the XGBoost 
approach for classifying production data, a notable constraint of 
our study is the scalability of exhaustive solution computation. 
This method, while optimal for small instances, becomes 
impractical for large datasets due to its exponential 
computational cost. This reality points to the urgency of 
adopting approximation strategies or heuristics that could 
deliver near-optimal solutions faster, thus better aligning with 
the dynamic requirements of modern production environments. 

In addition, this research paves the way for future 
investigations, where the exploration of more advanced 
techniques, such as deep learning or hyperparameter 
optimization, could be employed to further improve model 
performance. Future research could also examine the impact of 
integrating real-time feedback and dynamic adjustments into 
models, aiming to make production systems even more 
responsive and economically efficient. 

V. CONCLUSION 

This research has tackled the complex challenge of 
production scheduling by combining the capabilities of ML 
with a structured DSS for SCM. Although previous research 
has significantly contributed to integrating ML techniques into 
scheduling within SCM, several issues remain open. 
Specifically, (a) many contributions deal with specific 
production environments and do not discuss the ability to 
generalize scheduling solutions to different industries or 
diversified production systems, (b) the proposed models 
present significant complexity in their configuration and 
optimization, requiring advanced technical expertise, and (c) 
the integration of predictive maintenance into scheduling is 
rarely addressed. 

To address this issue, we propose a methodology that offers 
a comprehensive approach integrating structural and problem-
specific data to feed an effective predictive model, having the 
advantage of optimizing costs and product allocation to 
machines. The strength of our approach lies in its ability to 
dynamically adapt scheduling solutions to variations in 
production data, while taking operational constraints into 
account. Through the elaboration of a rich and well-structured 
dataset, we were able to demonstrate the relevance of 
regression models for estimating optimal costs and 
classification models for predicting product assignment. Our 
approach has demonstrated accurate prediction of production 
assignments while providing cost estimates in line with current 
economic requirements. The proposed methodology 
incorporates a post-prediction ordering stage, which enables the 
products assigned to each machine to be logically organized, 
guaranteeing on-time delivery and maximizing the efficiency 
of the production process. This refinement is crucial for supply 
chain practitioners who are looking for solutions that are not 
only cost-optimized, but also achievable on time. However, we 
recognize that exhaustive computation of optimal solutions for 
all permutations has limitations in terms of scalability, 
particularly in the case of large data sets. This limitation opens 
up prospects for the integration of heuristic and optimization 

methods that could speed up the search for solutions while 
maintaining acceptable quality. 

To summarize, our contribution provides a solid foundation 
for the future integration of intelligent DSSs into production 
scheduling. Future research could focus on improving 
computational efficiency and exploring even more 
sophisticated predictive models, propelling the production 
industry into an era of digitization and automation. 
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