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ABSTRACT 

In this study, a phase-field model with imperfect interface is developed to simulate the crack behavior of 
concrete at the mesoscale level. Concrete is treated as a biphasic material, comprising aggregates, a 

cementitious matrix, and interfaces between them, which are characterized using a level set function. Both 

cracks and interfaces are represented in a smeared sense by scalar fields ranging from 0 to 1. On the other 

hand, the displacement jump at the interface is described by an auxiliary field over the entire domain. This 

model effectively captures the complex crack patterns in concrete, including debonding cracks and bulk 

cracks. Furthermore, the results show that a strong interface can significantly enhance the mechanical 
performance of the material. 

Keywords-phase field model; smeared crack and interface; level set function; imperfect interface  

I. INTRODUCTION  

Concrete is a multiphasic material comprising aggregate, 
mortar matrix, pores, and other weak inclusions, and is widely 
utilized in engineering structures due to its high compressive 
strength and durability. Despite these advantages, it has two 
undesirable properties: low tensile strength and brittleness, 
making cracking its primary failure mode. As a heterogeneous 
material, the randomly distributed phases and the interface 
between them significantly influence crack nucleation location, 
propagation path, and failure mode, impacting the performance 
and reliability of structures at the marco scale. In order to 
improve these negative properties of concrete and propose an 
optimal design, it is desirable to conduct numerical simulations 
at the mesoscale level for a deeper understanding of the failure 
mechanism of this material [1-4]. Due to its heterogeneous 
nature, concrete exhibits complex crack paths at the mesoscale, 
including branching, coalescence, bridging, and the 
competition between interface and bulk cracking. 
Consequently, simulating crack propagation behavior in 
concrete poses a challenging task. Various methods are 
available for modeling crack propagation in solids, which can 
be broadly categorized into two groups: discrete and smeared 
methods. In the first group, cracks are treated as discontinuities. 
Several methods within this category, such as node splitting 

[5], discrete element modeling [6, 7], and cohesive surfaces [8], 
have been utilized. However, a drawback of this approach is 
the strong mesh dependency of the crack path, particularly 
when remeshing is required. In the second group, cracks are 
represented as continua through the introduction of reduced 
material stiffness and/ or strength [9, 10] or via an auxiliary 
scalar variable [11-13]. Among these methods, the phase field 
method has recently garnered increasing attention from 
researchers due to its efficacy in simulating complex crack 
paths. This approach uses a scalar variable ranging from 0 to 1 
to represent the intact and fully broken material. The complex 
crack paths are effectively and automatically modelled by the 
evolution of the phases field variable using only a fixed finite 
element mesh. The tedious task of crack tracking is avoided, 
presenting a significant advantage over the discrete crack 
methods. 

The interface between phases plays a crucial role in the 
fracture behavior of heterogeneous materials. Depending on the 
properties of the interface, there is a competition between bulk 
cracks and interfacial cracks. Authors in [1] discuss the choice 
of an appropriate phase field model to describe the fracture 
behavior of concrete at the mesoscale level by assuming a 
perfect interface between aggregate and cementitious matrix. 
Thus, the post-cracking behavior from the numerical model 
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drops more quickly than observed in experiments. Therefore 
modeling interfacial cracks using the phase field method 
remains an ongoing and challenging task. To address this, the 
cohesive law at the interface must be incorporated into the 
phase field method. Based on the classic phase field theory, 
author in [14] proposes a phase-field regularized cohesive-zone 
model for the cohesive fracture. In this approach, with a special 
choice of degradation function and the homogeneous energy 
dissipation function, the phase field method converges to the 
cohesive zone model. Authors in [15] introduced a cohesive 
phase field model wherein the displacement jump at the 
interface is approximated through a smooth transition defined 
by a level set function and two points near the interface. 
However, the selection of the location for these two points is 
somewhat arbitrary and heavily dependent on the specific 
problem. Authors in [16] proposed a cohesive phase field 
model that describes the crack and the interface in a smeared 
manner. Additionally, this approach utilizes an auxiliary field 
to represent the displacement jump at the interface. This model 
easily incorporates the cohesive law, contrasting with the phase 
field model of [9]. 

In our recent publication [17], we implemented the phase 
field model with imperfect interface proposed in [16] and 
conducted an analysis of the accuracy and influence of certain 
model parameters. This was achieved by comparing the 
numerical results with the analytical solution of a one-
dimensional bar under tension. In this paper, this model is 
utilized to investigate the failure mechanism of concrete at the 
mesoscale level, taking into account the influence of the 
imperfect interface between the aggregates and cement matrix. 
In this paper, we present the finite element implementation of 
this model along with two numerical examples are presented to 
demonstrate the influence of the imperfect interface on the 
failure mechanism of concrete. 

II. PHASE FIELD MODEL WITH IMPERFECT 

INTERFACE 

Let us consider a domain � ⊂ ℛ� , with � � 1,2,3, 
describing a concrete specimen which contain aggregate, 
matrix and the interface between them. 
� ∈  ℛ�� represents 
the external boundary of �. Let Γ and Γ� of dimension � � 1 
represent the crack and the interface in the domain � , 
respectively. Depending on the characteristics of the interface, 
the crack may propagate either through the bulk material or 
along the interface between the matrix and the inclusion. In this 
work, both the crack and the interface are represented in 
smeared sense by a scalar phase field ���, �� ∈ �0,1�  and a 
fixed scalar ���� ∈ �0,1�, respectively (Figure 1). 

 

 

Fig. 1.  (a) A domain contain discrete interface and sharp crack, (b) 

smeared representation of interface (red), (c) smeared representation of crack 

(red). 

A. Phase Field Approximation of Crack and Interface 

The phase field distribution ���, �� and the interface ���� 
are determined by solving the following variational problem: 

���� � �� !"#$%∈&' Γ%���( ,  

Γ%��� � ) *%+  ��, ,��-�  ,   (1) 

.% � /�|���� � 1 1# 2 ∀� ∈  Γ 4. 
���� � �� 5"#$6∈&7 Γ6���8 , Γ6��� �   ) *6��, ,��-�+   ,   (2) 

 .6 � /�|���� � 1 on  Γ6  ∀� ∈  Γ6  4 . 
where Γ%���  denotes the total crack length and Γ6 ��� represents the total interface length. *%��, ,��  and *6��, ,�� are the crack density function per unit volume and 
interface density function per unit volume, respectively. These 
density functions are defined by: 

*%��, ,�� �  �;ℓ' �; = ℓ'; ,� ∙ ,�  (3) 

*6��, ,�� �  �;ℓ7 �; = ℓ7; ,� ∙ ,�          (4) 

where ℓ% , ℓ6  are length scale parameters which represent the 

widths of regularized crack and interface, respectively. When ℓ?, ℓ6  → 0, the smeared crack and interface converge towards 

the discrete crack and interface. 

The boundary problem for the smeared crack is defined as 
follows: 

A����  � ℓ%; B���� � 0           ������� � 1                          �2�,��D� ∙ E   � 0                 �
��  (5) 

The boundary problem for the smeared interface can be 
expressed as: 

A����  � ℓ6; B���� � 0       ������� � 1                      �26�,��D� ∙ E   � 0             �
��             (6) 

B. Regularized Representation of Displacement Jump within 

the Interface 

When a crack propagates into the interface between the 
aggregate and the matrix, it induces debonding phenomena. To 
accurately simulate this behavior, it is essential to integrate the 
cohesive law to describe the imperfect interface into the phase-
field method. This model establishes a relationship between 
tractions F  and displacement jumps ⟦H⟧  along the interface 
through the following equation: 

F � JK�⟦H⟧,L�J⟦H⟧                   (7) 

where M�⟦H⟧, L�  represents the fracture energy function, 
indicating the energy dissipation upon the creation of a unit 
crack surface, while L is the history parameter. In this cohesive 
fracture model, the energy is released gradually. Various 
cohesive laws exist in the literature, such as the Xu–Needleman 
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law and the bilinear law, which can be readily incorporated into 
the method. For this study, we adopt the Xu–Needleman law, 
defining tractions in the normal and shear directions as follows: 

$N � KOPQ
⟦RQ⟧PQ SDT U� ⟦RQ⟧PQ V SDT U� ⟦RW⟧X

PWX V  

$Y � ;KOPW
⟦RW⟧PW U1 = ⟦RQ⟧PQ V SDT U� ⟦RQ⟧PQ V SDT U� ⟦RW⟧X

PWX V   (8) 

where ZN and ZY represent the characteristic length parameters 

defined by ZN � MR/�$RS�  and ZY � MR/ \$R]�; S^  with S � exp�1�, and $R, and MR represent the fracture strength and 
fracture toughness at the interface, respectively. 

In a discrete formulation context, the crack opening at the 
interface is well-defined. However, within a regularization 
framework, both the crack and interface exhibit diffuse 
representations, leading to a similarly diffuse characterization 
of crack opening. Consequently, the displacement jump at Γ6 is 
replaced by an auxiliary jump field b defined as follows: ⟦H⟧��� ≈  )  b���*��, ,��-DNd�d   (9) 

where: DN � e� � �f7g ∙ Ef7  

and �f7 � h� i"#jkf7 �‖j � �‖�  

This auxiliary jump field must satisfy the following 
condition, which means that this field constant in the normal 
direction of crack/interface: 

J bJmQ = 0               (10) 

Therefore: ⟦H⟧(�) ≈  b(�)               (11) 

In order to define the interface between the aggregates and 
the cementitious matrix, the zero level set function n(�) 
proposed in [15] is used in this study. This function allows to 
define the interface with an arbitrary shape. It is defined as 
follows: 

An(�) > 0 $1� � ∈ �pn(�) < 0 $1� � ∈ �/�pn(�) = 0 $1� � ∈ 2�          (12) 

where �p denotes the set of aggregates, and �/�p the matrix. 

Thus, the normal vector Ef7
 to the interface at point � is 

defined as follows: Ef7 =   rs(�)‖rs(�)‖                  (13) 

It is noteworthty that, throughout the simulation, ,n(�) 

and Ef7
 remain constant because the interface does not evolve. 

i.e. it is determined only one at the beginning of the simulation. 

C. A Phase-Field Model for Interfacial Cohesive Fracture 

In this section, we develop a phase-field regularized zone 
model for interface modeling. We start by considering the 
potential energy of a cracked body with cohesive fracture, 
which is expressed as follows: t = ) Ψvwx (H)-�  

             + )  yz dΓ+ ) M(⟦H⟧, L)z{ d2�  (14) 

where Ψv  is the elastic energy density and  y  is the fracture 
energy of the bulk. Utilizing the smeared representation of 
crack, interface, and displacement jumps, we derive the 
regularized form of the energy t =) U (�)Ψv(H, b) +  y*% (�, ,�) + M( b, |)*6(�, ,�) ++} J bJmQ ⋅ J bJmQV -�                       (15) 

The last term in (15) enforces the constant displacement 
jumps in the normal direction and } is the penalty parameter. 
The degradation function  (�) = (1 − �); + �  characterizes 
the loss of material strength, with �  being very small and 
responsible for the stability of the solution. Subsequently, 
through the application of the principle of maximum 
dissipation and energy minimization, we derive a set of coupled 
equations for determining the phase field �(�) , the 
displacement field H(�), and the displacement jump field  b(�) 
as follows: 

�2(1 − �)� − ��ℓ' e� − ℓ%; Δ�g = 0           (�)�(�) = 1                                                (2),�(�) ∙ E   = 0                                     (
�). (16) 

⎩⎪⎪
⎨⎪
⎪⎧∇ ⋅ �(H, b, �) = �                                    (�)H(�) = ��                                                (
�R)� ⋅ � = ��                                                   (
��).*6(F( b, |) − � ⋅ �) = } J bJmQ ⋅ J bJmQ           (26)

Jb(��)JmQ = 0                                                  (
26)
 (17) 

In (16), �  is the history variable which is defined as 
follows: �(�, �) = ihD�∈��,��/Ψv�(�, �)4           (18) 

In (18), Ψv� represents the tensile part of the elastic strain 
density function. This part is utlized to describe the unilateral 
condition where the damage is due to traction. This function is 
defined as: Ψv�(H, b) = �; �〈��(�v )〉��; + ���/(�v� );4      (19) 

where �  and �  are the Lamé constants. �v  is the linearized 
strain tensor and 〈D〉± = (D ± |D|)/2  and �v±  are the 
compression and tensile parts of the strain tensor. The elastic 
strain is defined as follows: �v = ∇H − Ez7 ⊗�  b*6(�, ,�)           (20) 



Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15268-15273 15271  
 

www.etasr.com Le et al.: Phase Field Modeling of Crack Propagation in Concrete Composite with Imperfect Interface 

 

D. Finite Element Implementation 

In this section, we detail the FEM discretizations to solve 
the damage and the displacement problem. The discretization 
of the phase field, the displacement field, and the displacement 
jumps field is expressed as follows: � =  %¡v¢ → J%J� = £%¡v¢         (21) 

H =  HHv¢ → ¤¥i UJRJ�V = £RHv¢    b =   b bv¢  → ¤¥i(Ez7 ⊗�  b) = £ b bv¢,  J bJmQ = ¦ b bv¢  
where  % ,  H ,   b  and £% , £R , £ bare the vectors of the 

shape function and the matrix of the shape function derivatives 
of the phase field, displacement field, and displacement jumps 
field, respectively. ¡v¢ , Hv¢ ,  bv¢ are the nodal values of �, H 
and  b, respectively. With this discretization, firstly, we obtain 
the linear system of equations for the damage problem: §%¡ = §%     (22) 

§¡ = ) ¨©��ℓ' + 2�Nª  %«  % +  yℓ%£%« £%¬+ d� (23) 

§% = ) 2 %«+ d�    (24) 

Secondly, we obtain the nonlinear system of equations for 
the displacement field and the displacement jumps field as 
follows: ℱpN�,H(H, b) = ℱvm�,b                       (25) ℱpN�,b(H, b) = 0  ℱpN�,H(H, b) = ) e£H«¯£HH − *6£H«¯£ b bg+ -�  (26) ℱpN�,b(H, b) = ) e−*6£ b« ¯£HH + *6;£ b« ¯£ b b +�*6  b« F( b, |) + }¦ b« ¦ bg -�   

Equation (25) is solved by a standard incremental Newton-
Raphson procedure, utilizing the tangent stifness matrix: 

§ = °§HH §H b§bH § bb±                    (27) 

with: §HH = ) (£H«¯£H)-�+                 (28) §H b = ) −*6£H«¯£ b-�+   §bH = ) −*6£ b« ¯£H-�+   

§ b b = ) U*6;£ b« ¯£ b + *6  b« JF( b,²)J b   b ++}¦ b« ¦bV -�  

where ¯ is the elastic tensor. 

III. RESULTS AND DISCUSSION 

In this section, the influence of certain parameter of the 
phase -field model with imperfect interface is investigated. 

Assuming plain strain condition, we consider a square domain 
of 50 mm × 50 mm which contain two phases: aggregate and 
cementious matrix, along with the interface between them. 

To characterize the heterogeneity of concrete, aggregates 
are individually placed within the cementitious matrix. The 
aggregates are assumed to have a circular shape, with diameters 
ranging from 15 to 4 mm. Each aggregate must adhere to two 
conditions: (i) it must be fully contained within the boundary of 
the concrete area and (ii) it must not overlap with any 
previously placed aggregates. The aggregate and cementitious 
mortar matrix are assumed to behave elastically. The 
proprieties of each phase are listed in Table I. The aggregate is 
assumed to be undamaged with its fracture energy being four 
times that of the mortar matrix. 

TABLE I.  MATERIAL PROPERTIES 

Parameter Aggregate Mortar matrix 

Young’s modulus (MPa) 50 30.2 

Poisson’ ratio 0,21 0,21 

Fracture energy (kN/mm) 4×10-6 - 

 

The 2D mesoscale of concrete, loading and boundary 
condition of the specimen are illustrated in Figure 2. The 
specimen is fixed at the bottom edge and subjected to a 
uniformly distributed displacemet at the top edge, i.e. a 
displacement-controlled loading scheme is used. 

 

 
Fig. 2.  2D mesoscale of concrete, loading and boundary condition. 

A. Influence of the Width of the Interface 

In this section, we examine how the width of the interface 
affects the results. The internal length scale for crack ℓ% is set 

to 0.5 mm. Three different length scales for interface are 
analyzed: ℓ6 =  0.3, 0.5, and 1. In Figure 3, a smeared 
representation of the interface is shown for different values of 
the interface width. On the discrete interface �equals 1 and 

vanishes away from it. To meet the condition ℓ%, ℓ6 ³ ℎv, the 

specimen is meshed with triangular elements, with the 
maximum mesh size set to 0.25 mm. The fracture strength is 
set to 1 MPa and the fracture energy of the interface is equals to 
half that of the matrix. The stress – displacement curves are 
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depicted in Figure 4. The crack path at peak stress and the 
crack pattern for different widths of interface are shown in 
Figure 5, in which, the blue color denotes the cementitious 
matrix, the green color represents the aggregate, and the red 
color denotes the crack. To better illustrate crack propagation, 
we highlight the crack area where � > 0.9. Depending on the 
width of the interface, the crack may occur either within the 
matrix or at the interface. More interfacial debonding occurs 
when ℓ6 = 1 than when ℓ6  = 0.5. Finally, the failure mode of 
all cases is characterized by a primary crack propagating 
perpendicular to the loading direction. However, the crack 
location of ℓ6  = 0.3 differs from the other cases and a slight 
difference between ℓ6 = 1 and ℓ6  = 0.5 is observed. It can be 
seen that as the width of the interface increases, the mode of 
crack changes from interfacial debonding to matrix cracking. 
The overall stress-displacement is also influenced by the width 
of the interface. As the width of the interface increases, both 
stiffness and peak stress of the specimen decrease and vice 
versa. 

 

 
Fig. 3.  Smeared representation of interface for different values of ℓ6. 

 
Fig. 4.  Stress – displacement curve for different interface widths. 

B. Influence of Fracture Strength 

In this section, we investigate the influence of fracture 
strength $R  on the concrete crack behavior. Three fracture 
strength values are considered: 1, 5, and 10 MPa. The stress -
displacement curves and obtained crack patterns are illustrated 
in Figures 6 and 7, respectively. The interface width is set to 
0.5 mm and the fracture energy of interface remains half that of 
the matrix. Notably, when high strength interface is present, 
crack primarily initiates within the bulk of the material. A 
slight difference of the final crack pattern is noted between $R = 
5 MPa and $R = 10 MPa. Notably, a higher fracture strength 

contributes to the increment of the specimen stiffness. 
However, only small differences in peak stress are observed 
between these cases. Moreover, the peak stress occurs earlier in 
the case of $R  = 10 MPa. Additionally, it is observed that 
interfaces with higher strength exhibit poorer post-cracking 
behavior. 

 

 
Fig. 5.  Crack path and final crack pattern for difference interface widths. 

 
Fig. 6.  Stress – displacement curve for different fracture strength $R 

 
Fig. 7.  Crack path and final crack pattern for different fracture strengths. 
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IV. CONCLUSION 

This paper integrates the cohesive law to describe the 
imperfect interface into a phase field model to study crack 
propagation in concrete composites. We simulated a 
heterogeneous concrete specimen consisting of circular 
aggregates and cementitious material. The discrete interface 
location between the two materials is determined using the zero 
level set function. Subsequently, this discrete interface is 
smoothed out in a smeared manner using a fixed scalar 
variable. The displacement jump at the interface is modelled 
explicitly, using an auxiliary field, similar to a displacement 
field, over the entire domain. The effect of two parameters of 
models (the width of the interface and the fracture strength) on 
the crack patterns and stress – displacement curve is 
investigated. The main conclusions drawn from this study are: 

 Increasing the width of the interface shifts the crack mode 
from interfacial debonding to matrix cracking. 
Consequently, both stiffness and peak stress of the 
specimen decrease with the widening of the interface. 
Moreover, variations in the width of the interface can lead 
to changes in the crack location. 

 A switching from interfacial crack to bulk crack is observed 
when the fracture strength increases. The stronger interface 
properties can enhance the material stiffness. However, this 
could lead to a poorer post-cracking behavior. 

 This phase field model with imperfect interface can be 
regarded as a valuable tool for investigating other types of 
concrete, such as steel fiber reinforced concrete, pervious 
concrete, and recycled aggregate concrete. 
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