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ABSTRACT 

Air quality forecasting is a critical environmental challenge with significant implications for public health 

and urban planning. Conventional machine learning models, although quite effective, require data 

collection, which can be hampered by issues relating to privacy and data security. Federated Learning 

(FL) overcomes these limitations by enabling model training across decentralized data sources without 

compromising data privacy. This study describes a federated learning approach to predict the Air Quality 
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Index (AQI) based on data from several Internet of Things (IoT) sensors located in different urban 

locations. The proposed approach trains a model using data from different sensors while preserving the 

privacy of each data source. The model uses local computational resources at the sensor level during the 

initial data processing and training, sharing only the model updates to the central location. The results 

show that the performance of the proposed FL model is comparable to a centralized model and ensures 

better data privacy with reduced data transmission requirements. This study opens new doors to real-time, 

scalable, and efficient air quality monitoring systems. The proposed method is quite significant for smart 

city initiatives and environmental monitoring, as it provides a solid framework for using IoT technology 

while preserving privacy. 

Keywords-IoT; air quality index; federated learning; decentralization; smart city 

I. INTRODUCTION  

Air Quality Index (AQI) forecasting is an indispensable 
tool in urban environmental management, public health, and 
policy-making [1]. In the traditional sense, AQI prediction is 
performed through centralized Machine Learning (ML) models 
that collect data from all kinds of sensors and sources to predict 
pollutant levels [2]. On the other hand, although useful for 
specific cases, these models operate based on centralized data 
collection and processing, and therefore all relevant 
environmental data must be collected in a single place for 
analysis [3]. Centralized models have some advantages, such as 
the ability to implement complicated algorithms that require 
intensive computational resources or directly control data 
quality and processing [4]. However, this approach suffers 
from significant drawbacks. Centralized data aggregation is of 
great concern, raising questions about privacy and security, as 
sensitive information must flow and be stored in a single 
repository location [5]. This approach also has greater 
vulnerabilities to data breaches and cyber-attacks. Furthermore, 
centralized systems often do not scale with the increasing 
volume and velocity of data generated by an expanding 
network of sensors across cities [6]. 

Federated Learning (FL) allows decentralized data 
processing with a paradigm shift. FL is an ML technique in 
which a model is trained across several decentralized devices 
or servers that hold local data samples, without the requirement 
for data exchange. This not only helps alleviate the fear of 
privacy issues but also reduces bandwidth consumption for the 
transfer of huge datasets. In the AQI prediction context, FL 
allows for a multi-model approach, where localized models can 
be developed based on data from specific sensors and then 
contribute to aggregation to enhance overall predictive 
accuracy without compromising the data at the source. Recent 
studies have emphasized the efficacy of FL in AQI forecasting. 
For example, comparative analysis of FL models could 
improve up to 12% in prediction accuracy against centralized 
models, especially in urban settings, while the data 
environment can be heterogeneous [7]. This study underscores 
the power of FL to tailor models and benefit from shared 
learning across the network. In addition, FL supports the use of 
dynamic models to adapt more rapidly to changing 
environmental conditions without the need for central re-
training every time a change in conditions is required. Smart 
cities benefit from FL, allowing the integration of IoT devices 
and sensors without the need for constant monitoring from the 
center, promoting a scalable and very efficient network 
architecture. 

II. LITERATURE SURVEY 

Table I highlights the observations and the key 
contributions of previous studies. 

TABLE I.  PREVIOUS STUDIES ON FL IN AQI 
FORECASTING 

Ref. Observations Key Contributions 

[8] 
Multi-model FL approach for AQI 

prediction. 
Improved privacy and 

computational efficiency. 

[9] 
Nested LSTM network combined with 

FL for AQI forecasting. 

Improved forecasting 
performance over traditional 

methods. 

[10] 
UAV-based data collection and CNN-

LSTM model for AQI prediction. 
Effective in real-time high-

resolution data environments. 

[11] 
Detailed examination of ML 

algorithms for AQI prediction. 
Highlights the advantage of 

decentralized model training. 

[12] 
Geographically weighted predictors 
for AQI using the Bangkok dataset. 

Improved performance over 
conventional ML models. 

[13] 
Use of SSGPR for AQI forecasting 

related to industrial impacts. 
Demonstrates effectiveness in 

handling uncertainty. 

[14] 
Use of decision trees, random forest, 

SVM, and ANN for prediction. 
Effective prediction using 

major pollutants as predictors. 

[15] 
SVR model and LSTM for AQI 

forecasting in Chennai. 
Specific interventions 

suggested for urban planning. 

[16] 
Ensemble model with wavelet packet 

decomposition and outlier robust 
ELM. 

Major improvements over 
conventional forecasting 

methods. 

[17] 
Review of AI techniques on AQI 

prediction. 

Improved classification 
accuracy in environmental 

monitoring. 

[18] 
Time-series-based modeling with 
auto-regressive models for AQI. 

Applicable in air quality 
management to reduce health 

impacts. 

[19] 
Gaussian process regression and 

SARIMA models for AQI forecasting. 
Noticeable improvement in 

AQI prediction. 

[20] 
Deep learning model in a multi-scale 

combination for AQI prediction. 
Handles big data complexities, 
improves forecasting accuracy. 

[21] 
Machine learning method combining 
weather modeling and GNSS radio 

occultation for regional AQI forecasts. 

Quickens prediction process 
without compromising 

accuracy. 
 

III. METHOD 

A. Dataset Description and Preprocessing 

A dataset was obtained from [22], including particulate 
matter (PM2.5 and PM10), Nitrogen Dioxide (NO2), Sulfur 
Dioxide (SO2), Carbon Monoxide (CO), and Ozone (O3). Each 
entry in the dataset also features timestamp information, 
facilitating the temporal analysis of pollution trends and the 
development of time-series forecasting models. The data was 
subjected to several essential preprocessing steps to ensure 
suitability for the FL framework. Initially, data cleaning was 
performed to address missing values and outliers. Missing 
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values were imputed using forward-filling techniques to 
maintain data continuity, thus preventing the introduction of 
biases due to incomplete data points. Outliers were identified 
and removed based on statistical thresholds, ensuring that the 
dataset accurately reflected typical pollution levels without 
being skewed by extreme values. Subsequently, normalization 
was applied to all pollutant concentration values using min-
max scaling. This step was crucial to standardize the data, 
bringing all feature values into the same range and enhancing 
the performance and convergence of the ML models. Feature 
engineering was performed to enrich the dataset with additional 
informative features, including rolling averages of pollutant 
levels to capture temporal trends and time-of-day and day-of-
week indicators to account for periodic variations in pollution 
patterns. For the FL setup, the data was distributed among 
multiple clients, each representing a cluster of IoT sensors. 
Data were split in an 80-20 ratio for training and testing 
purposes at each client level. This split was designed to ensure 
that each client had sufficient data to train local models while 
enabling the evaluation of model performance on unseen data. 
The data were deliberately split in a non-Independent and 
Identically Distributed (non-IID) manner to reflect real-world 
scenarios where different regions exhibit varying pollution 
levels and trends. This non-IID distribution is typical in 
practical deployments, where environmental conditions differ 
significantly across geographic locations. 

B. Federated Learning Setup 

TensorFlow Federated (TFF), an open-source framework 
developed by Google, was used in this study. TFF allows 
collaborative training of a global model without necessitating 
the exchange of raw data between clients, thereby preserving 
data privacy. In the federated setup, each client was assigned a 
subset of the AQI data, ensuring a non-IID distribution. The 
core model was a neural network with two hidden layers, 
utilizing Rectified Linear Unit (ReLU) activation functions. 
ReLU functions were chosen for their efficacy in training deep 
neural networks to mitigate issues such as vanishing gradients. 
Model training was carried out locally on each client using 
historical data windows, and different configurations were 
tested to identify the optimal setup. These configurations 
included varying the historical data window (7, 30, and 180 
days), the number of clients (2 and 10), and the batch sizes (8 
and 32). Each of these configurations aimed to capture different 
temporal trends and patterns in the pollution data while 
balancing computational load and learning stability. 

After local training, model updates were aggregated using a 
weighted averaging method to form a new global model. This 
aggregation step was designed to harmonize the contributions 
of each local model, irrespective of the variations in their local 
data distributions. The use of weighted averaging ensured that 
the global model was representative of the broader 
decentralized data landscape, improving its generalizability and 
robustness. This approach not only underscores the feasibility 
and effectiveness of FL for AQI forecasting but also highlights 
its potential for scalable and privacy-preserving environmental 
monitoring in smart city initiatives. 

C. Hyperparameter Variations and Model Evaluation 

Various configurations were tested to explore the optimal 
settings for the FL model. 

 Number of days for past data reference: The models were 
trained with different historical windows: 7, 30, and 180 
days. 

 Number of clients: Experiments were carried out with 
different numbers of clients (2 and 10) to understand how 
the distribution of data among more clients affects the 
learning process and the final model performance. 

 Batch size: The models were trained using different batch 
sizes (8 and 32). Smaller batch sizes can provide a more 
frequent update but might result in a less stable learning 
process, while larger batch sizes offer more stable updates 
but at the cost of slower convergence. 

This is typically performed using gradient descent. The 
update rule can be expressed as: 

��
(���) = ��

� − 
���(��
(�))   (1) 

where ��
� is the local model parameters at client  at iteration �, 


 is the learning rate, and ������
(�)� is the gradient of the loss 

function with respect to the model parameters. After each 
round of local updates, the central server aggregates these 
updates to form a new global model. A common method for 
aggregation is weighted averaging: 

�(���) =  ∑ ��

�
�
��� ��

(���)
   (2) 

where �  is the number of clients, ��  is the number of data 
points at client , � is the total number of data points across all 

clients, and ��
(���)

are the updated model parameters from each 
client. The loss function � used at each client to evaluate the 
model's performance is typically a function of the predictions 
and the true values. For regression tasks, such as AQI 
prediction, a common choice is the Mean Squared Error 
(MSE). 

��(�) =  �

��
∑ (�� −  �(��; �))���

���   (3) 

where ��  are the true values, ��  are the input features, and 

����; �� is the model's prediction. The convergence of the FL 
process can be evaluated by monitoring the change in global 
loss or the change in model parameters over iterations: 

Converge if ��(���) −  ��‖ < "  (4) 

where " is the threshold. By this approach, FL enables multiple 
clients to collaboratively train a model while keeping their data 
localized. 

IV. RESULTS AND DISCUSSION 

Figures 1 and 2 show the distribution of the weights of the 
linear layers of two FL models. The range of the weight values 
extends from approximately -0.2 to 0.6. Figure 2 shows the 
second model in a series, hinting at an FL process involving 
multiple models, possibly representing different clients or data 
segments in the federated network. The use of linear weights 
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specifies that they belong to a linear component of the model, 
which is typically associated with the last layer in regression 
tasks, where the final output is a weighted sum of the input 
features. The method obtains the results of training individual 
models in a federated setting, where each model was exposed 
to a distinct subset of the data. 

 

 
Fig. 1.  Weights observed in client 1 for AQI forecasting in the FL training 
model. 

 
Fig. 2.  Weights observed in client 2 for the AQI forecasting in the FL 
training model. 

The federated averaging process shows that the weights of 
the models are averaged to form the global model's parameters. 
The averaging process is designed to balance the contributions 
of each local model, irrespective of the variations in their local 
data distributions. This step is crucial in FL as it harmonizes 
local updates, allowing for a model that is representative of the 
broader, decentralized data landscape. The training procedure 
adopted a reduced number of epochs and clients for simplicity. 
This approach was taken to demonstrate the feasibility and 
effectiveness of FL in a controlled environment before scaling 
to more complex and realistic scenarios. It should be noted that 
even with these simplifications, the resultant model exhibits a 
sophisticated understanding of the input features, as evidenced 
by the weight distributions. 

By carefully scrutinizing the weight distribution graph, 
valuable insights into the model's interpretability and the 
significance of different input features in AQI prediction are 
obtained. The results of this model not only advance the field 
of FL in environmental science but also underscore the 
importance of feature weighting in understanding complex, 

real-world phenomena such as air quality. The implications of 
these results are profound, as they provide a window into how 
models can be collectively trained across diverse data sources 
in a privacy-preserving manner, while still yielding a rich and 
nuanced understanding of the underlying predictive factors for 
crucial environmental metrics such as AQI. This sets the stage 
for deploying FL models in live and heterogeneous 
environments, harnessing the power of IoT networks while 
upholding the stringent privacy requirements demanded in 
today's data-sensitive world. The performance metrics of the 
model are critical to validate the efficacy of the different 
configurations tested. 

TABLE II.  RMSE COMPARISON 

Days of data taken 

for input processing 

Number of 

clients used in FL 

Batches of data taken 

for processing 
RMSE 

7 10 8 32.265 
180 10 32 29.27 
30 2 8 15.93 

TABLE III.  MSE COMPARISON 

Days of data taken 

for input processing 

Number of 

clients used in FL 

Batches of data taken 

for processing 
MSE 

7 10 8 1041.06 
180 10 32 857.23 
30 2 8 21.70 

TABLE IV.  MAE COMPARISON 

Days of data taken 

for input processing 

Number of 

clients used in FL 

Batches of data taken 

for processing 
MAE 

7 10 8 25.21 
180 10 32 21.70 
30 2 8 12.42 

 
The performance of the model was evaluated using MSE, 

Root Mean Square Error (RMSE), and Mean Absolute Error 
(MAE). These metrics provide a comprehensive understanding 
of the model's accuracy and error magnitude, with RMSE being 
particularly sensitive to large errors due to its squaring of 
residuals. The first configuration used a historical window of 7 
days, with 10 clients, each processing data in batches of 8. The 
RMSE for this model was recorded at 32.265, with an MSE of 
1041.057 and an MAE of 25.217. Although these results 
represent a reasonable starting point, the relatively high error 
metrics indicate that a shorter historical data window may not 
capture the necessary trends and patterns needed for more 
precise AQI forecasting. 

In stark contrast, the model trained on a substantially longer 
window of 180 days, also with 10 clients and a larger batch 
size of 32, demonstrated improved accuracy. The RMSE 
decreased to 29.279, along with a lower MSE of 857.234 and 
an MAE of 21.703. This improvement suggests that 
incorporating a more extended range of historical data can 
enhance the model's predictive capability, possibly by 
capturing more long-term trends and seasonal effects. 
However, the most significant improvement in model 
performance was observed in the configuration with 30 days of 
historical data, 2 clients, and a batch size of 8. This model 
achieved an RMSE of 15.933, an MSE of 253.851, and an 
MAE of 12.423, exceeding the other configurations by a 
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considerable margin. This configuration offers a balance 
between capturing relevant temporal patterns and maintaining a 
manageable computational workload. 

These results elucidate some key points. First, there appears 
to be an optimal historical window (30 days, in this case) that 
provides enough data for the model to learn effectively without 
being overwhelmed by the volume or noise of the information. 
Second, the number of clients and batch size also play a crucial 
role, as too few clients may not provide enough diversity in the 
data, while too many may introduce complexity without 
corresponding benefits in accuracy. Lastly, larger batch sizes 
seem to offer diminishing returns in terms of model accuracy. 
Transitioning seamlessly from the examination of model 
parameters to performance metrics, it becomes clear that the 
configurations of FL networks must be carefully tailored to the 
specific forecasting task at hand. The chosen configuration 
must strike a balance between data comprehensiveness, model 
complexity, and computational efficiency to achieve optimal 
forecasting accuracy. These insights have profound 
implications for the deployment of FL models in real-world 
settings, where balancing these factors is crucial for both 
performance and practicality. In the realm of predictive 
analytics for environmental data, the reliability and accuracy of 
forecasts are paramount. 

Figure 3 shows a comparative plot with the actual AQI 
values traced in blue and the predicted values in an orange 
dashed line, utilizing a 30-day window with two clients and a 
batch size of 8. The model's ability to trace the volatility and 
trends in AQI levels is evident, although with some divergence 
from the actual values, particularly in capturing the peaks and 
troughs. Despite this, the overall trend closely mirrors the 
actual data, suggesting a degree of synchronicity between the 
model outputs and the true AQI values. Considering 
performance metrics, the model with a 30-day data window, 2 
clients, and a batch size of 8 demonstrates a strikingly lower 
RMSE, MSE, and MAE compared to the other configurations. 
These metrics are indicative of its superior performance and 
suggest that this model configuration is adept at discerning the 
underlying patterns within the data. 

 

 
Fig. 3.  AQI forecasting using the FL model with the minimal RMSE using 
a 30-day data window, 2 clients, and a batch size of 8. 

In conclusion, the results derived from the FL models 
strongly advocate the adoption of the 30-day, 2-client, 8-batch 

size model as the preferred for AQI forecasting in an FL 
framework. This model not only excels in quantitative 
performance metrics but also qualitatively in its fidelity to 
actual environmental patterns. 

V. CONCLUSION 

The imperative for real-time, privacy-preserving air quality 
monitoring has never been more acute, as urban environments 
continue to face the growing complexities of environmental 
pollution. This study illustrates a significant step forward in 
this domain, positing FL as a superior method for AQI 
forecasting using IoT technology. The resultant FL framework 
allows for the seamless integration of diverse, distributed 
sensor data, facilitating smart city initiatives and 
comprehensive environmental monitoring without 
compromising individual data integrity. The validation of the 
FL model approach indicates that the optimized model, taking 
into account 30 days of data with 2 clients and processing in 
batches of 8, demonstrates superior performance with lower 
error metrics. This finding advocates for the custom application 
of FL in environmental sensing, ensuring the scalability, 
efficiency, and robustness of predictive models. 

Although the model achieved the best results with only two 
clients, future work should focus on expanding its effectiveness 
to accommodate more clients. Strategies to improve scalability 
and handle the increased complexity of larger federated 
networks will be crucial. Techniques such as hierarchical FL, 
where multiple levels of aggregation are employed, or the 
incorporation of more sophisticated model architectures, may 
enhance the model's ability to generalize across a broader range 
of clients. Furthermore, exploring adaptive client participation, 
where clients with the most significant data updates are 
prioritized, could further optimize the training process. 
Looking ahead, the promising results laid out here pave the 
way for expansive future work. Further research should 
investigate the integration of more diverse datasets, the 
refinement of client selection strategies, and the application of 
the framework to other domains that require decentralized data 
processing. The ultimate goal is to develop a robust, scalable, 
and efficient FL system capable of providing accurate and 
timely air quality predictions in increasingly complex and 
diverse urban environments. 

ACKNOWLEDGMENT 

This study was funded by Prince Sattam bin Abdulaziz 
University project number PSAU/2024/R/1445. 

REFERENCES 

[1] A. Pant, R. C. Joshi, S. Sharma, and K. Pant, "Predictive Modeling for 
Forecasting Air Quality Index (AQI) Using Time Series Analysis," 
Avicenna Journal of Environmental Health Engineering, vol. 10, no. 1, 
pp. 38–43, Jun. 2023, https://doi.org/10.34172/ajehe.2023.5376. 

[2] P. Mullangi et al., "Assessing Real-Time Health Impacts of outdoor Air 
Pollution through IoT Integration," Engineering, Technology & Applied 
Science Research, vol. 14, no. 2, pp. 13796–13803, Apr. 2024, 
https://doi.org/10.48084/etasr.6981. 

[3] S. Abimannan et al., "Towards Federated Learning and Multi-Access 
Edge Computing for Air Quality Monitoring: Literature Review and 
Assessment," Sustainability, vol. 15, no. 18, Jan. 2023, Art. no. 13951, 
https://doi.org/10.3390/su151813951. 



Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 16077-16082 16082  
 

www.etasr.com Kulkarni et al.: Air Quality Decentralized Forecasting: Integrating IoT and Federated Learning for … 

 

[4] A. A. Siyal, S. R. Samo, Z. A. Siyal, K. C. Mukwana, S. A. Jiskani, and 
A. Mengal, "Assessment of Air Pollution by PM10 and PM2.5 in 
Nawabshah City, Sindh, Pakistan," Engineering, Technology & Applied 
Science Research, vol. 9, no. 1, pp. 3757–3761, Feb. 2019, 
https://doi.org/10.48084/etasr.2440. 

[5] S. Senthivel and M .Chidambaranathan, "Machine Learning Approaches 
Used for Air Quality Forecast: A Review - ProQuest," Revue 
d’Intelligence Artificie, vol. 36, no. 1, pp. 73–78, https://doi.org/ 
10.18280/ria.360108. 

[6] M. Alquraish and K. Abuhasel, "Sustainable Hybrid Design to Ensure 
Efficiency and Air Quality of Solar Air Conditioning," Engineering, 
Technology & Applied Science Research, vol. 13, no. 3, pp. 11036–
11041, Jun. 2023, https://doi.org/10.48084/etasr.5907. 

[7] Y. Liu, J. Nie, X. Li, S. H. Ahmed, W. Y. B. Lim, and C. Miao, 
"Federated Learning in the Sky: Aerial-Ground Air Quality Sensing 
Framework With UAV Swarms," IEEE Internet of Things Journal, vol. 
8, no. 12, pp. 9827–9837, Jun. 2021, https://doi.org/10.1109/JIOT. 
2020.3021006. 

[8] L. D. Labzovskii et al., "Who should measure air quality in modern 
cities? The example of decentralization of urban air quality monitoring 
in Krasnoyarsk (Siberia, Russia)," Environmental Science & Policy, vol. 
140, pp. 93–103, Feb. 2023, https://doi.org/10.1016/j.envsci.2022. 
11.016. 

[9] N. Lazrak, J. Ouarzazi, J. Zahir, and H. Mousannif, "Enabling 
distributed intelligence in Internet of Things: an air quality monitoring 
use case," Personal and Ubiquitous Computing, vol. 27, no. 6, pp. 2043–
2053, Dec. 2023, https://doi.org/10.1007/s00779-020-01483-3. 

[10] J. C. Jiang, B. Kantarci, S. Oktug, and T. Soyata, "Federated Learning in 
Smart City Sensing: Challenges and Opportunities," Sensors, vol. 20, no. 
21, Jan. 2020, Art. no. 6230, https://doi.org/10.3390/s20216230. 

[11] A. Khan, S. Aslam, K. Aurangzeb, M. Alhussein, and N. Javaid, 
"Multiscale modeling in smart cities: A survey on applications, current 
trends, and challenges," Sustainable Cities and Society, vol. 78, Mar. 
2022, Art. no. 103517, https://doi.org/10.1016/j.scs.2021.103517. 

[12] N. Ge, G. Li, L. Zhang, and Y. Liu, "Failure prediction in production 
line based on federated learning: an empirical study," Journal of 
Intelligent Manufacturing, vol. 33, no. 8, pp. 2277–2294, Dec. 2022, 
https://doi.org/10.1007/s10845-021-01775-2. 

[13] D. D. Le, A. K. Tran, M. S. Dao, M. S. H. Nazmudeen, V. T. Mai, and 
N.-H. Su, "Federated Learning for Air Quality Index Prediction: An 
Overview," in 2022 14th International Conference on Knowledge and 
Systems Engineering (KSE), Nha Trang, Vietnam, Oct. 2022, pp. 1–8, 
https://doi.org/10.1109/KSE56063.2022.9953790. 

[14] D. D. Le et al., "Insights into Multi-Model Federated Learning: An 
Advanced Approach for Air Quality Index Forecasting," Algorithms, 
vol. 15, no. 11, Nov. 2022, Art. no. 434, https://doi.org/10.3390/ 
a15110434. 

[15] N. Jin, Y. Zeng, K. Yan, and Z. Ji, "Multivariate Air Quality Forecasting 
With Nested Long Short Term Memory Neural Network," IEEE 
Transactions on Industrial Informatics, vol. 17, no. 12, pp. 8514–8522, 
Sep. 2021, https://doi.org/10.1109/TII.2021.3065425. 

[16] P. Chhikara, R. Tekchandani, N. Kumar, M. Guizani, and M. M. Hassan, 
"Federated Learning and Autonomous UAVs for Hazardous Zone 
Detection and AQI Prediction in IoT Environment," IEEE Internet of 
Things Journal, vol. 8, no. 20, pp. 15456–15467, Jul. 2021, 
https://doi.org/10.1109/JIOT.2021.3074523. 

[17] R. R. Relkar, "Prediction of Air Quality Index Using Supervised 
Machine Learning," International Journal for Research in Applied 
Science and Engineering Technology, vol. 10, no. 6, pp. 1371–1382, 
Jun. 2022, https://doi.org/10.22214/ijraset.2022.43993. 

[18] Q. C. Thi, N. T. T. Hoa, and N. T. C. Ngoan, "Prediction of Air Quality 
Index using genetic programming," Journal of Military Science and 
Technology, vol. 91, pp. 85–95, Nov. 2023, https://doi.org/10.54939/ 
1859-1043.j.mst.91.2023.85-95. 

[19] N. Phruksahiran, "Improvement of air quality index prediction using 
geographically weighted predictor methodology," Urban Climate, vol. 
38, Jul. 2021, Art. no. 100890, https://doi.org/10.1016/j.uclim.2021. 
100890. 

[20] H. Alkabbani, A. Ramadan, Q. Zhu, and A. Elkamel, "An Improved Air 
Quality Index Machine Learning-Based Forecasting with Multivariate 
Data Imputation Approach," Atmosphere, vol. 13, no. 7, Jul. 2022, Art. 
no. 1144, https://doi.org/10.3390/atmos13071144. 

[21] M. Hardini, R. A. Sunarjo, M. Asfi, M. H. R. Chakim, and Y. P. A. 
Sanjaya, "Predicting Air Quality Index using Ensemble Machine 
Learning," ADI Journal on Recent Innovation, vol. 5, no. 1S, pp. 78–86, 
Aug. 2023, https://doi.org/10.34306/ajri.v5i1Sp.981. 

[22] "Air quality monitoring, emission inventory and source apportionment 
study for Indian cities." Central Pollution Control Board, Ministry of 
Environment, Forest and Climate Change, Government of India. 

 


