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ABSTRACT 

This study aims to develop a model for characterizing water quality in seawater-influenced areas for salt 

farming, fish farming, and crop farming. The water quality classification model was based on transfer 

learning trained by the Multi-Layer Perceptron Neural Network (MLPNN) and then classified by 

conventional Machine Learning (ML) methods, such as Decision Tree (DT), K-Nearest Neighbors (KNN), 

Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM). 

The results of each ML classification were ensemble voted together, comparing the efficiency between hard 

and soft voting. The collected imbalanced dataset had a difference ratio between the majority and minority 
classes of 1:0.0138. However, after 900% resampling by applying the k-mean SMOTE technique, the data 

ratio between the majority and minority classes was 1:0.9778. The results show that the proposed ensemble 

approach improved accuracy by up to 2.15% in classifying water quality for salt farming, fish farming, 
and crop farming in seawater-influenced areas. 

Keywords-artificial neural networks; transfer learning; ensemble voting; water quality classification 

I. INTRODUCTION  

The 71% of the Earth's surface is covered by water [1], with 
seawater making up the 97.5% of this total [2]. Seawater most 
likely affects areas close to or connected to the sea, as it 
invades freshwater sources, turning them into brackish water 
due to its salinity. In general, freshwater salinity levels are 
below 0.5 parts per thousand (ppt), in brackish water, they 
range from 0.5 to 30 ppt, and in saltwater, they exceed 30 ppt 
[3]. Although the distance between the coast and the river or 
canal is several kilometers apart, salinity inevitably permeates 
with the rhythm of the rising and falling tides. The most 
common solution is to install canal or sluice gates to prevent 
salinity and seawater [4-6]. Sometimes, these gates are 
scheduled to close and open, but most gates are manually 
operated [7]. In addition, some canals still constitute small boat 
routes for villagers and boat tours to visit various gardens and 
farms, so it is necessary to open the gate to facilitate water 
traffic. This inevitably causes freshwater to be converted to 

brackish water, which directly affects farmers. Therefore, 
farmers in such areas must adapt and choose suitable 
occupations, mainly influenced by salinity. In some cases, 
different types of farming within the same area require 
different water salinity levels. For example, salt fields have an 
initial salinity requirement of 27-30 ppt [8]. Meanwhile, some 
fish, such as the Asian seabass (Lates Calcarifer), thrive in 
water with a salinity of 20 ppt [9]. At the same time, crop farms 
require little or very little water salinity, as salinity causes 
plants to wither or reduce yield [10, 11]. For this reason, the 
water sources in the vicinity for diverse farming operations 
affect the occupations of farmers. Sometimes, crop farms want 
to release freshwater to prepare for harvest. Freshwater 
released to the canal decreases the salinity of the fish farm, 
causing the fish to grow abnormally or unhealthy and then die. 
Therefore, a tool to classify water quality as suitable or not for 
different farms will help farmers prepare themselves to deal 
with or determine the appropriate time to close and open the 
sluice gates in the canal or river to adjust water quality. 
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In addition to water salinity, which is the main factor in 
areas adjacent to the coast or the sea, other factors that affect 
water quality, such as Electrical Conductivity (EC), Water 
Temperature (WT), and hydrogen potential (pH), have an 
impact on farming. These water quality parameters directly 
influence fish farms, since aquatic organisms have specific 
water quality requirements for breeding and growth. For 
example, pH shows how acidic or alkaline the water is [12]. 
However, high pH causes ammonia toxicity to increase, which 
is harmful to fish [13, 14]. Additionally, pH levels above 8.5 
impact water's high carbonate and bicarbonate ion 
concentrations, affecting the nutritional balance of crops [15]. 
Higher pH also decreases plant root activity [16]. A 2°C 
increase in water temperature causes dehydration [17], as it 
concentrates water from fish excrement in cage-raised fish, 
which can harm them [18]. Moreover, fish will use more 
energy due to reduced Dissolved Oxygen (DO), affecting their 
growth rate [19]. 

Many studies have been conducted on water quality 
classification, including freshwater, brackish water, and 
seawater. Several studies applied ML algorithms to classify and 
predict the water quality index with high efficiency and 
stability [20]. Decision Tree (DT), Random Forest (RF), 
Logistic Regression (LR) [21], Naïve Bayes (NB), K-Nearest 
Neighbor (kNN), Support Vector Machine (SVM) [22], and 
Multi-Layer Perceptron Neural Network (MLPNN) are the 
most widely used ML algorithms for classifying water quality. 
However, these techniques are mainly used to benchmark 
models' performance. There are almost no studies that combine 
multiple machine-learning techniques in a single model to 
improve performance. 

Today, technologies and systems are available to 
automatically collect different water quality data. The Internet 
of Things (IoT) is a technology that can connect to the network 
and upload data from hardware, such as sensors, to a cloud 
server. Therefore, this study developed a water quality IoT-
based tool for collecting water quality data. Once developed, it 
will be installed in different areas to allow the system to 
automatically collect water quality data. Water quality data 
collection has become increasingly important for monitoring 
and protecting aquatic environments. Modern sensors and IoT 
devices have completely changed the way data are collected, as 
they can automatically measure crucial water parameters, 
including WT, EC, Chemical Oxygen Demand (COD), salinity, 
Biological Oxygen Demand (BOD), ammonia (NH3), Total 
Suspended Solid (TSS), DO, pH, and turbidity. Through real-
time monitoring, these devices can continuously read water 
quality data and transmit them wirelessly to a centralized data 
storage system. In this context, Google Sheets is an efficient 
and accessible platform for storing and managing collected 
data. By leveraging IoT technology and Google Sheets 
integration, water quality data can be effectively collected and 
analyzed, allowing researchers, environmentalists, and 
policymakers to make informed decisions and take prompt 
actions to ensure the sustainability and health of water 
resources. 

This study explores the combination of several ML 
techniques, deploying MLPNN as the primary model for 

feature extraction. The MLPNN model can be utilized as a 
transfer learning model. Additionally, six conventional ML 
methods, including DT, RF, LR, NB, kNN, and SVM, are 
followed to vote on the results to classify water quality as 
suitable for each farm type (fish, crop, and salt farms). The 
proposed method is expected to increase efficiency in 
classifying water quality by ensemble voting, as it contributes 
to better discrimination than the one performed when 
employing a single classifier. In addition, a focus group was 
held between researchers, community leaders, and farmers in 
Samut Songkhram province, who collaborated to develop a 
system and application to automatically collect water quality 
data from various sources in the research area to classify water 
quality suitability for the three types of farming. This system 
can be implemented to monitor and prevent losses due to poor 
water quality. Furthermore, users can find solutions to prevent 
and protect their farms in the developed application. 

II. MATERIALS AND METHODOLOGY 

Figure 1 presents the development of the model and the 
application developed to classify water quality for different 
farms using a transfer learning ANN-based ensemble voting 
technique, which consists of ten processes. 

 

 
Fig. 1.  The proposed research methodology. 

A. IoT-based Development 

IoT devices and sensors were designed and developed to 
automatically collect ten water quality parameters: WT, EC, 
salinity, NH3, COD, BOD, TSS, pH, DO, and turbidity. This 
study employed the ESP32 DevKitC, which is a development 
board kit that can control smart sensors to measure water 
qualities. The versatility and low-power capabilities of ESP32 
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make it an ideal water-quality sensor integration, data 
acquisition, and wireless communication platform. It has 26 
pins for General-Purpose Input/Output (GPIO) [23]. However, 
there is a limitation, as utilizing GPIOs directly with sensors 
whose pin combination exceeds the number of GPIOs available 
on the board is impossible. Therefore, this study applied the 
RS485 serial communication protocol with Modbus master and 
a maximum connection to 32 device-slaves. The ESP32 
DevKitC was defined as master, and all water quality sensors 
were defined as slaves via the MAX485 chipset, which 
communicates to each sensor via the RS485 serial 
communication protocol. 

The data read from the sensor are uploaded to Google 
Sheets deploying the Quectel EC21-E module allocated for 4G 
LTE in Thailand. The power supply to the system is generated 
by a 48-cell monocrystalline solar panel with a maximum 
voltage of 18 V and a maximum power of 300 W. Using Direct 
Current (DC) directly from the solar panel can cause problems. 
Thus, a 12 V 200 Ah deep cycle battery was put into service to 
supply power to the IoT system, which is charged through a 
solar charge controller with a Battery Management System 
(BMS) receiving the power directly from the solar panel. Some 
electronic devices require 5 V, so the LM2569 DC-DC step-
down module was used to convert 12 V from the deep cycle 
battery to 5 V, and then supply the power for the MAX485 
TTL to the RS485 module and ESP32 DevKitC board. The 
program to control the overall operation of the system was 
developed with Arduino IDE version 1.8.19 employing C++, as 
evidenced in Figure 2. Finally, the developed IoT-based water 
quality data collection systems were installed and deployed in 
the sample areas. 

 

 
Fig. 2.  The developed IoT-based system for water quality data collection. 

B. Data Collection 

In Thailand, three provinces have seaside areas and 
different farming activities (crop, fish, and salt farming): Samut 
Sakhon, Samut Songkhram, and Phetchaburi. All these 
provinces have similar spatial and geographic characteristics. 
Samut Songkhram covers the least area compared to the other 
two provinces. The research team chose Samut Songkhram as a 
prototype research area before expanding the storage and data 
collection area to cover the entire province and then expanding 

the results to the other two provinces. The models obtained 
from these prototype study areas could be applied to the 
transfer learning model to nearby areas and provinces with 
similar geographical and occupational characteristics. Three 
sample areas were selected, covering diverse farms, to collect 
water quality data. The IoT systems developed to collect water 
quality parameters were deployed in three sample areas in the 
Don Manora, Phraek Nam Daeng, and Bang Kaeo subdistricts. 
In these subdistricts, the water flow routes cover different 
farms and are connected to the Gulf of Thailand. The Don 
Manora subdistrict focuses on crop farms, mainly growing 
vegetables and fruits. The Phraek Nam Daeng subdistrict is 
primarily involved in crop and fish farms or aquaculture. As 
the Bang Kaeo subdistrict is the closest to the coast, it mainly 
focuses on salt farming. 

Water quality data were automatically collected by the 
aforementioned IoT system, scheduled to read and upload them 
to Google Sheets every hour, 24 hours a day, between 1 
January and 30 June 2023 for the three subdistricts. The data 
collected totaled 13,040 records with ten water quality 
parameters: WT, pH, DO, EC, salinity, NH3, COD, BOD, TSS, 
and turbidity. However, since there may be cases where sensors 
malfunction and cannot measure or transfer data to the server, 
the data obtained were validated to ensure that they are as close 
as possible to reality. Any abnormal or unrelated data were 
eliminated in the data preprocessing process. Furthermore, 
during the collection of water quality data using the IoT, each 
week, some experts manually measured the water quality at 
each IoT kit location. This measured value was compared with 
the value obtained from the IoT kit to assess consistency. Any 
errors were checked and fixed to ensure that the IoT kit 
functioned normally. Additionally, the research team contacted 
community leaders and villagers in the research area to 
describe in detail the problems and importance of data 
collection and research procedures, as well as the ethical use of 
the model in research. All participants consented and signed to 
acknowledge ethics. 

C. Data Preprocessing 

Although the developed IoT system collected and uploaded 
data automatically, there were still uncertainties during the data 
storage process. For example, reading data errors due to 
abnormal sensor operation result in missing data or zero values, 
including duplicate data, causing re-uploading of the data if the 
system does not respond to the upload results. Cleaning up the 
data is a prerequisite. This process was performed using SQL 
to find duplicated and null items. Any record that matched the 
search condition was immediately deleted. After this process, 
116 items were deleted, containing 8 duplicate and 108 missing 
value records, representing 0.89% of the data collected. Thus, 
the remaining data had a total of 12,924 records. Crop, fish, 
and salt farming experts were engaged in the class label 
assignment stage. The dataset included nine classes based on 
three different farm types and three severity levels: safe, 
warning, and critical. Table I depicts the class definitions and 
the amount of data. 

D. Data Resampling 

According to Table I, there is a varying amount of data 
between the majority class (3,417 records) and the minority 
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class (47 records), indicating an imbalanced dataset with an 
Imbalance Ratio (IR) of 72.70, as calculated by (1). 

�� = �����	 �� �	 �� 	�� �����	� ����
�����	 �� �	 �� 	�� ������	� ����  (1) 

This study applied the k-Means SMOTE-ENN to solve the 
imbalanced data problem. Since this dataset has ten input 
features, the k-cluster was set as k = 5, 7, and 9 for the k-means 
clustering. The number of k-clusters was optimized using the 
scaled inertia method to find the cluster inertia for each k-
cluster divided by the inertia of the first cluster (k1). Scaled 
inertia can be calculated utilizing (2), (3), and (4) [24]. 

��������( �) = ∑ #$%$&'
(    (2) 

������)( �) = ∑ ‖+� − ��������( �)‖-(�./  (3) 

01)2�� ������)( �) = 3���	�(45)
3���	�(4') + 7 ∙    (4) 

where N denotes the data count in a cluster, x denotes the data 
in the cluster ki, and α denotes the manually adjusted parameter 
that penalizes the clusters.  

TABLE I.  DETAILS OF THE CLASS DEFINITION 

Farming 
Severity 

level 
Class Meaning 

Amount of 

data 

Crop Safe CS 

The water quality is suitable 

and safe for growing fruits 

and vegetables. 

3,417 

(26.44%) 

Crop Warning CW 

The water quality is 

beginning to tend to be 

unsuitable or unsafe for 

growing fruit and vegetables. 

1,618 

(12.52%) 

Crop Critical CC 

The water quality is 

unsuitable for growing 

vegetables or fruits or is 

detrimental to the cultivated 

plants. 

363 

(2.81%) 

Fish Safe FS 

The water quality is suitable 

for the growth of fish and 

aquaculture. 

1,839 

(14.23%) 

Fish Warning FW 

The water quality is 

beginning to be unsuitable for 

fish growth and aquaculture. 

1,669 

(12.91%) 

Fish Critical FC 

The water quality is 

inappropriate and harmful to 

fish growth and aquaculture. 

858 

(6.64%) 

Salt Safe SS 
The water quality is suitable 

for salt production. 

2,471 

(19.12%) 

Salt Warning SW 
The water quality tends to be 

unsuitable for salt production. 

642 

(4.97%) 

Salt Critical SC 

The water quality is 

unsuitable and unsafe for salt 

production. 

47 (0.36%) 

 
After obtaining the ideal number of k-clusters, the dataset 

was processed through SMOTE for data resampling. The 
percentage of data oversampling was set ten times in 
increments of 100%, from 100% to 1000% for the SMOTE 
process, and the k-value. The count of nearest neighbors 
considered in the SMOTE and ENN process was set as k-
nearest = 6, 8, and 10. Data increased according to the 
oversampling percentage. After completing the k-Means 
SMOTE-ENN process, the IR between the majority and 

minority classes was close to one, and the dataset achieved 
class balance. In the end, 30 datasets differed between the 
percentage of data oversampling and the k-value of kNN. 
However, these datasets were subjected to simple DT 
classification and validated using 10-fold cross-validation to 
compare the difference in effectiveness obtained from several 
datasets. The dataset with the highest efficiency was 
implemented to further develop the proposed model. 

E. MLPNN-based Feature Extraction 

The MLPNN-based feature extraction was developed based 
on an ANN model having three layers: input, hidden, and 
output. The input layer has ten input features that correspond to 
the number of water quality parameters that are read by the 
sensors. The hidden layer has three Fully Connected (FC) 
layers for the MLPNN-based model, which are sufficient for 
feature extraction with a few features. Each FC layer contains 
hidden nodes, or neurons, that determine the rule of thumb 
based on the relationship between the number of input features 
and output classes. The number of hidden nodes for the first to 
the third of FC layers can be calculated by (5), (6), and (7), 
respectively.  

9���:(;�����/) = <=-
> �? + 1@  (5) 

9���:(;�����-) = <-
> (� + 1)@   (6) 

9���:(;�����>) = 1    (7) 

where i denotes the count of input features, and c denotes the 
count of output classes.  

There are 10 input features and 9 output classes. Thus, each 
hidden layer has 16, 13, and 9 nodes, respectively. Each hidden 
layer applies bias nodes and the Rectified Linear Unit (ReLU) 
activation function due to their simplicity, effectiveness, and 
ability to promote faster training and improved convergence. 
Furthermore, a Batch Normalization (BN) layer followed each 
FC layer to normalize the activation and avoid overfitting. BN 
can help stabilize and accelerate the training process. 
Therefore, the hidden layer has six layers: three FC layers and 
three BN layers. The batch size was 64, and the training 
iteration was 500 epochs, with early stopping to prevent 
overfitting by monitoring the validation accuracy for patience, 
which was 50. The Adaptive moment estimation (Adam) 
optimizer was initialized with a learning rate of 0.01. There are 
675 trainable parameters for the proposed MLPNN-based 
feature extraction model (excluding the output layer) and 765 
trainable parameters for the MLPNN baseline model (including 
the output layer). Table II presents the hyperparameters for the 
MLPNN model. 

The dataset was split into three sets, training, validation, 
and test, with a ratio of 60:20:20 using the random split with a 
stratified shuffle method to evenly distribute each class. 

F. Transfer Learning 

Upon completing the MLPNN-based feature extraction 
process, the resulting feature extraction was saved as the 
model. This learned model, with the extracted features, can be 
transferred to other models or classifiers as input features. Six 
conventional ML classifiers, DT, kNN, LR, NB, RF, and SVM, 
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were employed individually to classify water quality. Table III 
displays the hyperparameter configurations of each 
conventional ML classifier. 

TABLE II.  HYPERPARAMETERS OF THE MLPNN-BASED 
MODEL 

Hyperparameters Details No. of parameters 

Input layer 10 nodes 0 

1st FC layer 
16 nodes, activation 

function:ReLU, bias (+1) 
176 

1st BN layer 
momentum=0.99, 

epsilon=0.0001 
64 

2nd FC layer 
13 nodes, activation 

function:ReLU, bias (+1) 
221 

2nd BN layer 
momentum=0.99, 

epsilon=0.0001 
52 

3rd FC layer 
9 nodes, activation 

function:ReLU, bias (+1) 
126 

3rd BN layer 
momentum=0.99, 

epsilon=0.0001 
36 

Output layer (for 

baseline), 

9 nodes activation 

function:Softmax 
90 

Adam optimizer learning rate = 0.01 - 

Batch size 64 - 

Training iteration 

500 epochs, early stopping 

(monitor: validation accuracy, 

patience = 50) 

- 

TABLE III.  HYPERPARAMETERS OF THE MODELS 

Algorithm Hyperparameters 

DT 
C4.5 algorithm, confidence level = 0.1, splitting criterion=Gini, 

random state = 42 

kNN Distance metric = L2 norm, number of neighbors (k) = 5, 7, 9 

LR 
L2 penalty = true, C-value = 1.0, max iterations = 100,  

tolerance = 0.001, random state = 42 

NB Gaussian Naïve Bayes = true, log-space = 0 to -9 

RF 

Estimators = 300 trees, batch size = 64, max depth = 0, 

max nodes = -1 (unlimited), bootstrapping = true,  

feature importance = Gini, random state = 42 

SVM 
Kernel = Radial Basis Function (RBF), C-value = 1.0,  

gamma = 0.1, random state = 42 

 

G. Ensemble Voting 

The output class of each instant immediately received from 
each conventional ML model was collected and then voted 
using hard and soft voting. The efficiency of these voting and 
baseline models (DT with 10-fold cross-validation and 
MLPNN models) was compared. The ensemble hard-voting 
involves taking a majority vote from the predictions made by 
the individual base models. For classification tasks, the class 
labels predicted by each conventional ML model are counted, 
and then the class label acquiring the most votes is selected. 
The ensemble soft-voting considers the probabilities or 
confidence scores assigned by each base model, calculating the 
average probability for each class label on all models and then 
determining the ultimate prediction by selecting the class label 
with the highest average probability. After making predictions 
using the ensembles (hard or soft voting), the performance was 
evaluated on the test and validation datasets. 

H. Model Evaluation 

The performance of the proposed model was assessed 
utilizing accuracy, sensitivity, specificity, precision, F1-score, 

Area Under the Curve of the Receiver Operating Characteristic 
(AUC-ROC) with balanced average accuracy [25], Mean 
Absolute Error (MAE) [26], and R-squared (R

2
) [27]. Each 

metric was calculated as: 

Accuracy = GHIG(
GHIG(IJHIJ(   (8) 

Precision = GH
GHIJH    (9) 

Sensitivity = GH
GHIJ(    (10) 

Specificity = G(
G(IJH    (11) 

F1-score = -×H��������×Y����	�Z�	�
H��������IY����	�Z�	�   (12) 

AUC-ROC = Y���_	_Z_	�`̀ `̀ `̀ `̀ `̀ `̀ `̀ `̀ IYa��_�_�_	�`̀ `̀ `̀ `̀ `̀ `̀ `̀ `̀ `
-   (13) 

where TP refers to the instances where the water quality is 
actually suitable and the model correctly identifies it as 
suitable, TN refers to the instances where the water quality is 
actually unsuitable and the model correctly identifies it as 
unsuitable, FP refers to the instances where the water is 
actually unsuitable but the model incorrectly identifies it as 
suitable, and FN refers to the instances where the water is 
actually suitable but the model incorrectly identifies it as 
unsuitable. 

MAE = /
( ∑ |e� − ef�|(�./    (14) 

where N denotes the count of observations of data, yi denotes 
the true value, and ef� denotes the expected value of data i. 

�- = 1 − g∑ (#5h#f5)i%5&'
∑ (#5h#̅5)i%5&'

k   (15) 

During the MLPNN-based model training, its categorical 
cross-entropy loss was calculated by: 

Cross-entropy Loss = − ∑ ∑ m�,� log(q�,�)�
�./

#�./  (16) 

where x denotes the input data count, y denotes the count of 
classes, zi,j denotes the input data i corresponding to the class j, 
and pi,j denotes the expected value probability based on the 
class j by the input data i. In addition, a confusion matrix was 
used to evaluate the model's efficiency for comparing the 
accuracy of each predicted class. 

I. Mobile Application Development 

The model with the best performance results was developed 
on an Android-based mobile application platform deploying 
TensorFlow Lite and Android Studio version 2022.2.1 with 
C++. The developed application was based on Android version 
7.0 (Nougat) with Application Programming Interface (API) 
version 24, which currently supports almost all Android 
platform devices. The mobile app can monitor the real-time 
water quality parameters by calling the web services API on the 
Apache Web Server and classifying the water quality. Figures 
3 and 4 present the design of the mobile application's 
architecture and framework. In addition, five experts in 
information technology and computer science utilized the 
black-box testing methodology to assess the effectiveness of 
the mobile application. The consistency of the content in the 
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mobile application was evaluated employing an index of Item-
Objective Congruence (IOC) [28, 29], with only three scores, 
including -1, 0, and 1. A score of 1 indicates that the expert 
accepted or agreed, while a score is 0 or -1 means the expert 
did not accept or disagreed [30]. The IOC is given by: 

IOC = ∑ ∑ Y5,$s$&'%5&'
(     (17) 

where N denotes the count of experts, M denotes the number of 
topics evaluated, and S denotes the score for each topic 
evaluated. This application was further distributed to farmers to 
test and evaluate user satisfaction. 

 

 
Fig. 3.  The design of the mobile application in Android Studio. 

 
Fig. 4.  The architecture and framework of the mobile application. 

J. User Satisfaction 

Five experts in information technology or environmental 
sciences and thirty application users, who were farmers or 
villagers, attended training on using the developed system. All 
participants acknowledged, understood, and signed the ethics 
of the investigation. After completing the training process and 
demonstrating how to use the mobile application, users carried 

out system tests to evaluate system performance based on user 
satisfaction. The evaluation score ranged in a five-point Likert 
scale [31]: 1 = very poor, 2 = poor, 3 = average, 4 = good, and 
5 = excellent. 

III. RESULTS AND DISCUSSION 

A. Results of Data Resampling 

Data resampling with the k-Means SMOTE-ENN method 
(100% to 1,000% of SMOTE) increased the amount of data 
from the original 12,954 records to 29,877 records. All 
minority classes were resampled to a number similar to the 
majority class. In addition, the imbalanced ratio was close to 
one, as observed in Figure 5. According to DT applying the 10-
fold cross-validation on thirty datasets with k-means SMOTE-
ENN for data resampling, the dataset configured with k-
clusters = 9 and k-nearest = 8 had the highest accuracy. This 
dataset with 900% SMOTE had the highest accuracy of 
84.77% and the imbalanced ratio was 1.0582, as exhibited in 
Figure 5. 

 

 
Fig. 5.  The number of data resampled, imbalanced ratio, and dataset 

accuracy using k-means SMOTE-ENN (k-clusters = 9 and k-nearest = 8). 

The dataset obtained for 1000% of SMOTE (29,877 
records) was close to 900% of SMOTE (29,741 records), but 
the accuracy was slightly lower. This may be because the data 
were resampled in 100% increments, so the data with nine 
classes were resampled and all minority classes had a similar 
number to the majority class. Therefore, no additional data 
sampling is required. Many studies have solved the problem of 
imbalanced datasets using various techniques. Although the 
results give the model higher accuracy, resampling techniques 
are subject to biases and result in the tendency for the data to 
differ from the original data, failing to capture genuine data 
redundancy. Therefore, a comparison should be made with 
various techniques to manage imbalanced datasets to obtain 
techniques suitable for MLPNN-based models. 

B. Results of Ensemble Voting 

Feature extraction obtained from the MLPNN model was 
classified deploying conventional ML techniques with 
ensemble voting. The results reveal that the hard-voting model 
had the highest efficiency, with 86.62% accuracy, 86.64% 
precision, 87.25% sensitivity, 86.58% specificity, 87.04% F1-
score, 86.76% AUC-ROC, 86.79% R2, and 0.11064 MAE. The 
next best-performing models were the soft voting, MLPNN, 
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and DT (cross-validation) models, with accuracies of 86.59%, 
85.25%, and 84.77%, respectively. In this regard, the DT 
(cross-validation) model was validated from the dataset 
attained from k-means SMOTE-ENN 900%, and the MLPNN 
model used the softmax activation function to classify classes 
without going through the ensemble voting process. Both 
models serve as a baseline to compare the results with the 
utilization of ensemble voting techniques, as disclosed in 
Figure 6. 

 

 
Fig. 6.  Results of the ensemble voting compared with the baseline DT and 

MLPNN models. 

The efficiencies of the hard- and soft-voting ensemble 
models had slight differences. The hard-voting model had a 
higher accuracy than the soft-voting one by 0.33%, while it had 
a higher accuracy of 1.67% and 2.15% compared to the 
MLPNN and DT models, respectively. Moreover, the 
sensitivity was progressively higher than the precision and 
higher than the accuracy for the hard voting model. However, 
MLPNN-based models with complex neural networks can limit 
the interpretability of the model. In addition, properly 
considering and optimizing the hyperparameters and related 
factors can help make the model more accurate. 

C. Results of Mobile Application Development  

The most efficient model was developed as a mobile 
application on the Android platform. Users can input individual 
water parameters to classify the severity level of water quality 
(warning, caution, and critical) of each farm type, as shown in 
the example application screen in Figure 7. 

 

 
Fig. 7.  The application of water quality classification for different 

farming. 

D. Results on User Satisfaction 

The average values of the user satisfaction evaluation were 
4.96 for experts and 4.94 for farmers. Table IV indicates that 
the Standard Deviation (SD) values were 0.20 and 0.24 for 
experts and farmers, respectively. As shown in Table IV, the 
assessment topics 5, 7, and 8 had the highest mean score (5.00) 
for user satisfaction from experts and farmers. The assessment 
topics 1, 3, 4, 9, and 10, had a mean score of 5.00 when 
evaluated by experts, Meanwhile, the farmers' assessment had a 
lower mean than the experts' assessment, with a mean value of 
4.90 for assessment topics no. 1, 3, and 4. For assessment 
topics 9 and 10, the mean value was 4.97. The assessment 
topics 2 and 6 received the lowest evaluation scores, having a 
mean value of 4.80 for experts and 4.83 and 4.90, respectively, 
for farmers. This may be due to small smartphone screens, 
causing the available space for display to decrease as well. 
Thus, a solution might be to divide the display into multiple 
pages so that filling out information and displaying information 
on each page has more space and does not cause the content to 
be too close together when the user uses a smartphone with a 
small screen. 

TABLE IV.  USER SATISFACTION ON THE MOBILE 
APPLICATION 

Assessment topics 
Experts Users (Farmers) 

Mean SD Mean SD 

1. Font and text size 5.00 0.00 4.90 0.31 

2. Spacing between contents 4.80 0.45 4.83 0.38 

3. Ease of access menus 5.00 0.00 4.90 0.31 

4. Ease of access buttons 5.00 0.00 4.90 0.31 

5. Ease of use touch screen 5.00 0.00 5.00 0.00 

6. Contrast and appearance 4.80 0.45 4.90 0.31 

7. Vertical and horizontal screen 

orientation 
5.00 0.00 5.00 0.00 

8. Help options 5.00 0.00 5.00 0.00 

9. Application performance 5.00 0.00 4.97 0.18 

10. The sense of familiarity 5.00 0.00 4.97 0.18 

Average 4.96 0.20 4.94 0.24 

 

IV. CONCLUSION 

Nearby areas may have farms that rely on water from the 
same source and are affected by seawater, especially the 
salinity value, which directly impacts different farming types 
with different salinity requirements. In addition, some water 
parameters directly affect water quality for farming. These 
parameters include water temperature, EC, salinity, ammonia, 
COD, BOD, TSS, pH, DO, and turbidity. This research 
presents guidelines for developing a mobile application for 
water quality classification for different farm types using 
MLPNN and voting ensemble-based conventional ML 
techniques, including DT, RF, LR, NB, kNN, and SVM. The 
dataset collected by IoT devices was resampled deploying the 
k-Means SMOTE-ENN to prevent overfitting caused by an 
imbalanced ratio between the majority and minority classes. A 
dataset with nine classes, processed with k-Means SMOTE-
ENN at 900%, resulted in an imbalanced ratio close to one and 
the highest accuracy of 84.77% when validated with the DT 
10-fold cross-validation. MLPNN was employed to extract 
features from the dataset, and then the output was classified 
using the softmax function. The MLPNN model had an 
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accuracy of 85.25%, higher than the baseline DT model. The 
features extracted from the MLPNN model were classified by 
six conventional ML algorithms and then voted utilizing hard 
and soft voting. The hard-voting model had higher efficiency 
than the soft-voting, MLPNN, and DT models. The accuracy 
was 86.92% and 86.59% for the hard and soft voting models, 
respectively. In addition, a smartphone application was 
developed to allow users to classify water quality following the 
hard voting approach. Farmers and experts were satisfied with 
the application, with means of 4.94 and 4.96, respectively. 

In summary, developing a mobile application using transfer 
learning ANN-based ensemble voting can classify the water 
quality for different farming. The MLPNN-based model 
extracts features and then relies on several conventional 
classifiers to categorize the resulting classes and perform hard 
voting for the most accurate results. This method contributes to 
better discrimination than utilizing a single classifier. The value 
of this work is that farmers with different farm types have an 
application to predict water quality. This application can help 
farmers prevent and protect their farms, reduce yield loss from 
unsuitable water, and find ways to adjust water conditions to 
ensure that water quality is suitable for their farming 
operations. Although the model and system developed can help 
predict water quality, it can be expanded to an automatic water 
quality warning system to help farmers even more. However, 
this requires the cooperation of government agencies, 
community leaders, and those responsible for monitoring water 
quality and opening and blocking water gates. Therefore, 
sharing information and using various resources together is 
expected to help farmers earn a living and increase their 
income. 

However, there may be some limitations to collecting water 
quality parameters with IoT and sensor devices via cellular 
networks. During automatic data collection, sensors can 
become fouled by algae, sediment, or biofilm, affecting the 
accuracy and performance of the measurements. Thus, these 
sensors need to be regularly cleaned and calibrated. Cellular 
network coverage may be poor in some areas, leading to 
unreliable data transmission. It is necessary to consider the 
installation location away from physical obstacles, as well as 
weather conditions and electromagnetic interference to have 
the most negligible impact on the quality and reliability of 
cellular networks. In addition, hyperparameters directly affect 
the efficiency of the proposed model. The hyperparameters of 
MLPNN and conventional classifiers must be tuned to achieve 
optimal performance. Water quality may change according to 
climate and season, including other external factors, such as 
industrial pollution, affecting the accuracy of the model. Thus, 
future research must consider all factors expected to be 
involved in water quality as input features and adopt feature 
selection methods to compare the efficiency of the models. 
Furthermore, this research only classifies water quality from 
the current water parameters. Therefore, a future work direction 
is to predict water quality in advance, using deep learning 
techniques, such as Deep Reinforcement Learning (DRL) and 
Recurrent Neural Networks (RNNs), and then combine their 
results with time series techniques to develop a model for 
classifying water quality near real-time and automatically 

notify users. This can assist farmers and users plan water 
management more appropriately. 
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