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ABSTRACT 

A smart grid is a modern electrical system that uses information technology, including sensors, 

measurement tools and communication devices, to monitor and improve the efficiency of the power system. 

However, real-time forecasting remains a challenge due to its complexity.  This paper presents a 

forecasting framework that combines Convolutional Neural Networks (CNN) and Bidirectional Long-

Short Term Memory (BiLSTM) for real-time load forecasting in smart grids. Compared to traditional 

methods like ARMA and Decision Trees (DTs), the proposed CNN-BiLSTM model demonstrates superior 

performance in terms of prediction accuracy, reaching up to 99% - higher than Long-Short Term Memory 

(LSTM) (93%) and Support Vector Machine (SVM) (84%). Additionally, the CNN-BiLSTM model 

requires fewer computational resources, with 90 Gigaflops (G) and 94 Million (M) parameters, compared 

to 151 (G) and 120 (G) for ARIMA and CNN-LSTM, respectively. These results indicate the proposed 

model's ability to accurately predict power system loads in real time with high computational efficiency. 

Keywords-smart grid; Bayesian optimization; load forecasting; BiLSTM; CNN  

I. INTRODUCTION  

Predicting load in real-time for clever grids refers to using 
device learning, data mining, and related techniques to forecast 
the electricity demand inside the electrical grid machine at that 
moment [1]. This enhances the basic reliability and 
performance of the grid by assisting grid operators to 
intelligently allocate strength sources. The primary challenge in 
real-time predictive modeling for electrical loads in intelligent 
grids is the varied and complicated nature of the data. 

The variables that affect the amount of power used by the 
grid machine include time, location, and kind of load, in 
addition to possible noise and anomalies. Utilizing the 
appropriate feature extraction and statistics training procedures 
is crucial to raising the accuracy and reliability of the 
predictions. Thus, this study is driven by the increasing demand 
for more accurate and faster load forecasting response to 

developments in the smart grid age. Due to the fact that 
conventional load forecasting techniques typically do not 
succeed in meeting these shifting demands, an additional novel 
and real-time approach is being investigated. Given that Deep 
Learning (DL) models can process substantial volumes of data 
and autonomously learn styles and capabilities, they are 
frequently deployed in power plant load forecasting. The 
hyperparameter technique, which applies Bayesian 
optimization, further improves the prediction capabilities of 
these DL models. A valuable outcome of this technique, is the 
incorporation of DL models into the power system load 
predictions. Developing an accurate and reliable load 
forecasting system is the primary goal of this research, which 
aims to improve the efficiency, effectiveness, and reliability of 
clever grid architectures. 
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Many intelligent grid applications, including energy 
purchasing and selling and energy dispatching, are capable of 
real-time load prediction. Recurrent neural networks, device 
learning, and conventional time-series modeling are common 
approaches for smart grid load prediction in the present day. 

The classic modeling time-established record approach, 
which includes methods like ARMA and ARIMA, does not 
safeguard exogenous variables. It mainly depends on 
endogenous factors, instead. Despite their apparent simplicity, 
these styles have limits in terms of their ability to depict non-
linear connections. Their over-reliance on time series data, 
which demonstrate stability or on data that use analysis to 
appear as steady information is the cause of these limitations. 
Precise predictions are challenging to be obtained by deploying 
the traditional sequential information modeling technique 
owing to the specifics of the modern strength used in intelligent 
grid systems. Furthermore, it is difficult to guarantee the 
version's continuous effectiveness in a setting where real-time 
loads are always changing. The primary reason for this is that 
conventional time collection forecasting algorithms do not 
adjust after initial training. 

The device learning approach forecasts modifications to 
time series data by analyzing and evaluating datasets and 
employing methods, such as logistic regression, Bayesian 
Optimization (BO), and the SVM version. This version's speed 
gives it the advantage of being intelligible and adaptable to 
handling interactions across non-linear capabilities. However, 
one limitation of intelligent grids is that real-time demand 
depends on many different factors. As a result, a number of 
preferences may remain unfulfilled, and thus the efficacy of 
gadget mastering techniques may not be enhanced. The 
recurrent neural community approach uses state-of-the-art DL 
algorithms, such as the Gated Recurrent Unit (GRU), Recurrent 
Neural Network  (RNN), Generative Antagonistic Networks 
(GAN), etc., to automatically extract features from large 
datasets. One of the many notable benefits of this model is the 
strong learning skills it possesses. Larger datasets also improve 
its flexibility and performance. It does, however, have several 
drawbacks, such as high technology requirements and limited 
mobility. Additionally, its interpretability can be restricted, and 
its effectiveness greatly depends on the availability of 
information. 

Taking into account the benefits and drawbacks of the 
previously described models, this work provides a forecast 
model that combines a CNN-dependent device with a neural 
network with BiLSTM. Additionally, the BiLSTM network 
improves the accuracy of the LSTM model by refining the 
output data. The outcomes are then exposed to BO for real-time 
adaptability in smart grid load forecasting. This is 
accomplished by dynamically modifying parameter values 
while utilizing Bayesian ideas. This system leads to the 
proposed model’s production. The primary contributions of this 
study are: 

 Model Creation: Based on the CNN-BiLSTM architecture, 
a neural community version is developed that utilizes DL to 
forecast hundreds of electrical devices. In order to provide 
accurate loading predictions in the future, this model 

efficiently utilizes CNN to extract spatial features and 
BiLSTM to report temporal collection patterns. 

 Hyperparameter οptimization: The BO procedure is 
deployed to alter the hyperparameters in order to increase 
the version's predictive capacity. Using a changeable 
lookup location to improve the version's stability and 
capacity generalization, this approach quickly determines 
the optimal collection of hyperparameters. 

 Αctual-time load forecasting: The version is employed to 
forecast loads using cutting-edge technology, and its 
predictive performance is verified by utilizing actual-time 
records. Accurately anticipating/estimating demand 
fluctuations is essential for intelligent dispatching and grid 
operations. This specific reason was predicted to double 
safety and efficiency in power systems. 

Moreover, non-linear connections, which could cause 
issues in conventional time collection modeling techniques, 
may be controlled through this model’s implementation. In 
contrast to conventional methods, the proposed model may be 
used in a wider range of applications. It also exhibits improved 
mastery and interpretability. In contrast to conventional DL 
models, namely the RNN, GAN, and GRU, the employment of 
the BiLSTM model enhances the speed at which sequential 
statistics are processed, more accurately catches long-term 
patterns in records, and applies BO to further enhance 
prediction accuracy. 

II. COMPARABLE WORKS 

A. GRU Model 

GRU belongs to the RNN category. It features a more basic 
network architecture and operates similarly to the LSTM. 
Three new gate features have been added by the LSTM, the 
enter, forget, and exit gates. With the GRU model, there is one 
“door” less. The qualities are comparable and often become 
more reasonable despite this diversity. The Gate recurrent unit 
is commonly used for two purposes, language interpretation 
and dialogue. Due to its ability to handle sequential facts, it is 
ideal for tasks, such as language modeling, device translation, 
and textual content technology [2]. 

B. Decision Tree (DT) Model 

DT [3] is a type of supervised learning model used in 
Machine Learning (ML) for prediction and classification. To 
properly categorize data, the procedure involves examining the 
features, choosing the best possibilities, and dividing the 
dataset into segments recursively. DTs may not be as reliable 
when used with unknown data although they often work well 
on datasets used in education. 

C. ARMA Model 

The ARMA model is substantial for the evaluation of the 
data collected over time [4]. It is frequently used in studies to 
perform an in-depth research. It integrates components of the 
Auto-Regressive version [5] and the moving average model 
[6]. It evaluates data stationarity to see if time series data are 
suitable for modeling. The adaptability of the ARMA model 
lies in its ability to be utilized for a wide range of data 
collection time frames. This also simplifies model analysis, 
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making evaluation easier. The ARMA model has the advantage 
of being able to be deployed in multiple time series and to 
assess the model quality during the model diagnosis procedure, 
which is extremely beneficial for forecasting. However, when 
utilizing the ARMA model to predict data, the prediction error 
increases constantly in accordance with the elapsed time 
compared to the short-term prediction results. 

III. METHODOLOGY 

The electrical load data used in this study were sourced 
from two major databases: Elia [9] and ISO-NE [10]. The data 
span a time period from January 2014 to December 2015, 
including variables such as hourly load measurements and 
temperature. Detailed pre-processing steps involve handling 
missing values, normalization of the data, and segmentation 
into training, validation, and test sets. 

A. Synopsis of the Network 

This work proposes a CNN-BiLSTM model based on BO 
with the goal of forecasting real-time load data for smart grids. 
The model automatically modifies hyperparameters to enhance 
prediction performance using a BO technique. It combines the 
advantages of CNN with BiLSTM neural networks. 

The BO model mainly deploys CNN to extract spatio-
temporal features from load data, BiLSTM to model spatio-
temporal features and realize real-time load prediction, and a 
BO style algorithm to fine-tune model hyperparameters, such 
as batch size and learning rate, to improve prediction 
performance and model applicability in general. 

The three key components of the model – BO, BiLSTM, 
and CNN work together to provide an accurate, real-time 
electricity forecast for smart power grids. The CNN extracts 
spatiotemporal capabilities, the BiLSTM models these features, 
and BO adjusts the hyperparameters to increase the accuracy 
and utility of the forecasting model. 

The workflow of the model is to introduce the real-time 
load data of the smart grid into the process, preprocess and 
normalize the data input layer, and apply the CNN unit to 
extract the features of the dataset. The model uses a one-
dimensional convolution layer to maximize feature extraction 
and subsequently generates a final feature series after pooling, 
sampling, combining, and restructuring the data through the 
fully connected layer. 

Finally, after feeding the feature data into the BiLSTM 
layer for additional training, the BO procedure identifies the 
proper model parameters. This approach simultaneously 
improves the CNN-BiLSTM structure and forecast accuracy to 
give more precise forecast results for real-time load data in 
smart grids. 

Figure 1 presents the flow chart of the model, which 
describes the steps involved in real-time load anticipation for 
the smart grid. The first basic input is obtained from the smart 
grid real-time load data. This data stream is then subjected to a 
Softmax function, which simplifies initial processing and 
normalization. The output of the Softmax function is received 
by a CNN to further process the data and extract relevant 
features. Using a CNN with an one-dimensional convolutional 

layer helps reduce dimensionality and more efficiently extract 
features for the full dataset. After completing the CNN 
analysis, the data are decomposed to generate an one-
dimensional array from the multiplied CNN output. 
Subsequently, a BiLSTM, famous for its ability to integrate 
data sequences in both directions, seamlessly integrates all 
functionality. The interaction between the BiLSTM layer and 
the BO makes it possible to improve the model 
hyperparameters and enhance the accuracy of load forecasts as 
the flowchart evolves. Ultimately, this method can reliably 
predict load patterns in the smart grid, leveraging real-time data 
to improve network performance. 

 

 
Fig. 1.  The method followed for the smart grid to forecast load in real 

time. 

B. Data Preprocessing and Normalization 

To ensure efficient training, the input data of the smart grid 
load-forecasting model are first preprocessed and normalized. 
This includes: 

 Handling missing values: Any missing data points in the 
time series of smart grid load measurements are imputed 
using interpolation techniques. This could involve simple 
linear interpolation or more advanced methods like spline 
interpolation to estimate the missing values based on the 
surrounding data points. 

 Feature scaling: The input features, which may include the 
raw load data as well as engineered temporal features, are 
standardized by subtracting the mean and dividing it by the 
standard deviation of each feature. This ensures that all 
features have a similar numerical range, preventing certain 
features from dominating the model training process. 

 Temporal feature engineering: In addition to the load data, 
the preprocessing step also involves extracting relevant 
temporal features that can help the model capture patterns 
in electricity consumption. Examples of such features 
include: Time of the day (hour of the day), day of the week, 
Holiday indicators (whether the day is a holiday or not), 
and Seasonal indicators (e.g. month of the year). 
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C. CNN Architecture 

CNN is a popular DL technique [7] that excels in local 
feature recognition. CNN has become one of the most popular 
models due to its adaptability and ability to handle a variety of 
tasks, such as target detection and picture type [8]. 

The convolution layer's function is the primary purpose of 
feature extraction. The input picture is analyzed and processed 
using convolutional kernels in order to extract many features. It 
is possible for many kernels to operate independently. The 
resulting feature map is gathered in the stratum of pooling. This 
approach notably lowers the quantity of statistics by 
eliminating redundant data while keeping important elements. 

The mathematical expression of the one dimension 
convolution layer of the convolution process with a 
convolution kernel is: 

Let �� be the set of input features, denoted as: 

�� � ���� , ��� , … , ��	
��   (1) 

where n is the number of input features. Let K  be the 

convolution kernel. The output of the Y  convolution can be 
calculated as: 

1

0

*
m

i i j j
j

Y X K






     (2) 

where iY is the value of the output at index i, i jX


 is the 

value of the entry at index i + j, jK  is the value of the 

convolution kernel at index j, and m is the size of the 
convolution kernel. 

D. BiLSTM Model 

The LSTM model effectively processes data from the 
forward sequence to make neural network predictions. 
However, it might be difficult to comprehend the substance of 
backward data during model training, which can result in 
problems like disappearing gradients or gradient explosions. By 
combining forward and backward LSTM units, the BiLSTM 
model solves this issue and improves the preservation of data 
from far-off nodes. BiLSTM improves performance with huge 
temporal sequence data by creating dual hidden layer 
representations for each input by combining forward and 
backward calculations. The BiLSTM structure, with its 
integrated forward and backward units, performs better in time 
series forecasting than LSTM units do even though the latter 
are excellent at using forward data for forecasts. Each LSTM 
cell in the BiLSTM structure, portrayed in Figure 2, has three 
gating mechanisms, an input gate, an output gate, and a 
forgetting gate. 

It is possible to observe that the forward LSTM structure in 
the BiLSTM network is computed similarly to a single LSTM. 
By combining the forward hidden layer state and the reverse 
hidden layer state, the hidden layer state of the BiLSTM 
network can be obtained. 

 

Fig. 2.  Calculating BiLSTM units for real-time load forecasting in smart 

grids. 

E. Bayesian Optimization 

BO is an approach that leverages data from previous search 
points to identify the next search point, with the aim of solving 
small black box optimization problems. This sequential 
optimization process by using a model makes it possible to 
obtain a quasi-optimal solution to generate/for a model with a 
very low evaluation cost [9]. BO is frequently utilized to 
classify texts, predict several categories of texts in real time, 
and distinguish sentiments. At the same time, BO is also being 
used more to predict sequential data. Its structure is illustrated 
in Figure 4. 

The architecture of the proposed model, which is divided 
into three main portions, is displayed in Figure 3. The first 
section utilizes three sub-blocks of a CNN, namely input data, 
an one-dimensional maximum pooling convolutional layer, and 
a dropout. In order to prevent overfitting, this approach entails 
processing input data via an one-dimensional convolutional 
layer with maximum pooling and then performing a dropout 
operation. In the middle segment, a BiLSTM network is 
formed by employing LSTM layers to identify long-term 
relationships in data sequences. To improve model 
performance through hyperparameter adjustment, BO is 
incorporated into the model. The resulting scores are 
transformed into probabilities deploying the SoftMax activation 
function. The output section displays the model's final result. 

Figure 4 depicts the architecture of the model, which uses 
neural networks for learning and BO. The flowchart illustrates 
a series of actions and choices, including crucial phases like 
model startup, BO, and result output. CNNs were utilized in the 
proposed model to handle the input data, long-term 
dependencies were modeled using LSTM cells, and 
hyperparameter tuning was accomplished following a BO 
procedure. After that, the model's output is used to direct 
behavior to a specific setting. 

IV. EXPERIMENT 

In the experimental setup, critical components are defined 
to ensure the success of the real-time load forecasting model. 
Data preprocessing steps involve gathering historical load and 
weather data, cleaning the data, engineering features, and 
normalizing the data for consistency. Model parameter settings 
include defining the architectures of CNN and BiLSTM layers,  
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setting the learning rates, batch sizes, and regularization 
techniques. Evaluation metrics, such as Mean Absolute Error, 
Root Mean Squared Error, R-squared, and accuracy are utilized 
to assess model performance. The experimental setup includes 

hyperparameter tuning using BO, model training, validation to 
prevent overfitting, testing on a separate dataset, and iterative 
improvement based on the evaluation results for model 
refinement and enhancement.  

 

 

Fig. 3.  The architecture of the proposed model. 

 

Fig. 4.  Detailed flowchart of the proposed model based on Bayesian optimization to adjust and optimize hyperparameters. 

For this study’s experiments, load data from the Elia and 
ISO-NE datasets, covering the tome period from January 2014 

to December 2015, were utilized. Data pre-processing included 
normalizing the load values to a range from 0 to 1, addressing 
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missing entries through regression imputation, and dividing the 
data into 80% for training and 20% for validation and testing. It 
was ensured that the data used for the model evaluation were 
not included in the training process to avoid data leakage and 
certify unbiased performance metrics. 

A. Collections of Data 

Elia and ISO-NE were the statistical resources for the data 
utilized in this work. ISO-NE is the organization responsible 
for overseeing the power and electrical sectors in the New 
England region, including managing the market, energy 
devices, and ensuring reliable electricity supply [11]. Elia is the 
high-voltage transmission grid operator in Belgium, 
responsible for managing the transmission network, market 
operations, and enabling cross-border energy exchanges to 
promote Belgium's social and economic growth [10]. 

B. Configuration and Specifics of the Experiment 

Several tests were carried out to verify the introduced 
model’s effectiveness and demonstrate its performance. 
Initially, the proposed approach was contrasted with different 
approaches in terms of how long it took to draw conclusions 
from the complicated data. It was then displayed how much 
better the proposed model was than the other models by 
contrasting its training time with that of the other models and 
evaluating how well each model performed at various levels of 
complexity. Additionally, experiments were conducted to test 
the number of parameters. Lastly, the accuracy and calculation 
time of the two datasets were compared under the examination 
of various models. It was found that the proposed model 
performs better than other approaches in terms of computation 
speed, quantity of parameters needed, and the experimental 
results. As a consequence, the proposed model is able to 
forecast smart grid real-time load data more accurately. 

C. Analysis and Outcomes of the Experiment 

Figure 5 clarifies that the proposed model performs better 
than the other two with reference to the inference duration for 
identical complicated data, while its overall performance is 
correspondingly better. 

 

 
Fig. 5.  Evaluation of inference time in different models for complex data. 

The training times of the various models using the complex 
data are showcased in Figure 6. The differences in training 
times between the SVM and LSTM models were examined. It 
is evident that the proposed model takes a shorter time 

compared to that of the SVM and LSTM models, regardless of 
the volume of the data. This allows the model to make more 
contributions at once and drastically cut down on training time. 

 

 

Fig. 6.  Assessment of data training duration across various models. 

In this series of tests, as seen in Figure 7, each model's 
computational flop was tested and evaluated. The experimental 
findings indicate that the ARIMA model requires the greatest 
computational effort. While the proposed model does not 
perform the best in this set of tests, it does perform much better 
after using BO, which yields solid experimental findings that 
support the viability of the proposed approach. 

 

 
Fig. 7.  Number of failures, or computations, needed for various models. 

Figure 8 exhibits the number of parameters needed by the 
various models. After a number of tests were carried out, it can 
be concluded that in comparison with the selected models, the 
GNN model uses the greatest number of parameters, but the 
LSTM operation utilizes a significantly smaller number of 
parameters than GNN. The proposed approach functions 
incredibly well regarding the number of parameters required 
for operation. Reducing the number of variables in a model can 
enhance its ability to calculate data. 

D. Steps of the Model 

The steps of the proposed model are: 

 Real-time load data from the clever grid are obtained, 
preprocessed, and normalized in the fact’s entry layer. 

 One-dimensional CNN is used to process the dataset in 
order to extract features. 

 The typical collection is generated after the dimensionality 
is discounted and after additional processing. 

 The BiLSTM layer receives feature-related records in order 
to provide real-time load feature acquisition. Then, by 
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employing BO to find the nice model parameters, 
prediction accuracy is increased. 

 The forecast's output is provided with astonishing precision.   

 

 
Fig. 8.  Number of parameters in different models. 

Two datasets were employed for the experiments, which 
were included in multiple models in this set of tests (Figure 9). 
It is easy to see that the results of the experiments on the two 
datasets show that the proposed model takes the shortest 
computation time, while GNN takes the longest. 

 

 
Fig. 9.  Comparison of the various models’ calculation times. 

In the final set of tests, portrayed in Figure 10, tests were 
run on the two selected datasets, using three models in order to 
gauge how accurate the results were.   

The experimental findings reveal that the accuracy of the 
two chosen models, LSTM and SVM, differs dramatically 
when faced with diverse data sets compromising the accuracy 
of the experiment. The test results are preferable if the models 
do show steady experimental stability when compared to other 
data. The proposed model performs equally well on the two 
chosen datasets leading to more accurate and persuasive test 
results. 

 

 

Fig. 10.  Differences in model accuracy on the dataset. 

V. CONCLUSION 

The study highlights the success of the proposed 
forecasting framework that combines Convolutional Neural 
Networks (CNN) and Bidirectional Long Short-Term Memory 
(BiLSTM) for real-time load forecasting in smart grids. The 
CNN-BiLSTM model achieved an exceptional prediction 
accuracy of up to 99%, surpassing the LSTM and SVM 
models, which scored 93% and 84% accuracy, respectively. 
Moreover, the model demonstrated efficiency by requiring 
fewer computational resources compared to the other methods. 
These results emphasize the model's accuracy and 
computational efficiency in forecasting power system loads in 
real-time. Accurate real-time load forecasting is crucial for 
enhancing electric device functionality, promoting renewable 
energy utilization, and improving market performance in smart 
grid systems. By enabling a precise estimation of electricity 
demands, the CNN-BiLSTM model can enhance the planning 
and control of power system operations, leading to increased 
efficiency and reliability in smart grid management. The study 
suggests future work should be done in certain areas. This 
involves exploring complex model architectures and 
integrating external factors while also acknowledging 
limitations, like data quality, generalizability, and model 
interpretability that need to be addressed for further research 
and model enhancement in real-world smart grid applications. 
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