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ABSTRACT

Maize (corn) is a major and high yield crop, cultivated worldwide although diseases may cause severe yield
reductions. Monitoring and identifying maize diseases throughout the growth cycle are crucial tasks.
Accurately detecting diseases is an issue for farmers who need expertise in plant pathology, while
professional diagnosis can be time-consuming and expensive. Meanwhile, conventional Deep Learning
(DL) and image recognition models are slowly entering the field of plant disease detection. This paper
proposes the Intelligent Maize Leaf Disease Detection design using the Manta-Ray Foraging Optimization
with a DL (IMLDD-MRFODL) model. The aim of the IMLDD-MRFODL method is to detect and
categorize maize leaf diseases. The IMLDD-MRFODL method applies Median Filtering (MF) for image
preprocessing, a densely connected network (DenseNet) for feature extraction, and the MRFO technique
for hyperparameter tuning. The IMLDD-MRFODL technique exploits a Long Short-Term Memory
(LSTM) network for maize leaf disease classification. Experimental evaluation was conducted to validate
the IMLDD-MRFODL approach and the comparative analysis exhibited the superior accuracy of the

proposed method.
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I.  INTRODUCTION

Maize leaf diseases drastically decrease crop production,
thus, monitoring and detecting diseases during the developing
seasons is essential [1]. Conventionally, plant pathologists,
field experts, or cultivators analyze all diseases by physically
examining the signs of the crop's diseases with the naked eye.
This technique is not possible at a higher level due to
limitations, such as physical accessibility, resource availability,
cost, and time [2]. Often, the unobtainability of field experts
can prevent the precise therapy of the ailments in the earlier
phases. Hence, a cost-effective and fast technique for
diagnosing crop diseases is needed [3]. In the existing
conditions, automatic disease identification employing DL
nearly exceeds the standard disease identification approach and
offers nearly higher-level performances in challenging periods
[3]. A digital image-assisted automated detection model in
maize crops can be a sustainable option for reaching the
stakeholders, namely maize cultivators and the country's
massive population [4].

Artificial Intelligence (AI) and DL-based methodology are
gradually employed in agricultural studies owing to their
capacity to acquire deep features from image datasets
automatically [5]. Convolutional Neural Networks (CNNs)
were utilized and compared in [6, 7]. Fine-grained crop disease
lesions' variability challenges CNNs, with enhanced network
depth and method adjustments offering limited enhancement in
classification effectiveness [8]. Moreover, visual disruptions
like blur, dispersion, and reflection crucially impact fine-
grained image classification [9]. Hence, fine-grained maize
disease recognition needs increased computerized mechanisms
and rational patterns in complex contextual field settings.

This paper presents the Intelligent Maize Leaf Disease
Detection design using the Manta-Ray Foraging Optimization
with a DL IMLDD-MRFODL) model.

II.  RELATED WORKS

Authors in [10] employed DL techniques for maize leaf
detection. In [11], the authors examined the TL of deep-CNNss.
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This work implements pre-trained Xception, InceptionV3,
ResNet-50, and VGG16 frameworks for classification.
Bayesian optimization was utilized to select optimum values
for hyperparameters. Authors in [12] developed a multiscale
convolution global pooling-NN method. Initially, a novel
Inception framework and convolution layer were integrated to
improve the capability of AlexNet feature extraction.
Moreover, the TL method was implemented to solve the over-
fitting issue. In [13], the Competitive Shuffled Shepherd
Optimization (CSSO) approach was developed by
incorporating the Shuffled Shepherd Optimizer Algorithm
(SSOA) and Competitive Swarm Optimizer (CSO) models.
The preprocessing was conducted by ROI extraction.
Identification was performed by Deep Quantum-NN (Deep
QNN). Authors in [14] developed a CNN technique-based
model for classifying four types of images.

Authors in [15] proposed the SKPSNet50-CNN technique,
which changes the 3x3 convolutional kernel from the backbone
network ResNet50 with the Select Kernel-Point-Swish-B

(SKPS) model. Authors in [16] introduced a DL model named
MaizeNet in which a ResNet50 technique with spatial-channel
attention was incorporated into an enhanced Faster-RCNN
model. Authors in [17] proposed a model that incorporates
CNN for visual detection. Authors in [18] implemented three
optimization approaches. The Modified Wiener Filter (MWF)
model was utilized for preprocessing, and the Improved Ant
Colony Optimization (IACO) method was employed for feature
extraction. The Hybrid Grasshopper Optimization with a
modified Artificial Bee Colony Algorithm (HyGmABC) was
employed for classification.

III. THE PROPOSED MODEL

This paper uses the novel IMLDD-MRFODL approach to
detect and categorize maize leaf diseases. For this to be
accomplished, it encompasses MF-based pre-processing,
DenseNet feature extraction, LSTM classification, and MRFO-
based hyperparameter tuning. Figure 1 exemplifies the
structure of the proposed IMLDD-MRFODL method.
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A. Image Preprocessing

Primarily, the IMLDD-MRFODL approach applies the MF
technique to remove noise [19]. MF eliminates the "salt and
pepper" noise that appears as an image's random bright and
dark pixels. Due to such impulsive noise, this method is
particularly relevant when the linear filter may not work well.
Substituting the pixel value with the median efficiently

Structure of the proposed IMLDD-MRFODL approach.

eliminates the outlier value caused by noise while maintaining
the fine details and edges in an image, in contrast to other
smoothing filters, such as the mean filter, which can blur
structures and edges.

B. Feature Extraction using DenseNet

The IMLDD-MRFODL technique applies the DenseNet
model to derive feature vectors. Prior studies faced a common
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issue with CNN: the gradient update becomes irrelevant once
the method is too deep, and the derivation value evaluated for
BP converts lower [20]. This problem is widely known as the
gradient disappearing issue. To overcome this issue, the
concept of connecting each layer to increase the data flow was
discovered. DenseNet comprises seven dense blocks, each
having four convolution sublayers. The outputs from the
sublayers are concatenated into the input and transmitted by the
following sublayers. Each symmetrical sublayer comprises the
ReLU activation function, Batch Normalization, Convolution,
and Dropout. In all the cases, the dropout likelihood is 0.5, and
the size is 5. This is stimulated by the skip connection of
ResNet in which the layer only gets feature mapping from the
final layer. This dense connection helps make differentiated
features since all layers receive the feature mapping of the prior
layer as input. The dense connection amid the sublayers
follows the sequential flow. A sublayer completes the forward
pass as long as each prior sublayer has completed its
computation. The dense connection allows the best gradient
flow with fewer parameters.

C. Hyperparameter Tuning with the MRFO Approach

In this phase, the IMLDD-MRFODL methodology uses the
MRFO technique. The steps and concept of the MRFO
methodology are presented and discussed in [21]. They are the
chain, cyclone, and somersault food search tactics.

1) Chain Food - Searching Approach

In this phase, every MR updates the location of the MR
situated in front of it and its existing position using the optimal
solution so far achieved, excluding the first one, which updates
its position based on the best solution obtained. The
mathematical expression of the chain food searching approach
is:

itr+1 _

Pk
P+ rnox (Gbest™ —pif") + 2 xrn

{ */llog()| = (Gbest'™™ —plfT) k =1

|DiE" + s (0 —pi") + 2%
N llog(r)| * (Gbest'™™ —pf") k = 2,..,N

where rn means a number in [0,1], N denotes the overall
amount of MRs (viz., population size), pit™ shows the position
of the k" manta ray at itr iteration, Gbest demonstrates the
global best solution attained, and p,i"“ indicates the new

position in the subsequent iteration.

)]

2) Cyclone Food Searching Approach

The MR walks in the search space cyclically. The
mathematical modeling of the cyclone food searching process
is:

MaxItr—itr+1

(Gbest + rn « (Gbest™ —pif™) + 2 x €™ Maxier  * sin(2 * 7 x rn) * (Gbest'™ — pii"),

k=1

itr+1 _

Pk MaxItr—itr+1

MaxlItr

Gbest + rnx (pil, —pif") + 2+ €™
k=2,..,N

MaxItr and rn denote the iteration count and a random
integer within [0,1]. Based on random position, each MR
makes a random walk by updating the location to improve
diversification, as follows:

itr+1 _

Pk
. s MaxItr—itr+1
[prn +rn* (pvl”ilr - prn) +2x*e Maxltr %

sin(2 +m=rn) * (pi = pi"),

et , - e Mater—iirs1 )
Drn + 110 % (p;(tfl — p;(tr) +2%e Maxltr  *
{sin(Z «mxrn) * (pir — pltn),
k=2..,N
where p,, is a reference point in the searching space:
Pm = LowerBound + rn * (UpperBound —
LowerBound) )

LowerBound and UpperBound are defined as the lower
and upper limitations of the searching space.

3) Somersault Food Searching Approach

In this phase, the MR changes its position by performing a
somersault and walking towards the optimal position obtained.
This can be mathematically modeled and simulated by (5):

: : 2
*sin(2 * 7 x rn) = (Gbest'™ — pit"),

piT*t = pit™ + Somersault factor * (rnl  Gbest —

™y * P (%)

where i = 1, ..., N, the Somersault factor is assumed to be 2,
and rn; and rn, signify the arbitrary value within [0,1]. The
MRFO method uses a Fitness Function (FF) to enhance
classifier efficiency by assigning higher values to more
significant candidate outputs The error rate reduction of the
classification is regarded as an FF.

fitness(x;) = ClassifierErrorRate(x;)

No.of misclassified instances

x 100

(6)

D. Image Classification Utilizing the LSTM Approach

The LSTM model is used for classification, utilizing its
inherent recursive nature [22]. With its input, forget, and output
gates, the LSTM network effectually administers long-term
dependencies in sequential data like vibration signals,
addressing gradient exploding and vanishing issues. This
method is appropriate for examining time series data, namely
the changing trends reflected in the vibration signal dataset
employed in this study. The LSTM method is used for state
detection in time sequences, where each unit contains a
memory cell withing the LSTM structure. The memory unit is
managed by three gates, typically operated by tanh or sigmoid

Total No.of instances
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functions. Specifically, the LSTM unit integrates external data
from previous hidden and current states at regular intervals to
process data. Also, the internal input, having the memory units’
layer, is dispersed across all gates to compute data from several
sources, influencing the activation status. The input gate
cooperates with the memory unit, guided by the forget gate, to
generate a new memory unit. This unit endures processing via a
non-linear function and dynamic control by the output gate
before becoming the LSTM unit's output. These networks
efficiently manage long-term dependencies by selectively
retaining valuable data, discarding unnecessary data, and
transmitting relevant data to subsequent stages via the resultant
gate. The data transmission within LTSM is shown below:

Input gate:

ip = o(Wyixy + Wyihe g + Weiceq + by) @)
Forget gate:

fe = 0(Wapxe + Whpheoy + Wepce_q + by) ®)
Output gate:

0; = c(Wyoxy + Wyohe_y + Wy, + by) ©)]
Cell memory state

¢t = frCe—1 + igtanh(Woexy + Wiche—y + b)) (10)
Cell output:

h; = o,tanh(c;) (11)

where o  refers to the sigmoid activation
function; Wy, Wiy, Wy s, Wy, denote the weight matrix related
to the input signal x;; Wy, Wy;, Wy ¢, Wy, indicate the weighted
matrix linked to the outcome signal h, of the hidden state;
Weiy Wer, W, show the diagonal matrix connected to the output
vector of neuron activation and gate functions, and b;, b, bf, b,
represent the bias vector.

IV. RESULTS AND DISCUSSION

The maize leaf ailment recognition of the IMLDD-
MRFODL method is examined using the plant disease dataset
in [23]. The dataset includes four classes with 7316 instances,
as evidenced in Table I. Figure 2 displays some sample images.
The simulation uses the Python 3.6.5 tool on PC i5-8600k,
250GB SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB
HDD. The parameter settings are: learning rate: 0.01,
activation: ReL.U, epoch count: 50, dropout: 0.5, and batch
size: 5.

TABLE L. DATASET SPECIFICATION
Class Instance count
Gray_leaf_spot 1642
Common_Rust 1907
Leaf_Blight 1908
Healthy 1859
Overall 7316

Figure 3 illustrates the classifier evaluation of the IMLDD-
MRFODL method on 80:20 training/testing rate of the TR/TS
set. Figures 3(a)-(b) depict the confusion matrices presented.

The output portrayed that the IMLDD-MRFODL approach
precisely detected and classified all four classes. Figure 3(c)
depicts the PR study of the IMLDD-MRFODL approach. The
output illustrated that the IMLDD-MRFODL approach has
attained superior PR accomplishment in all four classes. Figure
3(d) specifies the ROC of the IMLDD-MRFODL method. It
can be seen that the IMLDD-MRFODL methodology attained
efficient experimental results with great ROC on all four
classes.

|
Fig. 2. Sample images.

The Maize leaf disease recognition evaluation of the
IMLDD-MRFODL approach with 80:20 of TR/TS set analysis
is exhibited in Table II. The experimental data identified the
productive  accomplishment of the IMLDD-MRFODL
approach on diverse disease classes. On the 80% TR set, the
IMLDD-MRFODL model provides average accu,, , precy,
recay, Fcore, and MCC of 98.14%, 96.27%, 96.27%, 96.26%,
and 95.03%, respectively. On the 20% TS set, the IMLDD-
MRFODL model offers average accu,,, precy, reca;, Fycores
and MCC of 98.57%, 97.13%, 97.12%, 97.12%, and 96.17%,
respectively.

TABLE II. MAIZE LEAF DISEASE DETECTION ANALYSIS
OF THE IMLDD-MRFODL APPROACH WITH 80:20
TRAINING/TESTING RATIO
Class Accu, | Prec, | Reca; | Focore mcc
TR set (80%)
Gray_leaf_spot 98.27 95.83 96.62 96.22 95.11
Common_Rust 98.33 96.04 97.56 96.79 95.67
Leaf Blight 98.26 96.15 97.16 96.65 95.48
Healthy 97.69 97.08 93.75 95.39 93.88
Average 98.14 96.27 96.27 96.26 95.03
TS set (20%)
Gray_leaf_spot 98.91 97.12 97.74 97.43 96.73
Common_Rust 98.70 97.21 97.95 97.58 96.69
Leaf Blight 98.77 96.99 98.47 97.73 96.89
Healthy 97.88 97.21 94.32 95.75 94.36
Average 98.57 97.13 97.12 97.12 96.17

Figure 4 showcases the classifier evaluation of the IMLDD-
MRFODL method at 70:30 TR/TS set. Figure 4 signifies that
the IMLDD-MRFODL model accurately identified and
classified each of the four classes.
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Figure 4(c) specifies the PR analysis of the IMLDD-
MRFODL model. The IMLDD-MRFODL method had
acquired excellent PR accomplishment in all four classes. The
IMLDD-MRFODL methodology has attained practical
investigational outputs with excellent ROC values under the
four considered classes (Figure 4(d)).

The IMLDD-MRFODL model accuracy results with 70:30
of TR/TS are depicted in Table III. On the 70% TR set, the
IMLDD-MRFODL model provided average accu, , precy,
recay, Fycore, and MCC of 98.02%, 96.03%, 96.04%, 96.03%,
and 94.71, respectively. On the 30% TS set, the IMLDD-
MRFODL model provided average accu, , prec, , reca;,
Ficore » and MCC of 98%, 95.99%, 95.98%, 95.99%, and
94.65%, respectively.

TABLEIL  MAIZE LEAF DISEASE DETECTION ANALYSIS
OF THE IMLDD-MRFODL APPROACH WITH 70:30
TRAINING/TESTING RATIO
Class Accu, | Prec, | Reca; | Fyp. | MCC
TR set (70%)

Gray_leaf_spot 98.28 95.94 96.28 96.11 95.01
Common_Rust 97.54 95.84 94.52 95.18 93.53
Leaf_Blight 97.79 95.73 95.80 95.71 94.27

Healthy 98.46 96.61 97.54 97.07 96.03
Average 98.02 96.03 96.04 96.03 94.71
TS set (30%)

Gray_leaf_spot 98.00 95.89 95.52 95.70 94.40
Common_Rust 97.77 95.63 96.11 95.87 94.34
Leaf_Blight 98.04 96.34 96.17 96.25 94.93
Healthy 98.18 96.12 96.12 96.12 94.93
Average 98.00 95.99 95.98 95.99 94.65

Table IV outlines the comparative study results of the
IMLDD-MRFODL and DCCNN, DENN, DCNN, and EO-3D-
CNN [24]. The outputs show that the DCCNN approach attains
poorer results, while the DENN and DCNN techniques achieve
slightly closer performance. Meanwhile, the EO-3D-CNN
technique achieves considerably enhanced performance. But,
the IMLDD-MRFODL technique outperforms the others
performance with better accu,,, prec,, reca;, and Fycore.

TABLEIV.  COMPARATIVE OUTPUT OF IMLDD-MRFODL
APPROACH WITH EXISTING MODELS

Method Accu, | Prec, | Reca; | Fype
DCCNN 97.20 95.35 95.48 95.52
DENN 97.50 95.63 95.33 9591
DCNN 97.80 96.07 95.71 95.76
EO-3D-CNN 98.00 95.57 95.06 95.96
IMLDD-MRFODL 98.57 97.13 97.12 97.12

V. CONCLUSION

This paper focused on designing, developing, and
validating the novel IMLDD-MRFODL technique. The
IMLDD-MRFODL technique aims to detect and categorize
maize leaf ailments. The IMLDD-MRFODL technique
encompasses MF-based pre-processing, DenseNet feature
extraction, LSTM  classification, and MRFO-based
hyperparameter tuning. The comparative study of the IMLDD-
MRFODL approach exhibited superior performance under all
considered measures.

The IMLDD-MRFODL approach may encounter
restrictions in scalability to larger datasets. It could benefit
from future studies concentrating on real-time implementation
and integration with precision agriculture technologies for
widespread adoption.
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