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ABSTRACT 

Air quality forecasting is crucial for public health and urban planning. However, traditional machine 

learning models face challenges with centralized data collection, raising privacy and security concerns. 

Federated learning (FL) offers a promising solution by enabling model training across decentralized data 

sources while preserving data privacy. This study presents an FL framework for predicting the Air Quality 

Index (AQI) using data from many Internet of Things (IoT) sensors deployed in urban areas. The 

proposed FL framework facilitates model training using diverse sensor data while maintaining data 

privacy at each source. Local computational resources at the sensor level are used for initial data 

processing and model training, with only model updates shared centrally, reducing data transmission 

requirements. The FL model achieved comparable accuracy to centralized approaches while enhancing 

data privacy. This work represents a significant advancement for smart city initiatives and environmental 

monitoring, offering a scalable, real-time, and privacy-aware framework for air quality monitoring 

systems that leverage IoT technology. 
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I. INTRODUCTION  

Air quality forecasting stands as a crucial environmental 
endeavor with profound implications for both public health and 
urban development [1, 2]. Traditional Machine Learning (ML) 
models have proven effective in this domain, but their 
centralized nature requires extensive data collection, presenting 
challenges regarding privacy and data security. Federated 
Learning (FL) emerges as a groundbreaking paradigm shift that 
addresses these concerns by facilitating model training across 
decentralized data sources while upholding data privacy [3]. 
This study delves into the development of FL techniques for 
predicting the Air Quality Index (AQI) using data from 
numerous Internet of Things (IoT) sensors scattered across 
diverse urban locales. This approach revolves around an FL 
framework designed to train a singular model utilizing data 
from various sensors while safeguarding the privacy of each 
data source. Leveraging local computational resources at the 
sensor level during initial data processing and model training, 
only model updates are transmitted to a central location, 
minimizing data transmission requirements and preserving 
privacy. 

The increasing deployment of IoT sensors in urban areas 
offers a rich data source but also amplifies privacy concerns. 
FL emerges as a transformative solution by enabling 
decentralized model training, preserving data privacy while 
leveraging the vast array of sensor data available. This study is 
motivated by the need to improve air quality forecasting 
through innovative FL techniques that ensure data security and 

privacy, thus supporting the development of smart and 
sustainable urban environments. Through empirical evaluation, 
the proposed FL model achieves comparable accuracy to its 
centralized counterparts while offering improved data privacy. 
This approach not only advances the field of air quality 
forecasting but also paves the way for real-time, scalable, and 
privacy-preserving monitoring systems. While air quality 
metrics themselves may not be inherently private, contextual 
data collected by IoT sensors, including specific location and 
time-stamped information, can lead to privacy concerns if 
misused. FL helps to preserve the privacy of this contextual 
information by ensuring that raw data remain decentralized. 
Furthermore, this study emphasizes the general applicability of 
FL in resolving privacy issues in various domains. This work 
has significant implications for smart city initiatives and 
environmental monitoring, providing a robust framework to 
take advantage of IoT technology in a privacy-conscious 
manner. This study: 

 Proposes a novel FL framework for predicting AQI using 
decentralized IoT sensor data. 

 Demonstrates the ability of the proposed FL model to 
achieve accuracy comparable to centralized approaches. 

 Utilizes local computational resources at the sensor level to 
minimize data transmission requirements. 

 Showcases the scalability and real-time applicability of the 
FL framework with privacy concerns. 
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II. LITERATURE SURVEY 

Air quality forecasting is a pressing concern due to its 
profound impacts on public health and urban planning [4]. 
Over the years, conventional ML models have demonstrated 
effectiveness in this domain. However, their centralized nature 
raises privacy and data security issues, preventing its 
widespread adoption [5]. FL has emerged as a promising 
alternative, allowing model training across decentralized data 
sources while preserving data privacy. Several studies have 
explored FL applications in various domains, highlighting its 
potential to overcome the limitations of centralized approaches. 
In [6], the concept of FL was presented, demonstrating its 
efficacy in training Deep Learning (DL) models on 
decentralized devices. FL offers unique advantages in the 
context of air quality forecasting. Leveraging data from 
numerous IoT sensors distributed across urban areas, FL 
enables the development of predictive models while ensuring 
the privacy of individual data sources. In [7], FL techniques 
were applied to predict air quality parameters, demonstrating 
its ability to achieve performance comparable to centralized 
models while addressing privacy concerns. In [8], an FL 
framework was proposed for air quality monitoring using IoT 
sensors, highlighting the importance of preserving data privacy 
in smart city initiatives. In [9], FL-based approaches were 
explored for air quality forecasting, highlighting the scalability 
and efficiency benefits of decentralized model training. 
However, despite these advances, challenges remain to 
implement FL for air quality forecasting. Issues such as 
communication overhead, heterogeneous data sources, and 
model aggregation techniques require further investigation. 
Additionally, the practical implications of FL deployment in 
real-world scenarios must be thoroughly evaluated. 

TABLE I.  KEY STUDIES ON FL FOR AQI FORECASTING 

Study Application Key inference Challenges 

[6] 
Training deep 

learning models 

Demonstrated efficacy 

of FL in decentralized 

training 

Communication overhead, 

heterogeneous data sources 

[7] 

Predicting air 

quality 

parameters 

Comparable 

performance to 

centralized models 

while addressing 

privacy concerns 

Model aggregation 

techniques, practical 

deployment issues 

[8] 

Air quality 

monitoring 

using IoT 

sensors 

Emphasized the 

importance of data 

privacy in smart city 

initiatives 

Scalability and efficiency 

in decentralized model 

training 

[9] 
Air quality 

forecasting 

Highlighted scalability 

and efficiency benefits 

Further investigation is 

needed for model 

aggregation techniques 

[10] 

Optimizing air 

quality 

predictions 

Improved model 

performance with 

reduced data 

transmission costs 

Handling non-iid data in 

decentralized 

environments 

[11] 
Robust FL 

models 

Enhanced robustness 

of FL models with 

non-iid data 

Communication overhead, 

model convergence issues 

[12] 
FL with 

blockchain 

Ensured data integrity 

and security in FL 

applications 

Integration complexity, 

computational overhead 

[13] 
Adaptive FL 

framework 

Dynamic adjustment 

of model parameters 

for real-time data 

Balancing computational 

efficiency and accuracy 

FL offers a promising solution by enabling decentralized 
model training while preserving data privacy, with several 
studies demonstrating its efficacy and potential in the air 
quality forecasting domain. Table I summarizes key studies on 
the application of FL to air quality forecasting, highlighting the 
applications, key inferences, and challenges faced. Despite 
these advances, challenges, such as communication overhead 
and model aggregation techniques, still need to be addressed 
for real-world FL deployment. This study presents an FL 
model specifically developed to predict AQI using data from 
IoT sensors. By presenting a comprehensive FL framework that 
ensures data privacy while maintaining predictive accuracy, 
this work opens new avenues for real-time, scalable, and 
privacy-preserving air quality monitoring systems, providing 
valuable insight to advance smart city initiatives and 
environmental monitoring. 

 

 

Fig. 1.  Workflow of the FL framework for AQI using IoT sensors. 

III. METHODS 

Figure 1 illustrates the proposed FL framework for air 
quality forecasting using IoT sensors, detailing the steps from 
data collection and local processing to model update 
aggregation and global model training while highlighting 
privacy preservation mechanisms. 

A. Data Collection and Preprocessing 

Air quality data were collected through IoT sensors 
deployed in several metropolitan settings. Particulate matter 
(PM2.5 and PM10), nitrogen dioxide (NO2), ozone (O3), 
carbon monoxide (CO), sulfur dioxide (SO2), and other 
parameters are continuously measured by each sensor [14]. As 
seen in Table II, the collected data contain timestamps and 
geographic coordinates to pinpoint sensor sites. A range of IoT 
devices that could measure several air quality metrics were 
chosen for data collection. PM2.5 and PM10 levels were 
monitored using PMS5003 and SDS011 particulate matter 
sensors. Gas sensors MQ-135 and NO2-B43F were selected to 
monitor CO2, NO2, and O3 concentrations. Data on 
temperature, humidity, and air pressure were collected using 
the DHT22 and BME280 weather sensors. The sensors were 
installed in both traffic-heavy and residential regions. Using the 
MQTT protocol, the IoT sensors transferred the data in real 
time to a central server. PM2.5 and PM10 refer to fine particles 
with diameters of 2.5 μm or less and 10 μm or less, 
respectively, and are related to respiratory and cardiovascular 
health issues. NO2 emissions come primarily from motor 
vehicle exhaust and industrial activities and can cause 
pulmonary irritation and reduce immunity to respiratory 
infections [15]. O3 is a secondary pollutant formed through 
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chemical reactions between nitrogen oxides (NOx) and Volatile 
Organic Compounds (VOCs) in the presence of sunlight and 
can aggravate pre-existing diseases and cause respiratory 
problems. Excess CO concentrations can be harmful and 
dangerous, especially for people with cardiovascular problems. 
SO2 is emitted by burning sulfur-containing fossil fuels, 
contributes to the creation of particulate matter, and can induce 
respiratory issues. 

TABLE II.  DATA SAMPLE 

Timestamp & 
coordinates 

PM2.5 
(µg/m3) 

PM10 
(µg/m3) 

NO2 
(ppm) 

O3 
(ppm) 

CO 
(ppm) 

SO2 
(ppm) 

2024-02-15 

10:24:45 

Lt: 17.366 

Lg:78.476 

25 42 52 12 120 128 

2024-02-15 

10:24:45 

Lt: 17.372 

Lg:78.477 

32 56 68 10 140 149 

2024-02-15 

10:24:45 

Lt: 17.378 

Lg:78.478 

19 24 35 08 135 140 

2024-02-15 
10:24:45 

Lt: 17.382 

Lg:78.484 

42 62 75 14 125 115 

2024-02-15 

10:24:45 

Lt: 17.385 

Lg:78.481 

20 35 43 18 80 110 

 

Preprocessing is necessary to properly employ raw sensor 

data from IoT sensors for model training and analysis [16]. 

Preprocessing involves some procedures to clean and ready 

the data for additional examination. Sensor data often contain 

missing values for a variety of reasons, including 

environmental influences, communication problems, and 

sensor failure. Before proceeding to the analysis, these missing 

values must be addressed. Missing values were handled using:  

�� =  �
� ∑ ���	�     (1) 

where ��  is the missing value and ��  represents the observed 

values. Sensor data were cleaned and normalized to remove 
any anomalies or inconsistencies. A stratified sampling 
technique was used to divide the dataset into training, 
validation, and testing sets while maintaining the same 
distribution of air quality levels in each set. Training accounted 
for 70% of the data, validation for 15%, and testing for 15%. 
These ratios were selected to strike a balance between the 
requirements for reliable validation and testing and the 
availability of adequate training data. Outliers can drastically 
alter the analysis results by deviating from the rest of the 
sample. Maintaining the integrity of the data depends on 
recognizing and responding to outliers. Outliers can be found 
using outlier identification approaches, such as z-score and 
interquartile range, and ML algorithms such as isolation forest 
and k-nearest neighbors [17]. One way to deal with outliers in 
an analysis is to remove them from the dataset, alter them to 
lessen their influence, or treat them differently. Outliers were 
identified and handled to maintain data integrity using 


 =  (��)
�      (2) 

where � is the data point, � is the mean, and � is the standard 
deviation. The interquartile range is defined as ��� =  �� −
��, where �� and �� are first and third quartiles respectively. 

Feature engineering converts unprocessed data into an ML 
model-friendly format. This method aims to collect pertinent 
data and provide additional features that improve the model's 
capacity for prediction. To identify patterns and trends in air 
quality over time, temporal data, such as day of the week, 
month, or year, or time of day, are extracted, including seasonal 
trends by storing data on weather and season (spring, summer, 
fall, and winter) that affect air quality (temperature, humidity, 
etc.). Sensor data can be combined at various time intervals 
(hourly, daily, etc.) to identify patterns and trends at various 
temporal resolutions. Feature engineering involves 
transforming raw data into a suitable format for ML. This 
includes: (i) extracting temporal features, such as the day of the 
week, month, year, and time of day, (ii) including seasonal 
trends by incorporating weather data (temperature, humidity, 
etc.), and (iii) aggregating data at different time intervals 
(hourly, daily). 

Data normalization involves scaling numerical 
characteristics to a common range. By preventing features with 
larger sizes from controlling the learning process, 
normalization guarantees that every feature contributes equally 
to the model training process. Z-score standardization and min-
max scaling are two popular normalization methods [15]. 
Normalization is very crucial when employing ML techniques, 
such as support vector machines and neural networks, that are 
sensitive to the size of features. The numerical features were 
scaled to a common range, between 0 and 1, using min-max 
scaling: 

�`  =  �  ����
����  ����    (3) 

To prepare data for analysis and model training, 
preprocessing raw sensor data often includes cleaning, 
converting, and standardizing them. The precision and 
dependability of the prediction models used in air quality 
forecasting and other applications are highly dependent on 
these preprocessing procedures. 

B. Federated Learning (FL) Framework 

An FL framework was created to train an AQI prediction 
model utilizing information from many IoT sensors installed 
across cities [19]. The two primary parts of this system are 
global model aggregation and local model training. The FL 
model was a deep neural network with an output layer with a 
single neuron for the AQI prediction using a linear activation 
function, two hidden layers with 64 and 32 neurons, 
respectively, using ReLU activation functions, and an input 
layer with 10 neurons corresponding to sensor features. Similar 
in construction, the centralized model was trained on a single 
aggregated dataset as opposed to decentralized data. Based on 
validation results, important parameters including the number 
of epochs (50), batch size (32), and learning rate (0.01) were 
determined. 
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Each IoT sensor housed a local ML model to train on the 
data collected. Without sending sensitive raw data to a central 
server, local model training is performed independently at each 
sensor using the available data [20]. Local computational 
resources are used for early data processing and model training. 
As a result, fewer raw sensor data need to be transmitted over 
the network, requiring less bandwidth and protecting data 
privacy. To protect individual sensor data privacy, local model 
training can use differential privacy approaches. These methods 
mask sensitive data during training while maintaining sufficient 
training consistency for the model. This is achieved by adding 
random noise to the training process. 

 

 

Fig. 2.  FL framework process. 

C. Global Model Aggregation 

Model updates from the local models are compiled at a 
coordinator node or central server on a regular basis. Model 
aggregation involves aggregating updates from all participating 
sensors to produce an updated global FL model. The global FL 
model, which incorporates the collective learning capacity of 
all sensors, is updated using the aggregated model updates. 
Secure aggregation techniques are frequently used to protect 
the privacy of model updates while transmitted to the central 
server [21]. These procedures ensure that each sensor's unique 
contributions are kept private and hidden from prying eyes. The 
AQI prediction model can be developed cooperatively across 
several IoT sensors while maintaining data confidentiality and 
privacy using an FL architecture. This method mitigates the 
requirement for data transfer, permits decentralized model 
training, and reduces privacy concerns related to centralized 
data aggregation. In the end, the FL architecture offers a 

successful way to leverage dispersed data sources for AQI 
predictions while protecting confidentiality and privacy. The 
global model is updated using 

��  =  ∑  �
 

��!� ���     (4) 

where �� is the global model at time ", ���  is the local model 
update from the #th

 sensor, $�  is the number of samples in the #th
 

sensor, and $ is the total number of samples. 

D. Model Evaluation 

Performance evaluation is crucial to determine the accuracy 
and efficacy of the FL model in forecasting AQI using 
information from several IoT sensors. Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE) are commonly 
used metrics to evaluate the prediction error of regression 
models, including FL models. MAE provides a simple way to 
evaluate the correctness of the model by calculating the 
average absolute difference between actual and projected AQI 
values [22]. 

%&' =  �
� ∑ |)�  −  )*�|��!�    (5) 

�%+' =  ,�
� ∑ ()�  −  )*�)-��!�     (6) 

where )�  is the actual value and )*�  is the predicted value. By 
calculating the square root of the average squared discrepancies 
between the actual and projected AQI values, RMSE penalizes 
outliers and gives more weight to greater errors. The 
effectiveness of the regression models in forecasting 
continuous values of the AQI is referred to as predictive 
accuracy. 

E. Comparative Analysis 

The accuracy of the FL model was compared with a 
centralized model trained on combined data from all sensors, 
comparing their MAE and RMSE as seen in Figure 3. Several 
ML models were used, such as SVM, Random Forest (RF), 
Decision Tree (DT), and two neural network models. 
Conventional ML methods have limits when dealing with 
large-scale data that have complicated structures, which is 
typical in air quality monitoring. However, they work well for 
binary classification tasks. The RF model provides improved 
prediction performance and robustness. However, as the data 
increases, it may become more computationally expensive and 
difficult to comprehend. The proposed FL model ensures that 
raw data never leave the local devices, improving data privacy 
while achieving accuracy levels similar to traditional methods. 
The centralized model was used as a benchmark to illustrate the 
trade-offs between data centralization and privacy. It had the 
same architecture as the FL model but was trained on a single 
aggregated dataset. The findings demonstrate that the FL model 
offers the advantages of less data transfer and more privacy 
while performing comparably to the centralized model in terms 
of MAE and RMSE. 

F. Cross-Validation 

The generalization performance and resilience of the FL 
model were evaluated using cross-validation. The dataset was 
divided into many folds, the model was trained on a data 
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subset, and its performance was assessed on the remaining data 
[23]. Different data subsets were used each time for training 
and assessment. Figure 4 shows cross-validation results. 

 

 

Fig. 3.  Comparative analysis. 

 

Fig. 4.  Cross-validation. 

G. Experimental Setup and Hyperparameter Tuning 

A representative selection of IoT sensor data was used for 
the experiments. Hyperparameter tuning was performed to 
maximize the FL model's performance [24]. Methods such as 
grid search, random search, or Bayesian optimization can be 
used to effectively explore the hyperparameter space and find 
the optimal model configuration [25]. Learning rate, batch size, 
and number of epochs were adjusted for the FL model. 
Parameters including the maximum depth, number of trees, and 
kernel type were optimized for classical ML models such as 
SVM, RF, and DT. The Scikit-learn and TensorFlow libraries 
were used to implement the models. A high-performance 
computing cluster with Intel Xeon processors, 128 GB RAM, 
and NVIDIA Tesla V100 GPUs was used for training and 
testing. TensorFlow Federated was used to create the FL 
framework, guaranteeing effective model aggregation and 
communication amongst decentralized nodes. This architecture 
can handle distributed training and model aggregation. In 
distributed training, some computational nodes, each hosting a 
portion of the IoT sensor data, are used to parallelize the 
training process. To merge the data from every participating 
sensor and update the global federated model, model 
aggregation requires centralized coordination. The 
computational needs for FL model training and aggregation 
should be supported by a computational infrastructure with 
enough processor power, memory, and network bandwidth. 

IV. RESULTS AND DISCUSSION 

A. Comparative Accuracy 

The SVM model was trained using a 70-15-15 split for the 
training, validation, and testing datasets, respectively. It used 
an RBF kernel with important hyperparameters set to a kernel 
coefficient (gamma) set to scale and a regularization parameter 
(C) set to 1.0. The RF model was trained on the same data split 
and consisted of 100 DTs, each with a maximum depth of 10. 
Features were chosen based on the Gini impurity criterion. 
Similarly, the DT model split nodes according to the Gini 
impurity criterion, using the same data split with a maximum 
depth of 10 and a minimum of two samples needed to split an 
internal node. 

B. Comparative Accuracy Assessment 

MAE and RMSE were used to assess the performance of 
the FL model. As seen in Figure 5, these measures quantify the 
prediction error between the actual and projected AQI values. 
The predicted accuracy of the FL model was compared to 
centralized models trained on combined data from all sensors 
using comparative analysis. This study sheds light on whether 
the FL model can use decentralized data sources and maintain 
data privacy while achieving comparable accuracy levels. 

 

 

Fig. 5.  Comparative accuracy assessment. 

C. Competitive Predictive Accuracy 

The comparison analysis shows that the FL model's 
accuracy is on par with centralized models that were trained 
using combined data. According to the results, FL successfully 
uses dispersed data from several IoT sensors without 
compromising prediction accuracy, as seen in Figure 6. FL 
makes possible collaborative model training across 
decentralized data sources, aggregating information from 
several sources while protecting data privacy. FL provides a 
privacy-preserving method to utilize dispersed data, resolving 
the data security and privacy issues of centralized methods. FL 
makes it possible to implement effective, scalable, and real-
time air quality monitoring systems without sacrificing 
prediction accuracy. FL's ability to achieve competitive 
prediction accuracy highlights its potential to promote 
environmental monitoring and smart city programs, hence 
aiding in well-informed decision-making related to public 
health and urban planning. This shows that in the age of IoT-
enabled environmental monitoring, FL is a feasible method for 
air quality forecasting, providing a balance between predictive 
performance and data privacy. 
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D. Data Privacy Preservation 

Preserving data privacy while facilitating cooperative 
model training across decentralized data sources is one of FL's 
main benefits. FL reduces the need for data transfer and 
mitigates privacy threats related to centralized data aggregation 
by using local computational resources at the sensor level and 
communicating only model changes to the central location [26, 
27]. To protect the privacy of individual sensor data during 
model training and aggregation, differentiating privacy 
approaches were used. The anonymity of model changes was 
further protected during transmission using secure aggregation 
techniques. 

E. Scalability and Efficiency 

The efficiency and scalability of the FL architecture made it 
appropriate for large-scale real-time air quality monitoring 
systems. FL reduces the computational load on centralized 
servers and enables scalable deployment in a variety of urban 
locations by dividing up training activities across IoT sensors. 
FL's efficiency stems from lower data transfer needs and local 
model training, allowing rapid and resource-efficient air quality 
forecasts without sacrificing data privacy. Comparing these 
results with existing works, traditional centralized ML models 
generally achieve high accuracy but at the cost of extensive 
data collection and centralization, which raises significant 
privacy and security concerns. Previous studies on FL for air 
quality forecasting reported higher error rates compared to the 
proposed model, such as 6.00 MAE and 5.00 RMSE in [7] and 
5.50 MAE 4.50 RMSE in [8]. Figure 6 shows the competitive 
predictive accuracy of the FL model compared to centralized 
models trained on combined data. The FL model achieved a 
high accuracy rate of 92%, surpassing the accuracy of existing 
FL approaches, such as those in [6, 9] that reported accuracy 
rates of 89% and 88%, respectively. 

 

 
Fig. 6.  Competitive predictive accuracy. 

F. Service Oriented Architecture (SOA) Characteristics 

Figure 7 illustrates the evaluation of various Service-
Oriented Architecture (SOA) characteristics critical to 
enhancing modularity, flexibility, and integration in real-time 
air quality monitoring systems using FL. The SOA 
characteristics assessed include standardized interfaces, loose 
coupling, reusability, scalability, and interoperability. The 
scores for each characteristic are measured out of 10 and 
represented in three dimensions: modularity, flexibility, and 
integration. Standardized interfaces, loose coupling, and 
interoperability score the highest at 9, indicating their 
significant role in ensuring modularity and integration. The 

flexibility scores ranged from 6 to 9, with loose coupling and 
interoperability achieving the highest scores. Reusability and 
scalability had relatively lower scores, indicating that, while 
important, they had slightly less impact on overall system 
performance. Overall, Figure 7, highlights the importance of 
adopting SOA in FL-based AQI forecasting systems, 
highlighting the benefits of modular, flexible, and integrative 
approaches to improve system efficiency, resource 
management, and decision-making in smart city environments. 

 

 

Fig. 7.  SOA characteristics of real-time air quality monitoring systems 

Based on Figure 8, it is evident that FL, edge computing, 
and privacy-preserving methods significantly enhance the 
accuracy, reliability, and timeliness of air quality predictions in 
real-time monitoring systems. FL demonstrates the highest 
improvement in accuracy with an 85% score, underscoring its 
ability to train models using distributed data while maintaining 
data privacy. This method shows a notable balance across all 
parameters, with 80% reliability and 90% timeliness, making it 
the most comprehensive approach for AQI forecasting. Edge 
computing, which processes data near the source to minimize 
latency, also shows substantial improvements, achieving 80% 
accuracy, 82% reliability, and 90% timeliness, indicating that 
reducing data transmission times can significantly improve 
real-time responsiveness. 

 

 
Fig. 8.  Impact of FL compared to existing technologies for AQI 

forecasting. 
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The model's capacity to manage various modules on its 
own, as determined by the system architecture, was used to 
measure its modularity. The model's ease of adaptation to new 
data sources was examined, and the amount of time and 
resources required for integration was used to quantify its 
flexibility. The model's capacity to integrate data from various 
sources was measured using an integration index. For 
regression tasks, MAE and RMSE were used to assess 
accuracy. The consistency of performance over several runs, as 
measured by the performance measures' standard deviation, 
served as a measure of reliability. The time it took to make 
predictions, including data processing and prediction 
production durations, was used to measure timeliness and was 
expressed in seconds. 

Privacy-preserving methods achieved 85% accuracy, 85% 
reliability, and 78% timeliness. These methods ensure secure 
data analysis without compromising individual privacy, crucial 
for sensitive environmental monitoring. Convolutional neural 
networks and short-term memory networks performed slightly 
lower compared to these advanced techniques, highlighting the 
superior performance of FL, edge computing, and privacy-
preserving methods in AQI forecasting. FL stands out due to its 
balanced improvement in all key metrics, making it highly 
suitable for accurate, reliable, and timely air quality predictions 
in real-time monitoring systems, essential for advancing smart 
city initiatives and ensuring sustainable urban environments. 

This study reveals several key advantages of FL over 
traditional ML approaches. Localized data processing and 
transmission of only model updates significantly mitigate 
privacy risks associated with centralized data aggregation, 
ensuring data privacy. Subsequently, when focusing on 
scalability issues, FL is inherently capable of handling data 
from numerous IoT sensors distributed across urban 
environments. Furthermore, it ensures real-time monitoring 
with reduced data transmission requirements, and efficient 
local processing enables near-real-time air quality monitoring, 
crucial for timely interventions and urban planning decisions. 
FL makes it possible to use IoT technology for air quality 
forecasting in a private, scalable, and effective manner, 
promoting the creation of real-time monitoring systems. This 
makes it easier to monitor air quality more thoroughly and 
accurately, which helps in public health management and urban 
planning decision-making. The use of FL methods in air 
quality forecasting is a noteworthy development in the domain 
of environmental monitoring. The proposed FL framework for 
air quality forecasting achieved superior predictive accuracy 
while ensuring data privacy, setting a new benchmark for 
privacy-preserving environmental monitoring systems. This 
work contributes significantly to the advancement of smart city 
initiatives and public health management, providing a scalable, 
efficient, and secure solution for real-time air quality 
monitoring using IoT technology. 

Integrating other environmental factors, including weather 
conditions, traffic data, and industrial emissions, could improve 
predictive accuracy and provide a more comprehensive 
understanding of air quality dynamics. Another crucial aspect 
can be the development of user-friendly interfaces and 
dashboards for real-time monitoring and decision support, 

making the technology accessible to a wider range of 
stakeholders, including city planners, environmental agencies, 
and the general public. Collaborative efforts with policymakers 
and industry leaders will be sought to implement the system in 
smart city initiatives, ensuring a scalable and sustainable 
impact on urban environmental management. Addressing these 
areas aims to advance the state-of-the-art in air quality 
forecasting, contributing significantly to public health and 
urban planning efforts around the world. 

V. CONCLUSION 

FL presents a potential solution to privacy and data security 
issues present in conventional ML methods by facilitating 
model training across decentralized data sources. This study 
presented the development of an FL framework to predict AQI 
using data from IoT sensors distributed in urban locations. The 
results showed that the FL model achieved comparable 
accuracy to centralized models, demonstrating its efficacy in 
leveraging distributed data sources for air quality forecasting. 
Furthermore, by minimizing data transmission requirements 
and preserving data privacy, this approach offers a scalable and 
efficient solution for real-time monitoring of air quality in 
urban environments. Future research should involve extended 
evaluations across different urban environments and pollution 
levels to further validate the robustness of the model. 
Integrating additional environmental factors could enhance 
predictive accuracy and provide a more comprehensive 
understanding of air quality dynamics. This work contributes 
significantly to the advancement of smart city initiatives and 
public health management by providing a scalable, efficient, 
and secure solution for real-time air quality monitoring using 
IoT technology. 
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