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ABSTRACT 

This study addresses the critical challenge of real-time identification of tomato leaf diseases using edge 

computing. Traditional plant disease detection methods rely on centralized cloud-based solutions that 

suffer from latency issues and require substantial bandwidth, making them less viable for real-time 

applications in remote or bandwidth-constrained environments. In response to these limitations, this study 

proposes an on-the-edge processing framework employing Convolutional Neural Networks (CNNs) to 

identify tomato diseases. This approach brings computation closer to the data source, reducing latency and 

conserving bandwidth. This study evaluates various pre-trained models, including MobileNetV2, 

InceptionV3, ResNet50, and VGG19 against a custom CNN, training and validating them on a 

comprehensive dataset of tomato leaf images. MobileNetV2 demonstrated exceptional performance, 

achieving an accuracy of 98.99%. The results highlight the potential of edge AI to revolutionize disease 

detection in agricultural settings, offering a scalable, efficient, and responsive solution that can be 

integrated into broader smart farming systems. This approach not only improves disease detection 

accuracy but can also provide actionable insights and timely alerts to farmers, ultimately contributing to 

increased crop yields and food security. 

Keywords-smart agriculture; plant disease; edge AI; CNN; MobileNet; inception; VGG19 

I. INTRODUCTION  

Optimizing agricultural yields has been a crucial goal since 
the inception of farming. Historically, the success of crops such 
as tomatoes has depended on variables such as weather, soil 
fertility, and disease management. Epidemics have periodically 
devastated crops, resulting in significant economic losses [1]. 
This ongoing battle against agricultural diseases has driven the 
evolution of farming techniques and technologies. In recent 
years, the integration of technology into agriculture has 
transformed tomato farming. Advanced Artificial Intelligence 
(AI) and Machine Learning (ML) models have been 
increasingly employed to predict and manage crop diseases, 
leading to significant yield improvements. Countries such as 
Germany, France, and Sweden have extensively adopted such 
technologies, demonstrating higher agricultural production 
compared to those with less technological integration [2]. 
Current research in AI-driven agricultural technology has made 
significant strides in disease detection. In [3], an image-based 
automatic diagnostic system was proposed for tomato plants, 
using CNNs to analyze tomato fruit and leaf images and 
achieving high accuracy in identifying disease patterns often 
missed by human inspectors. In [4], custom CNN models were 
used for reliable leaf disease detection. Further advances 
include the application of DL for automatic blight disease 
detection in tomato and potato plants, significantly reducing 
potential crop losses through early detection and intervention 
[5]. Reviews on AI applications in tomato leaf disease 
detection discuss various algorithms used for disease 
identification and classification, highlighting the evolution of 
ML techniques to improve diagnostic accuracy [6]. 

The use of drones equipped with sensors and AI models has 
been explored for precision farming, using transfer learning to 
adapt pre-trained models to local conditions and enhance the 
efficiency and accuracy of disease detection [7]. In [8], a U-Net 
model was employed for image segmentation, and CNNs were 
used to classify segmented tomato leaf images into ten disease 
categories, achieving 98.12% accuracy. CNNs have been used 
to identify different classes of tomato leaf diseases with 94% 
accuracy, demonstrating their efficacy in disease detection and 
management [9]. Despite these advances, the challenge remains 
to further optimize these technologies for real-time on-site 

applications. Using edge AI, which enables data processing 
directly on devices within the agricultural setting, latency 
issues can be minimized, and bandwidth requirements can be 
reduced. This approach holds promise in enhancing the 
practical applicability of AI in agriculture, particularly in 
resource-constrained environments. This study aims to 
demonstrate the efficacy of edge AI in detecting tomato plant 
diseases, positioning it as a critical technology for future 
agricultural yield optimization. 

II. LITERATURE SURVEY 

The bacterial canker of the 1910s, the tomato spotted wilt 
virus in the 1930s, and more recent fungal infestations 
underscore the vulnerability of tomato crops to diseases [11-
12]. Historically, these outbreaks decimate entire fields before 
the cause could be identified, let alone contained. With 
advances in AI and ML, the possibility of early detection and 
rapid response has become a reality. Agricultural technology, 
especially AI, offers many algorithms capable of identifying 
patterns and anomalies in crop health that would otherwise go 
unnoticed by the human eye [13]. DL models such as CNNs 
have been successfully applied to detect plant diseases from 
images with remarkable accuracy [14]. Alongside CNNs, other 
AI models, such as SVMs and Random Forests (RFs), have 
been used for plant disease diagnosis. However, the true 
revolution is happening at the edge. By enabling real-time 
processing of data on devices within the agricultural setting, 
edge computing is set to transform crop management [15]. 
Imagine drones, equipped with sensors and edge AI models, 
patrolling the skies above tomato fields, scanning the crops 
below and processing terabytes of data on the fly to identify 
signs of disease or stress in plants. Edge AI models not only 
herald a new era of precision agriculture but also signify a shift 
from reactive to preventive farming practices [17]. By 
leveraging this technology, countries with expansive 
agricultural land, such as India, China, and Russia, could 
substantially increase their tomato yields, narrowing the 
productivity gap with smaller but technologically advanced 
countries. In this context, this study aims to demonstrate the 
efficacy of edge AI in detecting tomato plant diseases, positing 
it as a keystone technology for the future of agricultural yield 
optimization.  
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In [18], an image-based automatic diagnosis system was 
presented for tomato plants utilizing DL techniques. CNNs 
were used to analyze tomato fruit and leaf images for disease 
diagnosis. This system achieved high accuracy in identifying 
disease patterns that human inspectors often overlook. In [19], 
DL methods, specifically tailored CNN models, were used to 
improve disease management in tomato crops. In [20], deep 
neural networks were used to achieve early detection of blight 
disease in tomato and potato plants, enabling intervention to 
significantly reduce potential crop losses. In [21], a 
comprehensive review of AI applications in tomato leaf disease 
detection was presented. Various AI algorithms used for 
disease identification and classification were discussed, 
highlighting the evolution of ML techniques in improving 
diagnostic accuracy in the agricultural domain. In [22], drones 
equipped with sensors and AI models were used to detect 
diseases in tomato crops. This study used transfer learning 
techniques to adapt pre-trained models to local conditions, 
enhancing the efficiency and accuracy of disease detection. In 
[23], a U-Net model was used for image segmentation and 
CNNs were used to classify segmented images of tomato 
leaves into ten disease categories, achieving 98.12% accuracy. 
This demonstrates a high potential for automated disease 
detection to improve production and reduce crop losses. In 
[24], CNNs were used to identify eight different classes of 
tomato leaf diseases with an accuracy of 94.17%. This 
approach also included feature extraction techniques and 
demonstrated the efficacy of CNNs in disease detection and 
management. In [25], a mobile app was developed, which used 
YOLOv5 to detect tomato diseases and suggest remedies. The 
app demonstrated a mean average precision of 0.76, showing 
promise in providing accessible disease management solutions 
for farmers. In [26], a comprehensive review of the role of AI 
in sustainable tomato disease management was provided, 
highlighting several ML and DL techniques for effective 
disease classification. 

Transfer learning models can be used to reduce data and 
computational costs in the detection of tomato diseases. In [27], 
the Resnet50 and Xception models were used, with 
Densenet_Xception achieving the highest accuracy of 97.1%. 
In [28], the need for automated, accurate, and cost-effective 
machine vision systems for tomato disease detection was 
highlighted, reflecting the shift towards automating diagnostic 
processes in agriculture. In [29], a hybrid approach was 
proposed using a modified VGG model integrated with an 
InceptionV3 block for tomato leaf disease classification. This 
approach achieved a high accuracy of 99.27% and 
demonstrated improved computational efficiency over 
traditional models. In [30], a comparative study evaluated the 
effectiveness of VGG16, ResNet50, and MobileNetV2 in 
classifying tomato leaf diseases. The highest accuracies were 
achieved for VGG16 and MobileNetV2, both exceeding 90%, 
indicating that shallow models can effectively classify tomato 
diseases. In [31], an optimized MobileNetV2 was used to 
achieve a classification accuracy of 98.3% and a recall rate of 
94.9% for tomato leaf diseases, outperforming other 
architectures such as Xception and Inception. In [32], a basic 
CNN model was compared with VGG16, MobileNet, and 
InceptionV3, showing that MobileNet was the most efficient 

due to its lightweight structure and high accuracy, making it 
ideal for mobile deployment. In [33], transfer learning was 
used with ResNet110 for tomato leaf disease detection, 
achieving a remarkable accuracy of 99.7%. This showcases the 
potential of advanced ResNet models in precise disease 
identification. In [34], MobileNetV3 models demonstrated 
exceptional performance, with MobileNetV3-Small achieving 
an accuracy of 98.99% and MobileNetV3-Large achieving 
99.81%. These models were also tested on a workstation and a 
Raspberry Pi 4, showing promising latency results for practical 
IoT applications in agriculture [34]. 

In [35], specific ML and DL methods were explored to 
classify agricultural images with high accuracy. The results 
showed that the combination of Gaussian blur and Gaussian 
noise filters with RGB to CMYK color conversion yielded the 
highest accuracies: 98.27% for VGG-19, 94.98% for 
MobileNet-V2, and 99.53% for ResNet-50. The increasing 
global food demand, driven by population growth, underscores 
the need to increase agricultural yield and quality for 
sustainable development. In [36], MobileNet emerged as a 
highly effective model with an accuracy of 97.35% for 
multiclass classification and an even higher accuracy of 
99.39% for binary classification. A web-based application 
facilitated prompt disease detection and alerts, to improve crop 
productivity and economic outcomes through timely 
interventions. Modified VGG-InceptionV3 and MobileNetV2 
have shown particularly high accuracy rates, achieving up to 
99.27% and 98.3%, respectively. These models demonstrate 
the potential of hybrid optimized architectures to reduce 
computational demands while maintaining high performance. 
Transfer learning models, such as ResNet and MobileNet, are 
adaptable to different datasets and local conditions, enhancing 
both the efficiency and generalizability of disease detection. 
Mobile applications that use architectures such as MobileNet 
and YOLOv5 indicate a move toward more user-friendly and 
accessible disease detection methods. These applications 
facilitate real-time data processing and disease management 
recommendations directly to farmers. While deeper networks 
such as VGG16 and ResNet50 offer high precision, lighter 
models such as MobileNet provide a balance of accuracy and 
computational efficiency, making them suitable for real-time 
and on-device applications.  

Future research should focus on integrating advanced CNN 
architectures, such as InceptionV3 and DenseNet, with 
traditional models to explore hybrid approaches that could offer 
even better accuracy and processing times. Increasing the size 
and diversity of training datasets can further improve 
robustness and accuracy. Datasets covering a wider range of 
disease stages and environmental conditions are particularly 
valuable. There is substantial potential to deploy these models 
in real-time environments using IoT devices. Research can 
explore embedding optimized CNN models in drones or 
handheld devices for in-field disease detection. Ensuring that 
these advanced models are scalable and accessible to farmers 
worldwide, especially in developing countries, should be a 
priority. Simplifying user interfaces and reducing the cost of 
technology deployment is key. Future developments could 
focus on creating cross-compatible platforms that integrate 
different CNN models for comprehensive disease detection, 
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allowing users to select the most effective model based on their 
specific conditions and requirements. Building on these 
findings and focusing on the outlined future directions, 
researchers can significantly advance the field of agricultural 
AI, making effective and efficient disease detection more 
accessible to farmers around the world, thereby enhancing crop 
management and productivity. 

III. METHOD 

This study used the Plant Village dataset, specifically 
focusing on tomato leaf images [37]. This dataset contains a 
comprehensive collection of images representing various plant 
diseases. The images in the dataset vary in size, but all were 
resized to a uniform dimension of 256×256 pixels to maintain 
consistency during preprocessing and model training. The 
dataset includes images of tomato leaves categorized into ten 
distinct classes. The specific disease categories are bacterial 
spot, early blight, late blight, leaf mold, septoria leaf spot, 
spider mites (two-spotted spider mites), target spot, yellow leaf 
curl virus, mosaic virus, and healthy. The tomato leaf subset 
comprises a total of 18,160 images. The dataset was split into 
training, validation, and testing sets. The training set consisted 
of 70% of the images (12,712 images), the validation set 
comprised 15% (2,724 images), and the testing set also 
included 15% (2,724 images). This split ensured a balanced 
representation of all disease categories across the different 
phases, promoting effective learning and accurate performance 
assessment. The dataset's diversity in disease representation 
and image conditions provided a solid foundation for training 
CNNs to accurately identify and classify tomato leaf diseases. 

A. Data Preparation and Preprocessing 

The images were preprocessed using TensorFlow and 
TensorFlow addons. ImageDataGenerator was employed to 
facilitate real-time data augmentation during model training, 
enhancing the variety of data. To further enhance the model's 
ability to generalize and improve its robustness against 
overfitting, the following data augmentation techniques were 
applied: rotation (images were randomly rotated by angles 
within the range of -40° to 40°), translation (images were 
randomly shifted horizontally and vertically by up to 20% of 
the total width and height), zoom (images were randomly 
zoomed in and out by up to 20%), horizontal flip (images were 
randomly flipped horizontally), and shear (images were 
sheared by up to 20%). These transformations were applied 
randomly to each image in the training set, creating a diverse 
set to train the models. As a result, the effective size of the 
training dataset was increased significantly. Specifically, the 
data augmentation process added approximately threefold the 
number of images to the original training dataset, resulting in 
an increased training set size of approximately 38,136 images. 
This increase in data diversity helps improve model 
performance and its ability to generalize to unseen data. 

B. Model Architectures 

This study used several well-known CNN architectures, 
including MobileNetV2, InceptionV3, VGG19, and ResNet50. 
A custom CNN model was designed as a baseline to 
benchmark the efficacy of transfer learning against a model 
trained from scratch. This architecture includes an input layer 

for 256×256 RGB images, a first convolutional layer with 32 
filters, 3×3 kernel, and ReLU activation followed by max 
pooling, a second convolutional layer with 64 filters, 3×3 
kernel, and a ReLU activation followed by max pooling, a third 
convolutional layer 3 with 128 filters, 3×3 kernel, and ReLU 
activation followed by max pooling, a fully connected layer 
with 256 neurons with ReLU activation, and an output layer 
with 11 neurons (for the 10 disease categories and healthy 
class) and softmax activation. 

MobileNetV2 is a lightweight and efficient DL model 
designed for mobile and edge devices. It employs depth-wise 
separable convolutions, significantly reducing the number of 
parameters and computational complexity without 
compromising performance. The architecture includes input 
layers, convolutional layers, inverted residual blocks, global 
average pooling layers, dense layers, and an output layer with 
softmax activation. InceptionV3 is known for its inception 
modules that perform convolutions of different sizes 
concurrently. The architecture includes input layers, 
convolutional layers, inception modules, auxiliary classifiers, 
global average pooling layers, dense layers, and an output layer 
with softmax activation. VGG19 is characterized by its deep 
architecture with 19 layers, primarily using 3×3 convolutional 
layers. The architecture includes input layers, convolutional 
layers, max-pooling layers, fully connected layers, and an 
output layer with softmax activation. ResNet50 employs 
residual connections to mitigate the vanishing gradient problem 
in deep networks. This architecture includes input layers, 
convolutional layers, residual blocks, global average pooling 
layers, dense layers, and an output layer with softmax 
activation. 

C. Model Construction 

The proposed transfer learning approach harnesses the 
power of MobileNet and Inception pre-trained networks to 
detect diseases in tomato plants through orchard imagery. 
Figure 2 shows the algorithm's architecture, which is designed 
to accommodate the intricacies of disease patterns on leaves. 

 

 

Fig. 1.  Transfer learning architecture representation of adapted 
MobileNetV2. 

1) Step 1: Feature Extraction Using Pre-Trained Networks 

The first step involves using pre-trained networks 
MobileNetV2, InceptionV3, VGG19, and ResNet50 as feature 
extractors. Each network is truncated to exclude its final 
classification layers, thus serving as feature extractors that 
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leverage the extensive feature representation learned from large 
datasets. Initially, the orchard image is input into a modified 
version of MobileNet or Inception networks, customized to 
function as the backbone network. 

a) MobileNet as Backbone 

The lightweight nature of MobileNet makes it particularly 
well-suited for edge devices. It employs depth-wise separable 
convolutions that significantly reduce the number of 
parameters without compromising the quality of features, 
which is a crucial aspect for deployment in resource-
constrained environments. Table I shows a summary of the 
MobileNetV2 model. 

TABLE I.  SUMMARY OF THE MOBILENETV2 MODEL 

Layer Type Output Shape Parameters trained 

MobileNetV2 (8,8,1024) 3228864 
Global Average Pooling 1024 0 

Dense 10 10250 

 
For a given input feature map F and a depth-wise 

convolutional kernel K, the output feature map F′ for depth-
wise convolution can be described as: 

��′(�, �) = ∑�, ���(� + �, � + �) ⋅ ��(�, �) (1) 

where k indexes the channel, and i and j are the coordinates in 
the kernel. After depth-wise convolution, a point-wise 
convolution is applied to create a linear combination of the 
output of the depthwise filters: 

�′′(�, �) = ∑���′(�, �) ⋅ �′(�)   (2) 

where K is the point-wise convolutional kernel. The output of 
the inverted residual block, which consists of an expansion 
layer, depth-wise convolution, and a projection layer, can be 
represented as: 

F′′′=H(F+PointwiseConv(ReLU6(BatchNorm(DepthwiseConv(
ReLU6(BatchNorm(PointwiseConv(F⋅α)))))))) (3) 

where F is the input feature map, α is the expansion factor, and 
H is the hard-sigmoid function applied in the projection layer 
for non-linearity. The stride s and filter size f for each layer can 
be introduced to describe how the spatial dimensions of the 
feature map are transformed: 

�′ = [(� − � + 2�)/�] + 1   (4) 

�′ =  [(� − � + 2�)/�]  + 1   (5) 

b) Inception as Backbone 

Alternatively, the Inception model, known for its inception 
blocks that perform convolutions of different sizes 
concurrently, allows the model to capture information at 
various scales. This property is particularly beneficial when 
dealing with the multiscale nature of leaf disease 
manifestations. 

2) Step 2: Deep and Shallow Feature Fusion Module 

Following feature extraction, the algorithm transitions to 
the fusion module. This step integrates the extracted features at 
various depths through a dual attention mechanism. The dual 
attention mechanism serves a similar purpose as described in 

the reference structure, enhancing salient features and 
suppressing irrelevant ones across the scales. This enriched 
feature set is more representative of the nuanced patterns 
associated with different diseases. This process involves deep 
features extracted from the later layers of the pre-trained 
networks, capturing complex patterns and high-level 
representations, and shallow features extracted from the earlier 
layers, capturing basic patterns such as edges and textures. The 
fusion mechanism combines deep and shallow features using 
concatenation and attention mechanisms to form a 
comprehensive feature set. 

3) Step 3: Disease Detection Branches 

The fused feature maps are then used to deploy three 
specialized detection branches, each operating at distinct scales 
corresponding to the nature of the detected features. The fine-
grained branch focuses on early-stage or minor symptoms, 
using a shallow network with smaller filters and higher 
resolution. The medium-grained branch targets intermediate 
disease stages, using a balanced network depth and filter size. 
The coarse-grained branch detects well-developed disease 
signs, using deeper layers and larger filters. Each branch 
employs the Non-Maximum Suppression (NMS) algorithm to 
refine detections by eliminating redundancy and focusing on 
the most relevant disease indicators. The final result is a robust 
detection system capable of identifying various stages and 
types of disease in tomato plants. 

IV. RESULTS AND DISCUSSION 

An exhaustive comparative study was performed between 
the different CNN architectures to identify tomato leaf 
diseases. 

A. Custom CNN Model 

The Custom CNN model was applied independently as a 
baseline model. It demonstrated progressive improvement in 
training accuracy over epochs, reaching modest levels. 
However, it displayed a marked disparity in performance on 
the validation set with significantly lower accuracy, which 
could be attributed to overfitting or limited capacity. 

B. MobileNet 

The MobileNet model consistently outperformed the other 
models in terms of accuracy and loss metrics. The accuracy of 
the MobileNet model for the training dataset quickly stabilized 
at a high level, maintaining close to 1.0 after the initial epoch, 
indicating a strong ability to generalize from the training data. 
Similar results were observed in the validation dataset, where 
MobileNet achieved an accuracy that consistently exceeded 
0.95 after the initial epoch, significantly outperforming other 
models as shown in Figure 2. The loss analysis also supported 
the superior performance of the MobileNet model. In the 
validation dataset, MobileNet demonstrated a rapid decline in 
loss, stabilizing at significantly lower values than the other 
models. This trend was evident from the first epoch and 
continued throughout the testing period, suggesting that 
MobileNet was more effective in minimizing error in 
classification tasks relative to its counterparts, as shown in 
Figure 3. 
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(a) 

 

(b) 

 

Fig. 2.  Overall accuracy, averaged across all classes (a) comparative 
performance of training accuracy for all models, (b) validation accuracy for all 
trained models. 

C. Inception 

Inception, with its intricate design of modules that allow for 
multi-scale feature extraction, performed admirably, registering 
high training accuracy that was close to that of MobileNet. 
Validation accuracy plateaued at high levels, indicative of a 
strong generalization capability. The losses for both training 
and validation datasets exhibited a steady decrease, settling at 
low values that correspond to high accuracy, underscoring the 
model's effectiveness at learning and generalizing from the 
dataset. 

D. VGG19 

VGG19, characterized by its deep architecture and repeated 
stacking of convolution layers, did not perform as expected. 
Training accuracy was low and did not improve significantly 
over time, suggesting that the model may not be as adept at 
transferring knowledge to this particular task or that it might 
require more training time or data augmentation to reach its 
potential. The validation accuracy was also low, further 
confirming its challenges in adapting to this specific problem. 
Similarly, the loss metrics for VGG19 remained high for both 
training and validation, indicating a struggle to minimize 
prediction errors. 

E. ResNet 

ResNet, renowned for its residual connections that help 
against the vanishing gradient problem in deep networks, 
showed excellent performance on the training set. However, 

the validation results were less impressive, as the accuracy 
improved only marginally over epochs. This discrepancy 
suggests that while ResNet could learn the training data, it may 
not have been as effective in generalizing these learnings to the 
validation set, potentially due to overfitting. The loss metrics 
mirrored this, with training loss decreasing significantly and 
validation loss showing minimal improvement. 

 

(a) 

 

(b) 

 

Fig. 3.  (a) Comparison analysis for training loss across the models, 
(b) comparison analysis of validation loss across the models. 

F. Model Comparison and Summary 

In some models, validation accuracy initially dropped and 
then increased again. This phenomenon could be due to the 
model learning to generalize better after initially fitting the 
training data too closely. This finding indicates the importance 
of early stopping and regularization techniques in preventing 
overfitting. In addition, the accuracy was not uniform across all 
classes. Certain disease categories, such as early blight and 
bacterial spot, had higher accuracy due to more distinct visual 
patterns, whereas categories such as leaf mold and target spot 
had lower accuracy due to more subtle differences. The loss 
was calculated using categorical cross-entropy, which is 
suitable for multiclass classification problems. This metric 
measures the difference between the predicted probability 
distribution and the actual distribution, providing a 
comprehensive evaluation of the model's performance. 

A comparative analysis of metrics across models on the test 
dataset revealed that both MobileNet and Inception 
outperformed their counterparts in terms of accuracy, precision, 
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recall, and AUC. This proves their ability to effectively transfer 
learned features from large datasets to the task of identifying 
tomato leaf diseases. In particular, MobileNet's balance of 
efficiency and performance, as shown in Figure 3, makes it 
highly suitable for deployment on edge devices where 
computational resources are at a premium. The results suggest 
that when it comes to edge AI and the task of detecting tomato 
leaf diseases, compact but powerful models such as MobileNet 
and Inception are preferable, as they not only achieve high 
accuracy but also maintain this performance across training and 
validation phases, which is crucial for real-world applications. 
VGG19's underperformance could be rectified with further 
tuning, but its larger architecture makes it less ideal for edge 
deployment. ResNet's ability to learn the training data did not 
translate as effectively to unseen data, indicating a need for 
improved regularization or data augmentation techniques. 
These results underscore the importance of selecting the right 
architecture and fine-tuning transfer learning approaches to suit 
the specific nuances of the task, especially when computational 
efficiency is as important as predictive accuracy. 

 

 
Fig. 4.  Metrics comparison on all trained models. 

V. CONCLUSION AND FUTURE WORK 

This study made significant strides in addressing the urgent 
need for efficient real-time detection of tomato leaf diseases 
using edge computing. The deployment of CNNs at the edge, 
particularly with lightweight models such as MobileNet and 
Inception, can revolutionize disease detection in agricultural 
settings. These models have showcased not only their accuracy 
and speed but also their aptitude for generalization, which is 
vital for reliable deployment in varied and unpredictable real-
world conditions. The results confirmed that the computational 
efficiency and rapid inference times of these models make 
them exceptionally well-suited for integration into mobile 
devices and edge-based systems, which are becoming 
increasingly prevalent in precision agriculture. This marks a 
substantial advancement from traditional cloud-based systems, 
plagued by latency and bandwidth limitations, toward more 
autonomous, responsive, and sustainable agricultural 
technology practices. 

Looking to the future, this study opens several avenues for 
advancement. These models can be further refined through 
extensive hyperparameter tuning and incorporate novel neural 
network architectures that could offer even greater efficiency 

and accuracy. Research could also benefit from expanding the 
dataset to include a wider variety of disease manifestations, as 
well as exploring the effects of various environmental factors 
on disease development and detection. An important future 
direction involves the integration of these AI models into a 
broader suite of smart farming tools. By combining edge AI 
with IoT sensors for real-time monitoring of plant health, soil 
conditions, and environmental factors, a comprehensive AI-
driven decision support system could be developed for farmers. 
Such a system would not only detect and diagnose diseases but 
also recommend optimal interventions based on a holistic view 
of the crop's health and environmental conditions. Additionally, 
advanced data augmentation techniques and synthetic data 
generation could enhance model robustness and generalization, 
especially in scenarios with limited labeled data. Investigating 
and implementing advanced model optimization techniques, 
such as pruning, quantization, and Neural Architecture Search 
(NAS), can further reduce computational requirements while 
improving performance on edge devices. Lastly, exploring a 
collaborative edge-cloud framework can balance the benefits of 
low latency and high computational power, ensuring scalable 
and efficient disease management solutions. These advances 
have the potential to significantly improve the precision and 
efficacy of agricultural AI applications, making them more 
accessible and impactful for farmers around the world. 
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