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ABSTRACT 

This paper addresses the privacy concerns inherent in semantic communication within the Internet of 

Things (IoT) and proposes a Secure Semantic Communication Framework (SSCF) to ascertain 

confidentiality and communication accuracy without compromising semantic integrity. The proposed 

framework uses the Advanced Encryption Standard (AES) for encryption to address privacy breaches in 

semantic communication. Additionally, it introduces a novel approach employing Deep Q-Networks (DQN) 

for adversarial training to maintain semantic communication accuracy in both unencrypted and encrypted 

modes. SSCF combines universality and confidentiality, ensuring secure and efficient semantic 

communication. Experimental evaluations showed that SSCF, with its adversarial encryption learning 

scheme, effectively ensures communication accuracy and privacy. Regardless of encryption status, SSCF 

significantly hinders attackers from restoring original semantic data from intercepted messages. The 

integration of heuristic algorithms enhances performance and security. The proposed framework is based 

on a shared database for training network modules. The originality of the proposed approach lies in the 

introduction of a DQN-based adversarial training technique to balance confidentiality and semantic 

communication accuracy, address key privacy concerns, and enhance the security and reliability of IoT 

communication systems. 
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I. INTRODUCTION  

The Internet of Things (IoT) refers to physical items 
integrated with sensors, software, and other technologies that 
communicate with other systems and devices over the Internet 
[1]. This technology has revolutionized wireless networking by 
connecting billions of devices and facilitating various 
applications in multiple domains. The concept of semantic IoT 
transformation has gained significant attention to meet the 
diverse needs of IoT applications. This transformation 
represents a shift from traditional communication methods, 
which transmit raw sensor data, to a system that leverages the 
semantic meaning of the data for more intelligent and context-
aware communication [2-9]. The semantic IoT transformation 
enriches communication by incorporating contextual 
information, enabling devices to convey meaningful messages 
rather than just raw data. For example, instead of simply 
transmitting temperature readings, a semantic IoT device might 
indicate a potential HVAC failure when the room temperature 
exceeds a certain threshold [10]. This approach improves 
performance by promoting faster response times and more 
informed decision-making [11]. Moreover, it empowers 
devices to perform localized reasoning and decision-making, 
reducing the reliance on centralized processing [12-13]. 

Despite its potential, semantic IoT transformation faces certain 
difficulties such as the complexity of semantic data 
representation and assuring privacy and security during 
communication [14-15]. Addressing these challenges requires 
advanced semantic modeling techniques, efficient 
communication protocols, and robust security mechanisms 
[16]. This study introduces a novel approach to semantic IoT 
transformation, highlighting its implications for wireless 
networking performance. Key contributions include: 

 The proposed Semantic Security Communication 
Framework (SSCF) deals with the challenge of protecting 
privacy while maintaining accuracy. Combining the 
principles of universality and confidentiality, provides an 
efficient solution for semantic communication. 

 Integrating the Advanced Encryption Standard (AES), the 
SSCF guarantees confidentiality in semantic 
communication. This approach improves privacy 
protection, especially in scenarios involving shared 
background knowledge. 

 Employing a Deep Q-Network (DQN) for adversarial 
training ameliorates semantic communication accuracy 
while retaining confidentiality. This approach addresses the 
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difficulty of certifying accuracy in both encrypted and 
unencrypted modes. 

Several recent studies have highlighted the advances and 
challenges in IoT and semantic communication. In [17], a 5G-
based V2X architecture with network slicing was proposed for 
secure Vehicle-to-Vehicle (V2V) communication. In [18], 
Privacy-preserving Feature Extraction based on Adversarial 
Training (P-FEAT) was introduced to enhance privacy in 
neural networks. In [17], SemProtector, which is a framework 
to handle security vulnerabilities in semantic communication 
was presented. In [20], an Information Bottleneck and 
Adversarial Learning (IBAL) framework was used to optimize 
the trade-offs between privacy and utility. In [21], a framework 
was proposed to balance privacy and data utilization in 
semantic communication. In [22], the Knowledge Discrepancy-
oriented Privacy Preserving (KDPP) method was introduced to 
mitigate privacy risks. In [23, 24], reinforcement learning and 
semantic-driven approaches were introduced to upgrade 
privacy and efficiency in IoT systems. In [25, 26], the focus 
was placed on preserving behavioral semantics and optimizing 
resource usage through federated edge intelligence. In [27], a 
smart locker system was proposed, integrating multiple 
authentication methods, including dual authentication (phone 
number and OTP), fingerprint, face recognition, and 
emergency code. Taking advantage of IoT, this approach 
enhanced security and flexibility, addressing the limitations of 
single-method systems. A rigorous evaluation demonstrated 
superior performance, especially in accuracy and flexibility. 

The rapid growth of IoT devices has led to an exponential 
increase in data generation and transmission, posing challenges 
to existing wireless networks. Traditional communication 
paradigms struggle to handle the diverse data types and 
complex interactions in IoT ecosystems, leading to suboptimal 
performance and scalability issues. The semantic IoT 
transformation aims to face these challenges by leveraging 
contextual understanding and intelligence in data processing 
and communication. However, achieving a seamless 
integration of semantic capabilities into existing networks 
involves technical and practical issues, such as interoperability, 
resource constraints, security, and scalability. There is a 
pressing need for novel approaches, algorithms, and 
architectures to fully realize the potential of the semantic IoT 
transformation and ` wireless networking capabilities. This 
study explores these matters and proposes innovative solutions 
to pave the way for efficient, reliable, and secure IoT 
communication, ultimately enabling seamless interaction and 
collaboration among IoT devices in smart cities, industrial 
automation, healthcare, and beyond. 

II. PROPOSED METHOD 

A. Identification of Privacy Concerns 

Semantic communication, which relies on shared 
background knowledge, faces significant privacy risks due to 
its inherent sharing mechanism. When users exchange semantic 
information, they inadvertently expose personal or confidential 
data. This vulnerability arises because semantic communication 
often involves the transmission of contextually rich content that 
can reveal sensitive details about individuals or organizations. 

Sharing information about preferences, habits, or behaviors can 
result in privacy breaches if intercepted or accessed by 
unauthorized parties. Recognizing these privacy concerns is 
crucial to implement effective protection. Organizations and 
individuals must implement robust encryption methods, access 
controls, and privacy-preserving protocols to protect sensitive 
semantic data. By understanding the risks associated with 
semantic communication, stakeholders can take proactive 
measures to ensure a secure exchange of information while 
preserving privacy. This involves implementing strategies to 
prevent unauthorized access, limit data exposure, and mitigate 
the impact of potential privacy breaches. 

B. Selection of Encryption Method 

The ability of AES to provide strong encryption certifies 
that sensitive semantic data remain protected, even in the face 
of potential security threats. AES is widely used, as it offers 
stronger security compared to its predecessor, the Data 
Encryption Standard (DES), and its variants such as Triple 
DES (3DES). The encryption process involves several rounds, 
each consisting of four main steps: 

 SubBytes: Every byte in the segment is substituted with a 
different byte using a preset Substitution box (S-box). 

 ShiftRows: The rows of the segment are shifted 
continuously to the left. 

 MixColumns: Each column of the block is transformed 
using a matrix multiplication operation. 

 AddRoundKey: Every byte of the block is merged with a 
byte of the iteration key using bitwise XOR. 

The number of repetitions depends on the key size: 10 
repetitions for a 128-bit key, 12 repetitions for a 192-bit key, 
and 14 repetitions for a 256-bit key. AES encryption ensures 
data confidentiality and security, making it suitable for various 
applications, such as wireless security, database encryption, 
secure communications, and file encryption. Its robustness 
against cryptographic attacks and its widespread adoption in 
both hardware and software implementations make it a 
cornerstone of modern cryptographic systems. 

C. Addressing Semantic Communication Accuracy 

Addressing semantic communication accuracy involves 
recognizing the difficulty in maintaining it in both unencrypted 
and encrypted modes. This challenge arises due to the 
encryption process potentially altering the semantic content of 
the communicated data. In encrypted modes, traditional 
encryption techniques can obscure the semantic meaning of 
information, leading to potential misinterpretation or loss of 
critical details. Similarly, ensuring accuracy in unencrypted 
modes requires careful handling to prevent unintended 
disclosures of sensitive semantic information. Thus, addressing 
this challenge requires the development of innovative solutions 
that preserve the integrity and meaning of the communicated 
data while ensuring confidentiality and privacy. Efforts can 
focus on implementing strategies that strike a balance between 
encryption for security and semantic preservation for effective 
communication. 
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D. Proposed Solution 

This study introduces a DQN for adversarial training to 
overcome the challenge of maintaining semantic 
communication accuracy while ensuring confidentiality. DQN 
is a reinforcement learning technique that is used to train a 
model that can effectively navigate the trade-off between 
encryption for confidentiality and preserving the semantic 
content of the communication. Using DQN, the system learns 
to dynamically optimize the encryption process, adapting to 
different communication scenarios and requirements. This 
approach enables the system to achieve semantic 
communication accuracy, even in encrypted modes, by 
strategically encrypting the data while preserving its meaning. 
Thus, using DQN for adversarial training is an innovative 
solution to address the inherent challenge of maintaining 
semantic accuracy in secure communication environments. 

1) DQN 

DQN is a reinforcement learning algorithm that combines 
deep learning with Q-learning. In DQN, a neural network 
approximates the Q table, with inputs being state-action pairs 
and outputs representing the state-value function. To train the 
neural network, a loss function is introduced to measure the 
discrepancy between the approximate and actual Q values. The 
Q-learning update rule is given in (1). The loss function is 
defined as the Mean Squared Error (MSE) between the 
predicted and target Q values (2). DQN employs two neural 
networks: the prediction network and the target network. The 
prediction network estimates the current Q values, while the 
target network generates the target Q values. Periodically, the 
target network parameters are copied from the prediction 
network to stabilize training. The online neural network is 
updated using gradient descent based on the loss function, as 
per (3). DQN follows an off-policy learning approach, where 
states and rewards are obtained deploying an epsilon-greedy 
strategy, balancing exploration and exploitation. The agent 
chooses a random action with probability ε and the best action 
with probability 1-ε. 

�(�, �) ← �(�, �) + 	[� + � ��� � ��(� ′ , � ′ ) − �(�, �)] 
      (1) 

�(�) = �[∑ ��� − �(�, �; �)��� !
"]   (2) 

∇$�(�) = �%��& − �(�, �; �)�∇$�(�, �; �)'  (3) 

where �(�, �) is the state-action value operation representing 
the estimated increasing reward when initiating action a in state 
s, α represents the learning rate evaluating the weight of new 
data relative to old data, r is the instant reward obtained, γ 
defines the discount factor balancing immediate and future 
rewards, s' is the next state after initiating action a, 
��� � ��(� ′, � ′) is the maximum expected cumulative reward 
in the next state s', and L(θ) is the loss function measuring the 
discrepancy between predicted and actual Q values. θ denotes 
the parameters of the neural network. ∇$�(�)  represents the 
gradient of the loss function concerning the parameters θ of the 
neural network, yi is the target Q value for the current sample i, 
and ∇$�(�, �; �) defines the gradient of the predicted Q value 
concerning the parameters θ. 

The prediction network is modified employing gradient 
descent based on the loss function, while the target network 
periodically copies the parameters from the prediction network 
to stabilize training. Additionally, the epsilon-greedy strategy is 
adopted for action selection to balance exploration and 
exploitation during training. 

2) Secure Semantic Communication Framework (SSCF) 

SSCF presents a comprehensive solution designed to 
address the challenges of semantic communication while 
ensuring privacy and confidentiality. SSCF is conceptualized as 
a unified framework that combines the principles of 
universality and confidentiality to protect privacy while 
supporting the meaningful exchange of information. By 
integrating advanced encryption techniques with semantic 
understanding, SSCF enables secure communication channels 
that protect sensitive data while preserving its intended 
meaning. This framework is designed to be versatile and 
adaptable, capable of accommodating various communication 
scenarios and requirements. The proposed SSCF system 
operates in a classic security scenario involving three users: 
Bob, Alice, and Eve. Bob and Alice aim to communicate 
securely, while Eve attempts to intercept their messages 
without being able to alter or inject them. The system employs 
a semantic symmetric cryptosystem, shown in Figure 1. Alice 
initiates the communication by encoding the confidential 
semantic message S, producing a ciphertext xk through 
semantic and channel encoding. Here, k denotes key 
encryption. The encrypted message is then delivered via a 
wireless network, where Bob acquires yk and Eve acquires y~k. 
Both Bob and Eve aim to recover S, resulting in Sbob and Seve, 
respectively. In particular, Bob has a benefit over Eve, as he 
transfers a private key to Alice. This key, treated as an 
additional input, ensures secure communication between Bob 
and Alice. Each semantic message S corresponds to a new key 
at the time of communication, enhancing the system's security. 

 

 
Fig. 1.  SSCF structure. 

The proposed SSCF offers both universality and 
confidentiality, allowing users to choose whether to encrypt 
their messages according to privacy requirements. The system's 
semantic encoding module is generic, ensuring compatibility 
across various scenarios, including broadcast channels. 
Additionally, unified model training improves system 
efficiency and reduces deployment complexity. For text-type 
input, such as sentences, the system tokenizes the input and 
maps every token to a fixed-dimensional vector through a word 
embedding layer. The transmitter decides whether to encrypt 
the semantic data. If encryption is required, the input is passed 
to the encryptor along with the encryption key. Otherwise, the 
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input is directly processed by the semantic encoder for 
semantic encoding. The system employs a transformer network 
as a semantic codec and an autoencoder for channel coding. 
The encryptor and decryptor networks share a similar structure, 
reshaping the original semantic message and key before 
applying dimensional transformations. The encryption 
approach is trained by the network, with the length of the key 
not determining its strength. The system considers Additive 
White Gaussian Noise (AWGN) channels for transmission, 
where Bob decodes unencrypted messages directly and 
decrypts encrypted ones before decoding. The semantic 
decoder structure is identical for both receivers and attackers, 
facilitating semantic message reconstruction. 

In the SSCF, the design of loss functions is pivotal to 
achieving optimal performance while ensuring confidentiality. 
The objectives of each participant, Alice, Bob, and Eve, are 
carefully considered, leading to the formulation of specific loss 
functions tailored to their roles and objectives. 

a) Unencrypted Semantic Communication 

The loss function is defined as �()(�(, �))  aiming to 
minimize the error between the original semantic message S 
and the reconstructed message at Bob's end. By jointly training 
the semantic decoder (D) and encoder (E), optimal parameters 
�( and �)are obtained to minimize this loss using: 

�()(�( , �)) = *+( ,-, *��), �(�(, �.)�/ (4) 

�( , �) = ��0�12$3,$4�()(�(, �))  (5) 

b) Encrypted Semantic Communication 

In scenarios requiring confidentiality, the loss function 
�56(�57 , �( , �56�))  is described in (6). It involves the 
semantic encoder �, encryptor 8(, decryptor 89, and semantic 
decoder *, aiming to minimize the error between the original 
message S and its reconstruction at Bob's end, while increasing 
the error between S and its reconstruction by Eve. The optimal 
parameters for the decryptor :56  are obtained by minimizing 
this loss employing: 

�56��57 , �(, �56�)� =  

*+( ;-, * ,�), 89(�56 , ���( , 8((�57 , -))�/< (6) 

:56��57� = ��0�12$=6 �56��57 , �( , �56 , �)� (7) 

 

c) Semantic Attacker 

The attacker intercepts the encrypted data and attempts to 
restore the semantic data. The loss function �>(�57 , �( , �>) 
aims to minimize the error between the original message S and 
the reconstructed message by the attacker (A) using (8). The 
optimal parameters for the attacker ( �> ) are attained by 
minimizing this loss : 

�>��57 , �( , �>� =  

*+( ;-, ? ,�>, ���( , 8@(�57 , -)�/<  (8) 

:>(�>) = ��0�12$A ,�>��57 , �(, �>�/  (9) 

d) Balancing Utility and Confidentiality 

The overall loss function �>(�57 , �( , �>) for the encryptor 

( 8@ ) incorporates both the decryption loss �56  and the 
attacker's loss �>. A hyper-parameter B balances confidentiality 
and utility, guiding the optimization process given as in (10). 
Optimal parameters for the encryptor (�57 ) are acquireed by 
minimizing this combined loss as in (11). The training process 
for the encrypted semantic communication network is carefully 
refined to ensure robustness and adaptability. It involves two 
main steps, each meticulously designed to optimize 
performance while addressing specific challenges. 

�57��57� =  

�56(�57 , �( , �56 ,�)) − B�>(�57 , �( , :>(�>)) (10) 

:57��57� = ��0�12$=7 �57��57�  (11) 

e) Training Channel Encoder and Decoder 

Initially, the focus is on training the channel decoder and 
encoder with a symmetric framework. These components 
compress the input vector and map it to symbols with real and 
imaginary parts. Randomly generated vectors, similar to 
encoded semantic vectors, are used for training. The channel 
parameters are dynamically modified within a specified range 
during training to improve robustness. MSE serves as a 
depletion measure to eliminate misrepresentation. 

f) Alternating Training of Attacker and Transmitter-
Receiver 

Following a strategy reminiscent of Generative Adversarial 
Networks (GAN), the attacker is alternately trained with the 
receiver and transmitter. Through iterative steps, the semantic 
encoder and decoder adapt to meet semantic communication 
requirements. Meanwhile, the decryptor refines its decryption 
approach, while the semantic attacker tries to figure out how to 
directly decode encrypted messages. This iterative process 
involves updating the encryptor to decrease the receiver's 
restoration error while increasing the attacker's restoration 
error, thus fostering encryption methods that are receiver-
friendly yet resilient against eavesdropping. Through this 
refined training approach, the encrypted semantic 
communication network evolves to achieve optimal 
performance, striking a delicate balance between 
communication efficiency and security. 

3) Implementation and Evaluation of SSCF 

Training all network SSCF modules involved implementing 
a shared database, allows extensive deployment in practical 
scenarios while ensuring consistency and scalability. This 
approach certified that the system's components were trained 
on a unified dataset, facilitating seamless integration and 
interoperability. In terms of confidentiality measures, SSCF 
implemented symmetric encryption to protect the privacy of 
semantic information during communication. By encrypting the 
data using a shared key, SSCF ascertained that sensitive 
information remained protected from unauthorized access or 
interception, thus preserving the confidentiality of user 
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communications. To ensure the accuracy of semantic 
communication under diverse conditions, SSCF deployed an 
adversarial encryption training scheme. This approach involved 
training the system to recognize and adapt to potential security 
threats, therefore enhancing SSCF's resilience against 
adversarial attacks and ensuring reliable communication across 
various scenarios. Experimental evaluations were performed to 
validate the effectiveness of SSCF and its adversarial 
encryption training scheme. These experiments demonstrated 
robust performance and security, confirming SSCF's ability to 
protect privacy while supporting semantic communication in 
real-world environments. SSCF emerged as an efficient 
solution for privacy-preserving semantic communication, 
offering a balance between security and usability. Moving 
forward, ongoing research and development efforts aim to 
further enhance SSCF's performance and security, ensuring its 
continued effectiveness in addressing evolving communication 
challenges. 

III. RESULTS AND DISCUSSION 

The effectiveness of the proposed SSCF was assessed using 
numerical analysis. The experiments utilized the European 
Parliament's standard proceedings dataset [28], comprising 
approximately 2.0 million sentences. The evaluation of the 
SSCF scheme on this extensive dataset aims to provide 
comprehensive insights into its performance in various 
communication scenarios, shedding light on its robustness and 
efficacy in real-world applications. Figures 2 and 3 visually 
represent the original and encrypted data, respectively. This 
illustration highlights the transformation process from plaintext 
to ciphertext, emphasizing the protective measures 
implemented to protect sensitive information during 
communication. 

 

 
Fig. 2.  Original data. 

 
Fig. 3.  Encrypted data. 

A. Performance Metrics 

Security level (S) is given by: 

- = C(D2E��FG1H2, IJK2D��L1K1G� EHJ2G, �GG�EM �D�1K1D2ED) 

Throughput (T) is given by: 

N =
 OP��Q )��� OR��ST@RR@9(U&�S PR UV�@S)

�P��Q �&W@ (S)
  

Delay (D) is given by: 

* = N��2��1��1H2 N1�D � X�HF�0�G1H2 N1�D �  

    X�HED��120 N1�D � �JDJ120 N1�D 

Accuracy (A) is given by: 

? =
�P PT YPRR@Y� ZR@9&Y�&P�S

�P��Q �[WU@R PT ZR@9&Y�&P�S
  

Execution Time is given by: 

� = �2\ N1�D − -G��G N1�D  

Task Success Rate (TSR) is given by: 

N-] =
^[WU@R PT S[YY@SST[QQV YPWZQ@�@9 ��S_S

OP��Q ��S_S ���@WZ�@9
 (17) 

B. Graphical Representation 

Figure 4 provides a graphical representation of key 
performance metrics across varying epochs. Security level 
denotes the degree of protection against unauthorized access or 
breaches, often measured in encryption strength or resilience to 
attacks. Throughput illustrates the rate at which data are 
successfully transmitted over the network, indicating system 
efficiency. Delay indicates the time it takes for the data to 
travel from the source to the destination, influencing real-time 
communication. Accuracy reflects the precision of prediction 
tasks, crucial for reliable decision-making. Execution time 
denotes the time taken to complete computational tasks and 
system responsiveness. These representations evaluate the 
system's evolution over time, allowing the identification of 
trends and parameter optimizations to achieve desired 
performance objectives. 

Table I compares the task success rates of different 
encryption methods (TLP-random, SNRLP, SET, Bob's Task) 
against the proposed one for varying data sizes, ranging from 2 
to 10 MB. For a data size of 2 MB, TLP-random achieved a 
success rate of 0.71, SNRLP 0.89, SET 0.94, Bob's Task 0.76, 
and the proposed method 0.97. At 4 MB, the success rates were 
0.68 for TLP-random, 0.86 for SNRLP, 0.92 for SET, 0.74 for 
Bob's Task, and 0.96 for the proposed method. For 6 MB, TLP-
random achieved 0.64, SNRLP 0.85, SET 0.88, Bob's Task 
0.69, and the proposed method 0.95. At 8 MB data size, TLP-
random had a 0.62 success rate, SNRLP 0.78, SET 0.86, Bob's 
Task 0.67, and the proposed method 0.92. Finally, for 10 MB, 
the success rates were 0.6 for TLP-random, 0.74 for SNRLP, 
0.85 for SET, 0.65 for Bob's Task, and 0.88 for the proposed 
method. Figure 5 also exhibits the task success rate 
comparison. The proposed method consistently achieved higher 
success rates across all data sizes (2 MB to 10 MB), 
demonstrating its superior performance in ensuring successful 
task completion. 
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(d) 

 

(e) 

 

Fig. 4.  Metrics in varying epochs: (a) security level, (b) throughput, (c) 
delay, (d) accuracy, and (e) execution time. 

TABLE I.  TASK SUCCESS RATE COMPARISON  

Data size 

(MB) 

TLP-

random 
SNRLP SET 

Bob's 

Task 
Proposed 

2 0.71 0.89 0.94 0.76 0.97 
4 0.68 0.86 0.92 0.74 0.96 
6 0.64 0.85 0.88 0.69 0.95 
8 0.62 0.78 0.86 0.67 0.92 

10 0.6 0.74 0.85 0.65 0.88 
 

 
Fig. 5.  Task success rate comparison. 

IV. CONCLUSION 

Accurate semantic communication is difficult to be ensured 
in both encrypted and unencrypted forms. This study proposed 
adversarial training with DQN, along with the AES encryption 
method to improve semantic communication accuracy. The 
SSCF method introduced is an answer to these difficulties, 
integrating confidentiality and universality to protect privacy. 
Additionally, large-scale deployment in real-world situations 
was made possible by the fact that every network SSCF 
module was trained utilizing a common database. An 
adversarial encryption training technique ensures semantic 
communication accuracy in diverse scenarios and symmetric 
encryption maintains confidentiality. Experimental results 
showed the effectiveness of SSCF and its adversarial 
encryption training method. No matter the encryption status, 
the SSCF functioned flawlessly, making it difficult for 
adversaries to piece together the original semantic information 
from intercepted messages. SSCF is a strong solution to 
privacy-preserving semantic communication, as it integrates 
heuristic techniques to improve efficiency and security. 

Looking ahead, future work could explore improvements 
by integrating advanced machine learning algorithms to 
improve authentication accuracy and robustness. Additionally, 
research efforts can focus on expanding the system's 
compatibility with emerging IoT technologies and standards to 
assure seamless integration and interoperability in diverse 
environments. Additionally, investigating the implementation 
of blockchain technology to enhance security and transparency 
in access control processes is a promising avenue for future 
exploration. 
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