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ABSTRACT 

Adaptive and robust detection mechanisms are becoming more and more necessary as cyber threats 

become more complex. This study presents a framework to increase threat detection efficiency and address 

the complex problems posed by various dynamic cyber threats. This study focuses primarily on 

investigating a new algorithm for feature classification and selection in predictive modeling applications. 

Using a sizable real-time threat detection dataset, a hybrid filter-based feature ranking and cluster-based 

classification approach is proposed. A detailed analysis was carried out to investigate the performance of 

the proposed algorithm and compare it with various machine-learning models. This study also examines 

how well the algorithm scales to large-scale datasets and adapts to different data properties. The results 

highlight the algorithm's potential to enhance the efficiency of predictive modeling by optimizing feature 

selection procedures and reducing model complexity, thus making a substantial contribution to the field of 

data-driven decision-making and the wider range of machine-learning applications. 
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I. INTRODUCTION  

Cloud storage faces failures due to security risks and 
natural disasters. In [1], a model was proposed to address 
crashes and availability issues in data centers using fault 
handlers to localize failure nodes and AI agents to detect 
hostile attacks, allowing massive data recovery in extended 
timeframes. Intrusion Detection Systems (IDSs) play a crucial 
role in safeguarding the privacy, authenticity, and accessibility 
of cloud networks [2]. Many studies have examined various 
IDS types, including cloud-based IDS, NIDSs, HIDSs, 
Hypervisor-based IDSs, and DIDSs, to meet security 
requirements and identify known and new threats. Cloud 
environments integrate Intrusion Detection and Prevention 
Systems (IDPS) to detect and prevent data breaches [3]. An 
IDPS framework identifies harmful data in the cloud network, 
storing them in a database to prevent future attacks.  

Cloud computing raises significant concerns about the 
security of sensitive information, with data encryption being 
the primary defense mechanism. In [4], VAN-FED-IDS was 
proposed, utilizing federated learning to accelerate model 
training and updates and achieve remarkable accuracy. In [6], a 
PSO-AdaBoost approach was presented to classify various 
attack types, achieving a recall rate of 96.6%. In [7], an 
ensemble model for IoT IDS was proposed, based on LSTM 
and autoencoders, achieving impressive performance. In [8], a 

context-aware threat detection and response system was 
proposed to distinguish between real-world typical and attack 
scenarios. In [9], various machine models were compared to 
detect attacks on power grids with unsatisfactory results. In 
[10], federated learning was proposed along with blockchain to 
detect and share threat detection models, showing remarkable 
accuracy in two datasets. In [11], cyber-persona identification 
and profiling techniques were used to detect possible internal 
threats within businesses. This approach examined a range of 
variables, including communication styles, access trends, and 
user behavior, to build cyber-personas or profiles for each 
member of the business, and then used deep learning methods 
to detect aberrant behaviors or suspicious activity. In [12], the 
CTIMD technique was proposed, which used Cyber Threat 
Intelligence (CTI) and API call sequences to improve the 
accuracy of malware detection. This study focused on 
examining API call sequence details along with CTI to spot 
dangerous activities that indicate malware activity. This 
technique promises to increase malware detection efficacy, 
offering insights into known cyber threats and attack patterns.  

The studies in [13, 14] highlighted the need for high-quality 
datasets to successfully train and test IDS classifiers. 
Specifically, in [14], the shortcomings of current datasets were 
explored, such as how they do not represent real-world cyber 
threats. Additionally, this study proposed a generative network 
to create artificial data that closely resembles actual network 
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traffic and attack scenarios. This technique could entail adding 
different traits and attributes of both normal and attack network 
activity to the produced data. In [15], a smart intrusion and 
fault identification model was proposed to detect intrusions and 
defects in cyber-physical microgrids that depend on inverters 
for power management, using machine learning techniques to 
improve the security and dependability of microgrids. In [16], 
the Random Forest algorithm outperformed others in 
identifying anomalous behavior in cloud computing. By 
streamlining the complexity using the best-first feature 
selection technique, this model achieved 99% detection 
accuracy and 93.6% classification accuracy. This method has 
potential applications in multi-cloud and cloud computing 
environments for anomalous traffic analysis. 

ALGORITHM 1: NON-LINEAR DATA FILTERING APPROACH 

Initialization 
Create Arrays: 
  An empty array ������ to store calculated  
  distances. 
  An empty array ������ to store minimum distances. 
 
//Calculate Neighbor Distances for each data point 
  For each data point � in ����� (up to the  
  length of ����� − �): 
    For each neighbor 	 within the distance window �: 
      If both �����[�] and �����[� + 	] are valid  
      (not missing): 
        //Calculate the distance between �����[�] and  
        //�����[� + 	] using Euclidean distance: 
        distance=
∑  �

���   (�����[��] − �����[����])�  
 
//Find Minimum Distances for each data point 
  For each data point � in �����: 
    //Find the minimum distance across the 
    //calculated neighbor distances in ������[�, : ] 
    ������[�] = min(������[�, : ])  
 
//Normalize Distances - Find the global maximum and 
//minimum values across all minimum distances 
  maxdist=max(������),  mindist=min(������)  
  For each data point � in �����: 
    If �����[�] is valid (not missing): 
      //Normalize �����[�] using 
      �����[�] =  !"#"[$]%!!"#"&[$]

'()*+,-%'+.*+,-   
 
Output 
//Return the normalized and processed dataset 
�����"  

 

II. PROPOSED FRAMEWORK 

Distributed computing allows training and using multiple 
classifiers and then combining them to improve classification 
performance. During the classification step, the classifiers 
decide whether the nodes are potential security threats or not. 
This step detects potential intrusions and can notify the 
appropriate way to defend before an intrusion actually happens. 
This method provides a robust structure for intrusion detection 
in networks, using advanced statistical techniques, machine 
learning, and distributed computing to gain scalability, 
reliability, and improved accuracy. 

A. Data Pre-processing 

Algorithm 1 details the data pre-processing process, which 
replaces missing numerical values from the input dataset with 
non-linear Gaussian estimation. This algorithm finds the 
distances between existing data points in the training dataset 
window and saves them for each data point. For every data 
point, it finds the minimum distance and normalizes the data. In 
the end, it returns the original and normalized (cleaned) dataset. 

The t-statistic function calculates the T-score of a feature to 
quantify how well it discriminates between two known classes 
within the data. Let x1, x2, ..., xn represent the data points for n 
instances with respective features. Depending on the class, 
denote the set of instances by S1 and S2. The function first 
computes the mean and standard deviation of the features for 
the S1 and S2 classes. Next, the function computes the sample 
sizes of S1 and S2. Then, the function computes the associated 
T-score by dividing the difference between the means of both 
classes by their respective standard deviations divided by the 
number of instances. The t-statistic function is applied to each 
feature (), and each T-score is stored, as shown in Algorithm 2. 

ALGORITHM 2: ENSEMBLE FEATURE RANKING FOR SUBSET 
SELECTION 

//Step 1: Calculate class-wise means 
Calculate the mean (/�) for the positive class: 
/� = �

�0
∑  �0��� ��  

where label=1 
Calculate the mean (/%) for the negative class: 
/% = �

�1
∑  �1��� ��  

where label=-1 
 
//Step 2: Calculate class-wise Standard Deviations 
Calculate the standard deviation (2�) for the 
positive class: 

2� = 
 �
�0%� ∑  �0���   (�� − /�)�  

where label=1 
Calculate the standard deviation (2%) for the 
negative class: 

2% = 
 �
�1%� ∑  �1���   (�� − /%)�  

where label=-1 
 
//Step 3: Calculate sample sizes 
Calculate the number of samples for the positive 
class: 
	� = ∑  (label = 1)  
Calculate the number of samples for the negative 
class: 
	% = ∑  (label = −1)  
 
//Step 4: Calculate the T-score 
Calculate the difference in means: 
diff_in_means=|/� − /%|  
Calculate the combined variance: 

combined_variance= 9:0;
�0

< + 9:1;
�1

<  
Calculate the T-score: 

=_?@ABC = diff_in_means

Dcombined_variance  
 
//Step 5: Output 
Return the calculated T-score: 
Return =_?@ABC 
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The initialization of parameters in a Bayesian Network 
(ΒΝ) involves setting the initial values for the conditional 
probabilities associated with each node in the network. 
Building a ΒΝ involves setting initial values for conditional 
probabilities associated with each node. For each network, 
there are a number of these conditional probabilities, so there is 
potentially a large number of parameters that need 
initialization. Each dataset sample is examined to compute the 
posterior distribution of hidden variables conditioned on the 
observed variables. This can indicate how likely a hidden 
variable will have an assumed value given the observed data 
and the current parameters of the BN. The next step is the 
Maximization step (M-step), which updates the BN parameters 
to maximize the expected log-likelihood of the observed data 
given the calculated posterior probabilities, which improves the 
fit of the parameters to the observed data. If the structure of the 
BN is known a priori, techniques such as MLE can be used, 
which is a model that finds the most likely parameters given 
the observed data. If the structure of the BN is not known, both 
the structure and the parameters can be updated at the same 
time using the Expectation-Maximization with Structural EM 
(EM-SEM) algorithm. Convergence is checked after each EM 
iteration. The algorithm terminates when parameter changes 
fall below a given threshold or due to the log-likelihood 
converging, indicating that the parameters are at a stable 
stationary distribution. Otherwise, the E-step and M-step are 
repeated until either scenario happens. When the algorithm 
converges, it returns the optimal parameters of the BN, 
containing the best estimates for conditional probabilities 
derived from the EM algorithm's iterative process. 

Bayesian hyperparameter optimization searches for 
configurations that produce the best result for a specific threat 
identification task. Hyperparameters are set for specific 
performance metrics such as F-score, MCC, or ROC. Specific 
hyperparameter configurations can be sampled on new real-
world datasets, and the results will reflect the variance of the 
specific configuration. Features can be selected using 
engineering methods such as mutual information, correlation 
analysis, and expert domain knowledge. The hyperparameters 
are fine-tuned to improve model performance. Changes in these 
hyperparameters minimize the loss function, which adjusts the 
parameters to optimize learning. 

In Algorithm 3, called Parallel Multi-Class EM-KMeans 
Based Classification (Hybrid BN), computational efficiency is 
improved by exploiting the parallel processing capabilities of 
multi-core computing systems and distributed computing 
environments. Through parallel execution, the complexity 
caused by the data size is segmented into smaller, manageable 
partitions for the E-step and M-step procedures. This allows the 
parallel processes to be executed on independent processors 
simultaneously. Communication among processors is 
facilitated by using global variables to capture the results of the 
E-step and M-step calculations. The K-means clustering steps 
are also executed concurrently, with the additional feature of 
using methods and procedures for merging the K-means 
clustering results and updating the global model parameters. 
This approach ensures the optimal use of multi-core systems 
and parallel computing resources in distributed environments to 
accelerate the execution of ESMC classification while 

maintaining computational precision. Furthermore, the extra 
time required for processing is minimal, making this method 
suitable for real-time applications such as anomaly detection, 
where fast processing of large datasets is crucial for immediate 
detection and response. Continuous monitoring of system load 
and distribution enhances the effective management of varying 
data volumes according to the applied rules. It also facilitates 
balancing computational processes in a multi-core setting and 
sharing the distributed workload in networked parallel 
computing environments, where resources can be strategically 
allocated for efficient utilization. 

ALGORITHM 3: PARALLEL MULTI-CLASS EM-K-MEANS 
BASED CLASSIFICATION (HYBRID BN) 

INPUT: dataset - A collection of data samples 
(observations) 
OUTPUT: optimal_parameters: The learned parameters of 
the Bayesian Network (conditional probabilities and 
potentially its structure) 
 
PROCEDURE: 
//Initialization: 
//Initialize the parameters of the Bayesian Network: 
  For known structure: Initialize conditional 
  probability distributions. 
  For unknown structure: Initialize an empty or basic 
  network structure and corresponding parameters. 
 
//Main EM Loop: 
  REPEAT until convergence 
    //Expectation Step (E-step): 
    COMPUTE posterior_probabilities =  
      CALCULATE_POSTERIOR(sample, current_parameters) 
    For each sample �� in the dataset: 
      Calculate the posterior probabilities E(FG|H�) 
      for each hidden variable FG given the observed 
      data H� and current parameters 
 
    //Maximization Step (M-step): 
    IF structure of the Bayesian Network IS KNOWN: 
    UPDATE optimal_parameters = 
      MLE_ESTIMATION(dataset, 
        posterior_probabilities) 
    //Use Maximum Likelihood Estimation (MLE) or  
    //another suitable method to update network  
    //parameters based on the observed data and  
    //calculated posterior probabilities. 
    ELSE: (structure IS UNKNOWN) 
      UPDATE optimal_parameters, structure =  
      SEM(dataset, posterior_probabilities) 
      //Employ a Structure learning within EM (SEM)  
     //algorithm to simultaneously update the 
     // network's structure and parameters. 
 
//Check Convergence: 
   IF change_in_parameters < threshold OR  
     log_likelihood_converges: 
     Exit the EM loop  
//if parameters have changed minimally or the model's 
//log-likelihood has stabilized. 
 
//Output: 
  RETURN optimal_parameters 
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III. EXPERIMENTAL RESULTS 

UNSW-NB15 is a benchmark dataset for research on 
network IDSs that comprises more than 2.5 million network 
connection records, including normal behavior and nine types 
of attacks, namely analysis, backdoor, denial of service, 
exploits, fuzzers, generic, reconnaissance, shellcode, and 
worms. This dataset contains a total of 49 features derived from 
network traffic (packet-based and flow-based), making it a 
standard for evaluating the performance of IDSs. The NB15 
benchmark is often used to demonstrate the efficacy of 
machine or deep learning algorithms for various computer 
security solutions [17-21]. 

TABLE I.  PARAMETERS OF EXISTING MODELS FOR 
TRAINING PROCESS 

Model Layers/Nodes/Parameters 

SVM 
+Kmeans 

SVM parameters: kernel = 'linear', C = 1.0, gamma = 'scale' 
Kmeans parameters: n_clusters = 5, max_iter = 300, n_init = 10 

NB 
+Kmeans 

Naive Bayes parameters: var_smoothing = 1e-9 
Kmeans parameters: n_clusters = 5, max_iter = 300, n_init = 10 

SVR 
+EM 

SVR parameters: kernel = 'rbf', C = 1.0, epsilon = 0.2 
EM parameters: n_components = 3, max_iter = 100, tol = 1e-4 

ANN 
+EM 

ANN layers: 3 hidden layers, Nodes per layer: [64, 32, 16], 
Activation: ReLU, Output layer: 1 node, Activation: 'sigmoid' 
EM parameters: n_components = 3, max_iter = 100, tol = 1e-4 

 

A. Training of the Models 

The models shown in Table I were trained and tested. 
Training these models entailed a set of steps to ensure that each 
one was properly calibrated and fine-tuned for performance. 
All models were trained using the same UNSW-NB15 
processed dataset to ensure consistency and allow a fair 
comparison of performance between the different models. This 
study integrated these models using a hybrid approach 
consisting of filtering and cluster-based classification. The key 
innovation was the use of parallel processing to effectively 
perform learning on large datasets and facilitate the 
simultaneous execution of all training steps. Initial training 
involved supervised learning models for classification and 
unsupervised learning approaches for clustering and refinement 
to ensure optimized classification performance and high recall. 

For SVM+Kmeans, a Support Vector Machine (SVM) was 
first trained to find the optimal hyperplane that separates the 
two classes and maximizes the margin between them. 
Meanwhile, regardless of classification, Kmeans clustering was 
applied to partition and identify outliers and other data points 
based on a similarity measure of their features. This approach 
improved overall classification performance by capturing 
heterogeneity within the classification groups. The 
NB+Kmeans model first used NB to calculate the posterior 
probabilities of classes, given the feature values assuming 
feature independence, and then used K-means to cluster the 
centers of the underlying distributions. For the SVR+EM 
model, the Support Vector Regression (SVR) model was 
trained to predict continuous values, which were then binarised 
by several thresholding techniques. Then, the EM algorithm 
was applied to iteratively re-estimate the number of these 
hidden variables to maximize the expected log-likelihood 
computation, until reliability reached a threshold for the best 

performance. The ANN+EM model employed an Artificial 
Neural Network (ANN) trained through forward and backward 
propagation. It was optimized by inserting weights and biases 
to achieve lower values of the loss function over several 
epochs. Once the ANN training was over, the EM algorithm 
was applied to the output of the ANN network and first- and 
second-step predictions were obtained. More specifically, in 
the E-step, the posterior probabilities were estimated, and in the 
M-step, the log-likelihood was maximized, iterating until the 
parameters converged. 

Figure 1 shows the recall performance of the five models. 
The recall performance of SVM+Kmeans was the lowest at just 
above 0.94. The NB+kmeans model was better, with a recall 
just above 0.96, and SVR+EM was slightly better. A 
substantial increase in recall was observed for the ANN+EM 
model, achieving a value just below 0.98. The proposed model 
achieved the best recall rate at just below 0.99. Figure 2 shows 
the F-score results for the five different machine learning 
models. All models achieved an F-score of 0.93 to 0.99. Again, 
the proposed model achieved the highest F-score. Figure 3 
shows the quantitative results of the five machine learning 
models in terms of accuracy in the dataset, which ranged from 
0.93 to 0.99. 

 

 
Fig. 1.  Models' recall performance on cyber threat dataset. 

 
Fig. 2.  Models' F-score performance on cyber threat dataset. 

 
Fig. 3.  Models' accuracy performance on cyber threat dataset. 
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IV. CONCLUSION 

This study performed a robust analysis, including a 
thorough examination of performance parameters such as 
stability of feature selection, computational efficiency, and 
predictive accuracy. The scalability of the proposed algorithm 
on large-scale datasets and flexibility to different data attributes 
were examined, emphasizing its potential to improve the results 
of predictive modeling by optimizing feature selection 
procedures and reducing model complexity. Compared to 
conventional methods, encouraging results were obtained in 
terms of recall, F-score, and accuracy, through the introduction 
of a cluster-based classification method. The proposed 
approach provides a viable solution for the real-time detection 
of cyber attacks, helping to improve the security of IoT devices 
and networks. Additionally, parallel multiclass classification 
was investigated, providing a way to use parallel computing 
techniques to perform simultaneous classification tasks on 
large datasets. This method can significantly increase 
productivity and speed, particularly when handling a large 
number of data or when prompt response is necessary. 
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