
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15681-15685 15681

www.etasr.com Byrapuneni & Saidi Reddy: An Advanced Filter-based Supervised Threat Detection Framework on …

An Advanced Filter-based Supervised Threat
Detection Framework on Large Databases

Lakshmi Prasanna Byrapuneni

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, India
lakshmiprasanna.byrapuneni@klh.edu.in

Maligireddy Saidi Reddy

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, India
msreddy33@klh.edu.in (corresponding author)

Received: 9 May 2024 | Revised: 20 May 2024 | Accepted: 29 May 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7779

ABSTRACT

Adaptive and robust detection mechanisms are becoming more and more necessary as cyber threats

become more complex. This study presents a framework to increase threat detection efficiency and address

the complex problems posed by various dynamic cyber threats. This study focuses primarily on

investigating a new algorithm for feature classification and selection in predictive modeling applications.

Using a sizable real-time threat detection dataset, a hybrid filter-based feature ranking and cluster-based

classification approach is proposed. A detailed analysis was carried out to investigate the performance of

the proposed algorithm and compare it with various machine-learning models. This study also examines

how well the algorithm scales to large-scale datasets and adapts to different data properties. The results

highlight the algorithm's potential to enhance the efficiency of predictive modeling by optimizing feature

selection procedures and reducing model complexity, thus making a substantial contribution to the field of

data-driven decision-making and the wider range of machine-learning applications.

Keywords-multi-class classification; data filtering; outlier detection; cyber-attack detection

I. INTRODUCTION

Cloud storage faces failures due to security risks and
natural disasters. In [1], a model was proposed to address
crashes and availability issues in data centers using fault
handlers to localize failure nodes and AI agents to detect
hostile attacks, allowing massive data recovery in extended
timeframes. Intrusion Detection Systems (IDSs) play a crucial
role in safeguarding the privacy, authenticity, and accessibility
of cloud networks [2]. Many studies have examined various
IDS types, including cloud-based IDS, NIDSs, HIDSs,
Hypervisor-based IDSs, and DIDSs, to meet security
requirements and identify known and new threats. Cloud
environments integrate Intrusion Detection and Prevention
Systems (IDPS) to detect and prevent data breaches [3]. An
IDPS framework identifies harmful data in the cloud network,
storing them in a database to prevent future attacks.

Cloud computing raises significant concerns about the
security of sensitive information, with data encryption being
the primary defense mechanism. In [4], VAN-FED-IDS was
proposed, utilizing federated learning to accelerate model
training and updates and achieve remarkable accuracy. In [6], a
PSO-AdaBoost approach was presented to classify various
attack types, achieving a recall rate of 96.6%. In [7], an
ensemble model for IoT IDS was proposed, based on LSTM
and autoencoders, achieving impressive performance. In [8], a

context-aware threat detection and response system was
proposed to distinguish between real-world typical and attack
scenarios. In [9], various machine models were compared to
detect attacks on power grids with unsatisfactory results. In
[10], federated learning was proposed along with blockchain to
detect and share threat detection models, showing remarkable
accuracy in two datasets. In [11], cyber-persona identification
and profiling techniques were used to detect possible internal
threats within businesses. This approach examined a range of
variables, including communication styles, access trends, and
user behavior, to build cyber-personas or profiles for each
member of the business, and then used deep learning methods
to detect aberrant behaviors or suspicious activity. In [12], the
CTIMD technique was proposed, which used Cyber Threat
Intelligence (CTI) and API call sequences to improve the
accuracy of malware detection. This study focused on
examining API call sequence details along with CTI to spot
dangerous activities that indicate malware activity. This
technique promises to increase malware detection efficacy,
offering insights into known cyber threats and attack patterns.

The studies in [13, 14] highlighted the need for high-quality
datasets to successfully train and test IDS classifiers.
Specifically, in [14], the shortcomings of current datasets were
explored, such as how they do not represent real-world cyber
threats. Additionally, this study proposed a generative network
to create artificial data that closely resembles actual network

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15681-15685 15682

www.etasr.com Byrapuneni & Saidi Reddy: An Advanced Filter-based Supervised Threat Detection Framework on …

traffic and attack scenarios. This technique could entail adding
different traits and attributes of both normal and attack network
activity to the produced data. In [15], a smart intrusion and
fault identification model was proposed to detect intrusions and
defects in cyber-physical microgrids that depend on inverters
for power management, using machine learning techniques to
improve the security and dependability of microgrids. In [16],
the Random Forest algorithm outperformed others in
identifying anomalous behavior in cloud computing. By
streamlining the complexity using the best-first feature
selection technique, this model achieved 99% detection
accuracy and 93.6% classification accuracy. This method has
potential applications in multi-cloud and cloud computing
environments for anomalous traffic analysis.

ALGORITHM 1: NON-LINEAR DATA FILTERING APPROACH

Initialization
Create Arrays:
 An empty array ������ to store calculated
 distances.
 An empty array ������ to store minimum distances.

//Calculate Neighbor Distances for each data point
 For each data point � in ����� (up to the
 length of ����� − �):
 For each neighbor 	 within the distance window �:
 If both �����[�] and �����[� +] are valid
 (not missing):
 //Calculate the distance between �����[�] and
 //�����[� +] using Euclidean distance:
 distance=
∑  �

���   (�����[��] − �����[����])�

//Find Minimum Distances for each data point
 For each data point � in �����:
 //Find the minimum distance across the
 //calculated neighbor distances in ������[�, :]
 ������[�] = min(������[�, :])

//Normalize Distances - Find the global maximum and
//minimum values across all minimum distances
 maxdist=max(������), mindist=min(������)
 For each data point � in �����:
 If �����[�] is valid (not missing):
 //Normalize �����[�] using
 �����[�] = !"#"[$]%!!"#"&[$]

'()*+,-%'+.*+,-

Output
//Return the normalized and processed dataset
�����"

II. PROPOSED FRAMEWORK

Distributed computing allows training and using multiple
classifiers and then combining them to improve classification
performance. During the classification step, the classifiers
decide whether the nodes are potential security threats or not.
This step detects potential intrusions and can notify the
appropriate way to defend before an intrusion actually happens.
This method provides a robust structure for intrusion detection
in networks, using advanced statistical techniques, machine
learning, and distributed computing to gain scalability,
reliability, and improved accuracy.

A. Data Pre-processing

Algorithm 1 details the data pre-processing process, which
replaces missing numerical values from the input dataset with
non-linear Gaussian estimation. This algorithm finds the
distances between existing data points in the training dataset
window and saves them for each data point. For every data
point, it finds the minimum distance and normalizes the data. In
the end, it returns the original and normalized (cleaned) dataset.

The t-statistic function calculates the T-score of a feature to
quantify how well it discriminates between two known classes
within the data. Let x1, x2, ..., xn represent the data points for n
instances with respective features. Depending on the class,
denote the set of instances by S1 and S2. The function first
computes the mean and standard deviation of the features for
the S1 and S2 classes. Next, the function computes the sample
sizes of S1 and S2. Then, the function computes the associated
T-score by dividing the difference between the means of both
classes by their respective standard deviations divided by the
number of instances. The t-statistic function is applied to each
feature (), and each T-score is stored, as shown in Algorithm 2.

ALGORITHM 2: ENSEMBLE FEATURE RANKING FOR SUBSET
SELECTION

//Step 1: Calculate class-wise means
Calculate the mean (/�) for the positive class:
/� = �

�0
∑  �0��� ��

where label=1
Calculate the mean (/%) for the negative class:
/% = �

�1
∑  �1��� ��

where label=-1

//Step 2: Calculate class-wise Standard Deviations
Calculate the standard deviation (2�) for the
positive class:

2� =
 �
�0%� ∑  �0���   (�� − /�)�

where label=1
Calculate the standard deviation (2%) for the
negative class:

2% =
 �
�1%� ∑  �1���   (�� − /%)�

where label=-1

//Step 3: Calculate sample sizes
Calculate the number of samples for the positive
class:
	� = ∑ (label = 1)
Calculate the number of samples for the negative
class:
	% = ∑ (label = −1)

//Step 4: Calculate the T-score
Calculate the difference in means:
diff_in_means=|/� − /%|
Calculate the combined variance:

combined_variance= 9:0;
�0

< + 9:1;
�1

<
Calculate the T-score:

=_?@ABC = diff_in_means

Dcombined_variance

//Step 5: Output
Return the calculated T-score:
Return =_?@ABC

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15681-15685 15683

www.etasr.com Byrapuneni & Saidi Reddy: An Advanced Filter-based Supervised Threat Detection Framework on …

The initialization of parameters in a Bayesian Network
(ΒΝ) involves setting the initial values for the conditional
probabilities associated with each node in the network.
Building a ΒΝ involves setting initial values for conditional
probabilities associated with each node. For each network,
there are a number of these conditional probabilities, so there is
potentially a large number of parameters that need
initialization. Each dataset sample is examined to compute the
posterior distribution of hidden variables conditioned on the
observed variables. This can indicate how likely a hidden
variable will have an assumed value given the observed data
and the current parameters of the BN. The next step is the
Maximization step (M-step), which updates the BN parameters
to maximize the expected log-likelihood of the observed data
given the calculated posterior probabilities, which improves the
fit of the parameters to the observed data. If the structure of the
BN is known a priori, techniques such as MLE can be used,
which is a model that finds the most likely parameters given
the observed data. If the structure of the BN is not known, both
the structure and the parameters can be updated at the same
time using the Expectation-Maximization with Structural EM
(EM-SEM) algorithm. Convergence is checked after each EM
iteration. The algorithm terminates when parameter changes
fall below a given threshold or due to the log-likelihood
converging, indicating that the parameters are at a stable
stationary distribution. Otherwise, the E-step and M-step are
repeated until either scenario happens. When the algorithm
converges, it returns the optimal parameters of the BN,
containing the best estimates for conditional probabilities
derived from the EM algorithm's iterative process.

Bayesian hyperparameter optimization searches for
configurations that produce the best result for a specific threat
identification task. Hyperparameters are set for specific
performance metrics such as F-score, MCC, or ROC. Specific
hyperparameter configurations can be sampled on new real-
world datasets, and the results will reflect the variance of the
specific configuration. Features can be selected using
engineering methods such as mutual information, correlation
analysis, and expert domain knowledge. The hyperparameters
are fine-tuned to improve model performance. Changes in these
hyperparameters minimize the loss function, which adjusts the
parameters to optimize learning.

In Algorithm 3, called Parallel Multi-Class EM-KMeans
Based Classification (Hybrid BN), computational efficiency is
improved by exploiting the parallel processing capabilities of
multi-core computing systems and distributed computing
environments. Through parallel execution, the complexity
caused by the data size is segmented into smaller, manageable
partitions for the E-step and M-step procedures. This allows the
parallel processes to be executed on independent processors
simultaneously. Communication among processors is
facilitated by using global variables to capture the results of the
E-step and M-step calculations. The K-means clustering steps
are also executed concurrently, with the additional feature of
using methods and procedures for merging the K-means
clustering results and updating the global model parameters.
This approach ensures the optimal use of multi-core systems
and parallel computing resources in distributed environments to
accelerate the execution of ESMC classification while

maintaining computational precision. Furthermore, the extra
time required for processing is minimal, making this method
suitable for real-time applications such as anomaly detection,
where fast processing of large datasets is crucial for immediate
detection and response. Continuous monitoring of system load
and distribution enhances the effective management of varying
data volumes according to the applied rules. It also facilitates
balancing computational processes in a multi-core setting and
sharing the distributed workload in networked parallel
computing environments, where resources can be strategically
allocated for efficient utilization.

ALGORITHM 3: PARALLEL MULTI-CLASS EM-K-MEANS
BASED CLASSIFICATION (HYBRID BN)

INPUT: dataset - A collection of data samples
(observations)
OUTPUT: optimal_parameters: The learned parameters of
the Bayesian Network (conditional probabilities and
potentially its structure)

PROCEDURE:
//Initialization:
//Initialize the parameters of the Bayesian Network:
 For known structure: Initialize conditional
 probability distributions.
 For unknown structure: Initialize an empty or basic
 network structure and corresponding parameters.

//Main EM Loop:
 REPEAT until convergence
 //Expectation Step (E-step):
 COMPUTE posterior_probabilities =
 CALCULATE_POSTERIOR(sample, current_parameters)
 For each sample �� in the dataset:
 Calculate the posterior probabilities E(FG|H�)
 for each hidden variable FG given the observed
 data H� and current parameters

 //Maximization Step (M-step):
 IF structure of the Bayesian Network IS KNOWN:
 UPDATE optimal_parameters =
 MLE_ESTIMATION(dataset,
 posterior_probabilities)
 //Use Maximum Likelihood Estimation (MLE) or
 //another suitable method to update network
 //parameters based on the observed data and
 //calculated posterior probabilities.
 ELSE: (structure IS UNKNOWN)
 UPDATE optimal_parameters, structure =
 SEM(dataset, posterior_probabilities)
 //Employ a Structure learning within EM (SEM)
 //algorithm to simultaneously update the
 // network's structure and parameters.

//Check Convergence:
 IF change_in_parameters < threshold OR
 log_likelihood_converges:
 Exit the EM loop
//if parameters have changed minimally or the model's
//log-likelihood has stabilized.

//Output:
 RETURN optimal_parameters

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15681-15685 15684

www.etasr.com Byrapuneni & Saidi Reddy: An Advanced Filter-based Supervised Threat Detection Framework on …

III. EXPERIMENTAL RESULTS

UNSW-NB15 is a benchmark dataset for research on
network IDSs that comprises more than 2.5 million network
connection records, including normal behavior and nine types
of attacks, namely analysis, backdoor, denial of service,
exploits, fuzzers, generic, reconnaissance, shellcode, and
worms. This dataset contains a total of 49 features derived from
network traffic (packet-based and flow-based), making it a
standard for evaluating the performance of IDSs. The NB15
benchmark is often used to demonstrate the efficacy of
machine or deep learning algorithms for various computer
security solutions [17-21].

TABLE I. PARAMETERS OF EXISTING MODELS FOR
TRAINING PROCESS

Model Layers/Nodes/Parameters

SVM
+Kmeans

SVM parameters: kernel = 'linear', C = 1.0, gamma = 'scale'
Kmeans parameters: n_clusters = 5, max_iter = 300, n_init = 10

NB
+Kmeans

Naive Bayes parameters: var_smoothing = 1e-9
Kmeans parameters: n_clusters = 5, max_iter = 300, n_init = 10

SVR
+EM

SVR parameters: kernel = 'rbf', C = 1.0, epsilon = 0.2
EM parameters: n_components = 3, max_iter = 100, tol = 1e-4

ANN
+EM

ANN layers: 3 hidden layers, Nodes per layer: [64, 32, 16],
Activation: ReLU, Output layer: 1 node, Activation: 'sigmoid'
EM parameters: n_components = 3, max_iter = 100, tol = 1e-4

A. Training of the Models

The models shown in Table I were trained and tested.
Training these models entailed a set of steps to ensure that each
one was properly calibrated and fine-tuned for performance.
All models were trained using the same UNSW-NB15
processed dataset to ensure consistency and allow a fair
comparison of performance between the different models. This
study integrated these models using a hybrid approach
consisting of filtering and cluster-based classification. The key
innovation was the use of parallel processing to effectively
perform learning on large datasets and facilitate the
simultaneous execution of all training steps. Initial training
involved supervised learning models for classification and
unsupervised learning approaches for clustering and refinement
to ensure optimized classification performance and high recall.

For SVM+Kmeans, a Support Vector Machine (SVM) was
first trained to find the optimal hyperplane that separates the
two classes and maximizes the margin between them.
Meanwhile, regardless of classification, Kmeans clustering was
applied to partition and identify outliers and other data points
based on a similarity measure of their features. This approach
improved overall classification performance by capturing
heterogeneity within the classification groups. The
NB+Kmeans model first used NB to calculate the posterior
probabilities of classes, given the feature values assuming
feature independence, and then used K-means to cluster the
centers of the underlying distributions. For the SVR+EM
model, the Support Vector Regression (SVR) model was
trained to predict continuous values, which were then binarised
by several thresholding techniques. Then, the EM algorithm
was applied to iteratively re-estimate the number of these
hidden variables to maximize the expected log-likelihood
computation, until reliability reached a threshold for the best

performance. The ANN+EM model employed an Artificial
Neural Network (ANN) trained through forward and backward
propagation. It was optimized by inserting weights and biases
to achieve lower values of the loss function over several
epochs. Once the ANN training was over, the EM algorithm
was applied to the output of the ANN network and first- and
second-step predictions were obtained. More specifically, in
the E-step, the posterior probabilities were estimated, and in the
M-step, the log-likelihood was maximized, iterating until the
parameters converged.

Figure 1 shows the recall performance of the five models.
The recall performance of SVM+Kmeans was the lowest at just
above 0.94. The NB+kmeans model was better, with a recall
just above 0.96, and SVR+EM was slightly better. A
substantial increase in recall was observed for the ANN+EM
model, achieving a value just below 0.98. The proposed model
achieved the best recall rate at just below 0.99. Figure 2 shows
the F-score results for the five different machine learning
models. All models achieved an F-score of 0.93 to 0.99. Again,
the proposed model achieved the highest F-score. Figure 3
shows the quantitative results of the five machine learning
models in terms of accuracy in the dataset, which ranged from
0.93 to 0.99.

Fig. 1. Models' recall performance on cyber threat dataset.

Fig. 2. Models' F-score performance on cyber threat dataset.

Fig. 3. Models' accuracy performance on cyber threat dataset.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15681-15685 15685

www.etasr.com Byrapuneni & Saidi Reddy: An Advanced Filter-based Supervised Threat Detection Framework on …

IV. CONCLUSION

This study performed a robust analysis, including a
thorough examination of performance parameters such as
stability of feature selection, computational efficiency, and
predictive accuracy. The scalability of the proposed algorithm
on large-scale datasets and flexibility to different data attributes
were examined, emphasizing its potential to improve the results
of predictive modeling by optimizing feature selection
procedures and reducing model complexity. Compared to
conventional methods, encouraging results were obtained in
terms of recall, F-score, and accuracy, through the introduction
of a cluster-based classification method. The proposed
approach provides a viable solution for the real-time detection
of cyber attacks, helping to improve the security of IoT devices
and networks. Additionally, parallel multiclass classification
was investigated, providing a way to use parallel computing
techniques to perform simultaneous classification tasks on
large datasets. This method can significantly increase
productivity and speed, particularly when handling a large
number of data or when prompt response is necessary.

REFERENCES

[1] "Natural Disasters: A Perfect Storm for Data Breaches | CSA."
https://cloudsecurityalliance.org/blog/2023/12/11/natural-disasters-a-
perfect-storm-for-data-breaches.

[2] Y. Gao, Y. Liu, Y. Jin, J. Chen, and H. Wu, "A Novel Semi-Supervised
Learning Approach for Network Intrusion Detection on Cloud-Based
Robotic System," IEEE Access, vol. 6, pp. 50927–50938, 2018,
https://doi.org/10.1109/ACCESS.2018.2868171.

[3] F. Nabi and X. Zhou, "Enhancing intrusion detection systems through
dimensionality reduction: A comparative study of machine learning
techniques for cyber security," Cyber Security and Applications, vol. 2,
Jan. 2024, Art. no. 100033, https://doi.org/10.1016/j.csa.2023.100033.

[4] X. Chen, W. Qiu, L. Chen, Y. Ma, and J. Ma, "Fast and practical
intrusion detection system based on federated learning for VANET,"
Computers & Security, vol. 142, Jul. 2024, Art. no. 103881,
https://doi.org/10.1016/j.cose.2024.103881.

[5] S. Kannadhasan and R. Nagarajan, "Intrusion detection in machine
learning based E-shaped structure with algorithms, strategies and
applications in wireless sensor networks," Heliyon, vol. 10, no. 9, May
2024, https://doi.org/10.1016/j.heliyon.2024.e30675.

[6] Z. Sun, G. An, Y. Yang, and Y. Liu, "Optimized machine learning
enabled intrusion detection 2 system for internet of medical things,"
Franklin Open, vol. 6, Mar. 2024, Art. no. 100056, https://doi.org/
10.1016/j.fraope.2023.100056.

[7] A. Yazdinejad, M. Kazemi, R. M. Parizi, A. Dehghantanha, and H.
Karimipour, "An ensemble deep learning model for cyber threat hunting
in industrial internet of things," Digital Communications and Networks,
vol. 9, no. 1, pp. 101–110, Feb. 2023, https://doi.org/10.1016/j.dcan.
2022.09.008.

[8] Z. Noor, S. Hina, F. Hayat, and G. A. Shah, "An intelligent context-
aware threat detection and response model for smart cyber-physical
systems," Internet of Things, vol. 23, Oct. 2023, Art. no. 100843,
https://doi.org/10.1016/j.iot.2023.100843.

[9] K. Aygul, M. Mohammadpourfard, M. Kesici, F. Kucuktezcan, and I.
Genc, "Benchmark of machine learning algorithms on transient stability
prediction in renewable rich power grids under cyber-attacks," Internet
of Things, vol. 25, Apr. 2024, Art. no. 101012, https://doi.org/10.1016/
j.iot.2023.101012.

[10] T. Jiang, G. Shen, C. Guo, Y. Cui, and B. Xie, "BFLS: Blockchain and
Federated Learning for sharing threat detection models as Cyber Threat
Intelligence," Computer Networks, vol. 224, Apr. 2023, Art. no. 109604,
https://doi.org/10.1016/j.comnet.2023.109604.

[11] B. Racherache, P. Shirani, A. Soeanu, and M. Debbabi, "CPID: Insider
threat detection using profiling and cyber-persona identification,"

Computers & Security, vol. 132, Sep. 2023, Art. no. 103350,
https://doi.org/10.1016/j.cose.2023.103350.

[12] T. Chen, H. Zeng, M. Lv, and T. Zhu, "CTIMD: Cyber threat
intelligence enhanced malware detection using API call sequences with
parameters," Computers & Security, vol. 136, Jan. 2024, Art. no.
103518, https://doi.org/10.1016/j.cose.2023.103518.

[13] J. Zhang, J. D. Peter, A. Shankar, and W. Viriyasitavat, "Public cloud
networks oriented deep neural networks for effective intrusion detection
in online music education," Computers and Electrical Engineering, vol.
115, Apr. 2024, Art. no. 109095, https://doi.org/10.1016/j.compeleceng.
2024.109095.

[14] M. Chalé and N. D. Bastian, "Generating realistic cyber data for training
and evaluating machine learning classifiers for network intrusion
detection systems," Expert Systems with Applications, vol. 207, Nov.
2022, Art. no. 117936, https://doi.org/10.1016/j.eswa.2022.117936.

[15] R. Divya, S. Umamaheswari, and A. A. Stonier, "Machine learning
based smart intrusion and fault identification (SIFI) in inverter based
cyber-physical microgrids," Expert Systems with Applications, vol. 238,
Mar. 2024, Art. no. 122291, https://doi.org/10.1016/j.eswa.2023.122291.

[16] A. Gupta and R. Simon, "Enhancing Security in Cloud Computing With
Anomaly Detection Using Random Forest," in 2024 11th International
Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO), Mar. 2024, pp. 1–6,
https://doi.org/10.1109/ICRITO61523.2024.10522227.

[17] N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),"
in 2015 Military Communications and Information Systems Conference
(MilCIS), Canberra, Australia, Nov. 2015, pp. 1–6, https://doi.org/
10.1109/MilCIS.2015.7348942.

[18] N. Moustafa and J. Slay, "The evaluation of Network Anomaly
Detection Systems: Statistical analysis of the UNSW-NB15 data set and
the comparison with the KDD99 data set," Information Security Journal:
A Global Perspective, Apr. 2016, https://doi.org/10.1080/
19393555.2015.1125974.

[19] N. Moustafa, J. Slay, and G. Creech, "Novel Geometric Area Analysis
Technique for Anomaly Detection Using Trapezoidal Area Estimation
on Large-Scale Networks," IEEE Transactions on Big Data, vol. 5, no.
4, pp. 481–494, Sep. 2019, https://doi.org/10.1109/TBDATA.2017.
2715166.

[20] N. Moustafa, G. Creech, and J. Slay, "Big Data Analytics for Intrusion
Detection System: Statistical Decision-Making Using Finite Dirichlet
Mixture Models," in Data Analytics and Decision Support for
Cybersecurity: Trends, Methodologies and Applications, I. Palomares
Carrascosa, H. K. Kalutarage, and Y. Huang, Eds. Cham, Switzerland:
Springer International Publishing, 2017, pp. 127–156.

[21] M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, "NetFlow
Datasets for Machine Learning-Based Network Intrusion Detection
Systems," in Big Data Technologies and Applications, 2021, pp. 117–
135, https://doi.org/10.1007/978-3-030-72802-1_9.

