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ABSTRACT 

This paper presents an investigation into the modeling of Gallium Nitride (GaN) High Electron Mobility 

Transistors (HEMTs) using multiple Machine Learning (ML) algorithms. Despite the documented use of 

various ML techniques, a thorough comparison and performance analysis under different operating 

conditions were lacking. This study fills this gap by conducting a rigorous evaluation of nine ML models 

using TCAD-generated data of Pseudomorphic AlGaN/InGaN/GaN HEMT. The research focuses on Small 

Signal Behavioral Modeling and examines regression techniques such as Multiple Linear Regression 

(MLR), Multivariate Linear Regression (MVLR), Ridge Regression (L2), Lasso Regression (L1), Elastic 

Net Regression (ENR), Decision Trees (DT), Random Forest (RF), Gradient Boosting Regression(GBR), 

and Support Vector Regression (SVR). These methods use biases, frequency, and device geometry as 

independent variables, with S-parameters being the dependent variables. K-fold cross-validation was 

employed to ensure model reliability and accuracy across diverse operating conditions. Results reveal that 

the RF, coupled with 10-fold cross-validation, exhibits superior performance giving 99.7% accurate 

results, with a Mean Squared Error (MSE) of 4.6375×10
-5

, and a coefficient of determination (R
2
) of 

0.9977. Conversely, SVR, L1, and ENR fall short of expectations. This study underscores the significance 

of methodological advancements in ML-based GaN HEMT modeling and provides valuable insights for 
future research in this domain. 
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I. INTRODUCTION  

Development of High Electron Mobility Transistors 
(HEMT) is a continuously growing research field. It is a 
transistor based on the principle of heterojunction typically 
composed of materials such as GaN/AlGaN forming a 2D 
electron gas channel, allowing for high-speed switching and 
amplification of signals [1, 2]. HEMTs have various 
advantages including low noise characteristics, high-frequency 
application, and high-power handling capacities which find 
applications in RF amplifiers, wireless communication 
systems, radar systems, microwave circuits, power amplifiers, 
power electronics, and high-power switching applications. The 
advent of gallium nitride (GaN) HEMTs can offer superior 
performance in terms of high power and high frequency 
compared to mainstream silicon and other advanced 
semiconductor Field-Effect Transistor (FET) technologies. 
This potential has been extensively reviewed in [3-5]. 

Small signal modeling in HEMT is crucial for accurately 
predicting the behavior of these semiconductor devices under 
varying input conditions, which is important for optimizing 
circuit design and performance. At high frequencies, voltage 
and current measurements are unsuitable for circuit analysis as 
they resemble traveling waves, which are measured by the S-
parameters. Traditional methods often rely on complex 
mathematical equations derived from semiconductor physics, 
which can be computationally intensive and may not capture all 
nuances of device behavior [6-9]. Finding the optimal balance 
between accuracy and complexity is essential, as a greater 
number of circuit elements results in increased accuracy in the 
cost of increased complexity [10, 11]. An alternative approach 
to small signal modeling in HEMT is Machine Learning (ML) 
regression techniques. By training models on datasets 
containing input-output pairs, ML algorithms can learn 
complex patterns and relationships between input signals and 
device responses. Different regression techniques, such as 
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ANN, SVR, MLP etc. have been applied to predict small signal 
characteristics of HEMTs. When using typical learning 
prediction models, data sets are split into training, validation, 
and testing subsets. However, this approach has some 
disadvantages such as: 

 Data Leakage: The set data can influence the model during 
training, making performance improvements seem 
insignificant. 

 Reduced Sample Size: Splitting data into three sets reduces 
the number of samples available for learning and testing, 
potentially harming model performance.  

To address these issues, Cross-Validation (CV) is used. CV 
helps prevent methodological errors by ensuring that the model 
does not see any unseen data until the final evaluation 

In this paper, we explored nine different ML based models 
namely Multiple Linear Regression (MLR), Multivariate 
Linear Regression (MVLR), Ridge Regression (L2), Lasso 
Regression (L1), Elastic Net Regression (ENR), Decision Trees 
(DT), Random Forest (RF), Gradient Boosting 
Regression(GBR), and Support Vector Regression (SVR). 
These algorithms are compared and evaluated using K-fold CV 
instead of a single training-testing split. This method divides 
the dataset into K subsets (folds) and trains the model K times, 
each time using a different fold as the testing set and the 
remaining folds as the training set. This approach reduces the 
risk of overfitting and gives a more accurate estimate of the 
model’s performance on unseen data. We evaluated all models 
using four different K values (3, 5, 7, 10) to compare the 
performance of various regression algorithms in predicting 
small signal characteristics of HEMTs. Additionally, we 
assessed how cross-validation strategies affect the 
generalizability and robustness of the models across different 
regression techniques and operating conditions.  

II. LITERATURE REVIEW 

Previous research [6-9, 12, 13] has primarily utilized 
conventional methods of extracting small signal models, failing 
to consider the potential of ML regression techniques. Table I 
shows the progress in employing ML techniques for HEMT 
modeling. The majority is based on only a few ML techniques 
which conclude that the ML application in HEMT modeling is 
still underexplored. 

III. DATA SET AND METHODOLOGY 

TCAD allows us to perform virtual experiments and 
simulations before fabricating the device, reducing 
development time and costs. As shown in Figure 1, the device 
built on the simulator has the following parameters: The 
substrate has a 400 μm SiC layer, graded AlN nucleation, and a 
1.5 nm layer to minimize threading dislocations between the 
SiC substrate and 1.5 μm GaN buffer layer. A 5 nm GaN cap 
layer prevents Al oxidation and facilitates ohmic contacts after 
the 20 nm AlGaN supply layer. There is an undoped AlGaN 
spacer layer (25.3% Al) of 5 nm, then a 5 nm In0.10Ga0.90N 
layer between the GaN buffer and spacer. 

 

TABLE I.  PREVIOUS MODELS 

Ref. ML methods 
Evaluation 

metrics 
Remarks 

2015 

[14] 
ANN Accuracy Noise parameter modeling 

2018 

[15] 

ANN, SVM, 

DT 
MSE Modeling of I-V characteristics 

2014 

[16] 
ANN MAG and MSG 

Temperature-dependent S-parameter 

modeling 

2019 

[17] 

ANN-GA, 

PSO, GWO 
Error rate 

Combines ANN with various 

optimization techniques 

2023 

[18] 
ANN Execution time 

Testing ANN on MATLAB, Python, 

and R software environments 

2019 

[19] 
ANN Percentage error 

S-parameter modeling over several 

types of FET 

2021 

[20] 
SVR Accuracy S-parameter error correction model 

2020 

[21] 
SVR 

Accuracy, 

percentage error 
S-parameter modeling 

2020 

[22] 
GA MSE Accuracy, S-parameter modeling 

2021 

[23] 

ANN, SVR, 

PSO 
MSE S-parameter modeling 

2020 

[24] 

ANN, GA, 

PSO, SVR, 

GPR 

MSE Large signal modeling 

2017 

[25] 

GA, PSO, 

ABC 
Percentage error 

Parameter extraction and extrinsic 

parameter tuning and S-parameter 

simulation 

2019 

[26] 
ANN-GA 

Graphically 

measured value  
Electrothermal modeling 

2018 

[27] 
SVR 

Graphically 

measured value  
S-parameter modeling 

2019 

[28] 

ANN, SVR, 

DT 
MSE S-parameter modeling 

2019 

[29] 
NARX MSE S-parameter modeling 

2019 

[30] 

Analytical and 

SVR 

MSE, corelation 

coefficient 

Parameter extraction and S-

parameter modeling 

2020 

[31] 

MLP and 

cascade 

structure 

Accuracy, 

convergence 

rate, and 

generalization 

capability 

Small signal modeling 

2020 

[32] 
PSO, SVR Accuracy Small signal behavioral modeling 

2021 

[33] 
GPR MSE Small signal modeling 

2021 

[34] 

Distinct ANN 

architectures 

MSE, MAE, 

fitting curves, 

and R
2
 

Small signal behavioral modeling 

2022 

[35] 
RF MAE, MSE 

A cross-platform application predicts 
GaN high electron mobility device 

scattering (S-) parameter, gain, 

power, device width, and traps. 

2022 

[36] 

SVR,GPR, DT, 

GA, ANN, 

RANdom 

SAmple 

Consensus, 

MSE, MAE, R2 S-parameter small signal modeling 

2023 

[37] 

MPA, POA, 

TSA 
Execution time 

Small signal parameter extraction 

and optimization 

 

The dataset is generated considering various operating 
conditions, and the corresponding responses for different bias 
conditions are recorded as the S-parameters, concerning real 
and imaginary values (S11, S12, S21, S22). The measurement 
data are from the AlGaN/InGaN/GaN HEMT device. Step size 



Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15784-15790 15786  
 

www.etasr.com Ahmad & Nath: Evaluating Nine Machine Learning Algorithms for GaN HEMT Small Signal … 

 

of 1 V is used to vary the gate-to-source voltage (VGS) for both 
devices from −4 V to 2 V. In addition, the drain-to-source 
voltage (VDS) is swept with a 2 V increment from 0 V to 16 V. 
The frequency (f) range of the device is 1 to 50 GHz, with a 
step size of 1 GHz and gate width Wg of 200 and 100 um. 
Combining the samples for each device generates the complete 
dataset used in this paper. The combined dataset comprises 
over 4000 samples and includes four predictor variables: VDS, 
VGS, f, and Wg. Furthermore, eight predicted variables are 
shown to exist: Real (Re) S11, imaginary (Imag) S11, Re S21, 
Imag S21, Re S12, Imag S12, Re S22, and imag S22. Figure 2 
shows the proposed model structure. In the ML-based model 9 
models along with K(3,5,7,10)-fold CV are compiled and 
analyzed. 

 

 
Fig. 1.  Structure of the chosen AlGaN/InGaN/GaN HEMT. 

 

Fig. 2.  Fig. 2. Structure of proposed model. 

A. Data Preprocessing 

Understanding the distribution of the dataset is crucial, as 
depicted in Figure 3, which illustrates the Re and Imag 
distribution of each S-parameter within the full dataset. 
Variability is observed among most parameters, with some 
exhibiting discontinuous output values that deviate from the 
overall distribution. Additionally, anomalies such as outliers 
and uneven peak values are apparent, likely stemming from 
measurement discrepancies. The disparity in ranges between 
predictors and predicted variables poses a significant challenge, 
distorting the error function’s contour and leading to erroneous 
results, particularly in the algorithm’s struggle to identify 

global minima, often converging at local minima. Moreover, 
outliers directly impact decision boundary placement, resulting 
in higher errors on testing sets. Outliers in datasets cause 
algorithms to react differently. For example, mean squared 
error function is more affected than mean absolute error 
function. Hence, it is imperative to address outliers and smooth 
peak values during preprocessing to ensure accurate analysis. 

 

 
Fig. 3.  Distribution of all 8 dependent variables. 

B. Methodology 

The flowchart exhibited in Figure 4 analyzes the 
methodology employed in this research paper, which has been 

thoroughly explained in the previous sections. Different models 

based on nine ML algorithms, namely MLR, MLVR, L2, L1, 
ENR, DT, RF, GBR, SVR, are compared and evaluated [38]. 

 

 
Fig. 4.  Flow diagram of the proposed methodology. 

TABLE II.  ERROR MATRIC USED FOR MODEL 
EVALUATION[39] 

Error Equation 

Mean Absolute Error (MAE) 
1

�
∑��1

�  ��� 	 �̂�� 

Mean Squared Error (MSE) 
1

�
∑

��1
�  ��

�
	 �̂

�
�

2
 

Root Mean Squared Error (RMSE) ���� � √��� 

R-squared (R2) 1 	
∑���

�  ��� 	 �̂� ��

∑���
�  ��� 	 ���  

Explained Variance Score 1 	
Var �� 	 �̂�

Var ���
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IV. RESULT AND DISCUSSION 

An exhaustive analysis and comparison of nine ML based 
algorithms, namely MLR, MLVR, L2, L1, ENR, DT, RF, 
GBR, and SVR were evaluated using different K(3,5,7,10)-fold 
cross-validation techniques. The performance of each 
algorithm was assessed using MSE, MAE, R2, RMSE, and 
EVS. Figures 5-9 manifest a comparison bar graph of all the 
models with all the four k-fold validation clubbed for each 
error parameter. Figure 5 presents the least MAE for DT, RF, 
and GBR, whereas Lasso and SVR show higher value. MLR 
exhibits the worst MAE comparatively. The MSE graph in 
Figure 6 exhibits a trend similar to MAE, making MLR worse 
and DT, RF, and GBR comparably having the best results. In 
Figure 7, the RMSE graph presents the RF regression as the 
best model, MLR as unfit, and SVR and Lasso having better 
results than MLR. The lower value of MAE, MSE, and RMSE 
implies higher accuracy of a regression model. However, a 
higher value of R2 and the explained variance score, closer to 1 
is considered desirable. Figures 8 and 9 indicate that all the 
models are better performing than lasso and SVR while RF is 
the best. 

 

 
Fig. 5.  MAE graph. 

 

Fig. 6.  MSE graph. 

Examining the graphical results, it can be noted that RF 
with 10-fold CV shows the best value at various operating 
conditions with the least error and highest accuracy for error 
matrices with average MAE, MSE, RMSE, R

2
, EVS as 

0.004125, 4.6375×10−5, 0.006475, 0.9977, 0.9977 
respectively. Table III depicts the RF algorithm model at all K-

folds for all the evaluation matrices, as due to space constraints 
it was not possible to show the numerical evaluation value for 
each model. Figure 10 illustrates the extended results with 
simulation curves at randomly selected bias conditions, further 
demonstrating the model's effectiveness. 

 

 
Fig. 7.  RMSE graph. 

 
Fig. 8.  R

2
 graph. 

 
Fig. 9.  Explained variance score graph. 

TABLE III.  OUTCOME OF THE RANDOM FOREST MODEL 

MAE: 

Dependent 

Variable 

K-Fold 

(K=3) 

K-Fold 

(K=5) 

K-Fold 

(K=7) 

K-Fold 

(K=10) 

Real(S11) 0.0064 0.0057 0.0054 0.0053 

Imag(S11) 0.0051 0.0045 0.0045 0.0043 

Real(S12) 0.0033 0.0031 0.003 0.0029 

Imag(S12) 0.0015 0.0013 0.0012 0.0012 
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Real(S21) 0.0052 0.0045 0.0043 0.0041 

Imag(S21) 0.0072 0.0062 0.0061 0.0058 

Real(S22) 0.0073 0.0062 0.0059 0.0056 

Imag(S22) 0.0049 0.0042 0.004 0.0038 

MSE: 

Dependent 

Variable 

K-Fold 

(K=3) 

K-Fold 

(K=5) 

K-Fold 

(K=7) 

K-Fold 

(K=10) 

Real(S11) 0.00012 0.000092 0.000081 0.000078 

Imag(S11) 0.000062 0.000046 0.000047 0.00004 

Real(S12) 0.000024 0.00002 0.000019 0.000018 

Imag(S12) 0.000009 0.000006 0.000006 0.000006 

Real(S21) 0.000094 0.000074 0.000066 0.000061 

Imag(S21) 0.000128 0.000095 0.000089 0.000078 

Real(S22) 0.000108 0.000072 0.000066 0.000058 

Imag(S22) 0.000052 0.00004 0.000035 0.000032 

RMSE: 

Dependent 

Variable 

K-Fold 

(K=3) 

K-Fold 

(K=5) 

K-Fold 

(K=7) 

K-Fold 

(K=10) 

Real(S11) 0.0109 0.0095 0.0089 0.0088 

Imag(S11) 0.0079 0.0068 0.0069 0.0063 

Real(S12) 0.0049 0.0045 0.0044 0.0043 

Imag(S12) 0.0031 0.0027 0.0026 0.0025 

Real(S21) 0.0097 0.0086 0.0081 0.0078 

Imag(S21) 0.0113 0.0097 0.0094 0.009 

Real(S22) 0.0104 0.0084 0.0081 0.0075 

Imag(S22) 0.0072 0.0063 0.0059 0.0056 

R2 Score: 

Dependent 

Variable 

K-Fold 

(K=3) 

K-Fold 

(K=5) 

K-Fold 

(K=7) 

K-Fold 

(K=10) 

Real(S11) 0.9992 0.9994 0.9995 0.9995 

Imag(S11) 0.9976 0.9982 0.9982 0.9984 

Real(S12) 0.996 0.9966 0.9968 0.997 

Imag(S12) 0.9945 0.9958 0.9959 0.9961 

Real(S21) 0.9984 0.9988 0.9989 0.999 

Imag(S21) 0.9921 0.9941 0.9945 0.9952 

Real(S22) 0.9961 0.9974 0.9976 0.9979 

Imag(S22) 0.9976 0.9981 0.9983 0.9985 

Explained Variance: 

Dependent 

Variable 

K-Fold 

(K=3) 

K-Fold 

(K=5) 

K-Fold 

(K=7) 

K-Fold 

(K=10) 

Real(S11) 0.9992 0.9994 0.9995 0.9995 

Imag(S11) 0.9976 0.9982 0.9982 0.9984 

Real(S12) 0.996 0.9966 0.9968 0.997 

Imag(S12) 0.9945 0.9958 0.9959 0.9961 

Real(S21) 0.9984 0.9988 0.9989 0.999 

Imag(S21) 0.9921 0.9941 0.9945 0.9952 

Real(S22) 0.9961 0.9974 0.9976 0.9979 

Imag(S22) 0.9976 0.9981 0.9983 0.9985 
 

 
Fig. 10.  Measured (line) and predicted (symbols) S-parameters at Vgs=1 V 

and Vds=15 V for 100 um gate width using RF with 10-fold cross validation. 

V. CONCLUSION 

In this paper, MLR, MLVR, L2, L1, ENR, DT, RF, GBR, 
and SVR ML algorithms, were employed to develop GaN 
HEMT modelling frameworks using different K-fold cross-
validations (3, 5, 7, 10). Subsequently, model parameters were 
tuned to optimize performance. Model generalization was 
assessed using MSE, MAE, R2, RMSE, and EVS metrics. It 
was observed that RF with 10-fold CV provided the most 
accurate prediction of the small-signal behavior of GaN HEMT 
devices, showing the best value at various operating conditions 
with the least error and highest accuracy for error matrices with 
average MAE, MSE, RMSE, R2, EVS as 0.004125, 
4.6375×10−5, 0.006475, 0.9977, 0.9977, respectively. DT and 
GBR also yielded promising results. Conversely, SVR and 
lasso, ENR were deemed unsuitable for GaN HEMT device 
modeling. There is no universally optimal modeling approach, 
but rather a range of situations where one approach may be 
more suitable than another, depending on the existing specific 
limitations and demands. Looking ahead, further extensive 
research is required to explore ensemble learning [40], different 
modeling based on noise, temperature effect and optimization 
algorithms [41-42]. 
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