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ABSTRACT 

Standing flows in natural channels often cause phenomena that can be very serious, such as flooding, 

deformation of channel geometry, and destruction of infrastructure (dams, bridges, and culverts). This 

study focuses on the computation of gradually varying permanent flows (backwater curves) by two 
methods: direct integration (Chow) and successive approximation (depth variation). To solve the system of 

equations governing the problem of gradually varying one-dimensional stationary flows at a free surface, a 

large amount of data should be taken into account, namely, the flow rate, the water head, the mean flow 

velocity, the rugosity, and the slope. These parameters are very important, as they cause nonlinear 

behavior, making the problem and its mathematical solution complex. Digitizing these parameters can help 

to determine and visualize the longitudinal profile of the water line for known flow rates. This study aimed 
to: (1) determine the influence of rugosity on gradually varying steady flows and the overclassification of 

eddy curves in a prismatic channel, (2) study the effect of geometric shape on these flows, and (3) 

investigate and compare the effects of the calculation methods. The results reveal the great influence of 

rugosity on gradually varying permanent flows for four selected geometric shapes of the channel, as it has 

a direct influence on the normal depth and the critical slope. Each time the resistance of the bottom to the 

flow increases, these results increase. The influence of the geometric shape on these flows is less significant. 

The comparative study showed a difference between the results obtained. 

Keywords-flow; geometry; rugosity; slope; velocity; permanent flow; free-surface flow; permanent regime; 

eddy curve; flow speed 

I. INTRODUCTION 

The study of gradually varying one-dimensional free-
surface stationary flows requires as much data as possible to be 

taken into account. Flow rate (Q), water head (h), mean flow 
velocity (v), rugosity (n), and slope inclination are all 
important, as they can cause nonlinear behavior, increasing the 
complexity of the problem and its mathematical solution. 
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Several studies have focused on different approaches to 
solving the governing equations of this type of flow. In [1], the 
differential equation that governs the gradually varying flow 
was transformed, deriving a generalized theoretical approach to 
calculate the eddy curves evolving in a triangular channel for a 
rough turbulent regime. Particular attention was paid to the 
special cases of critical and horizontal slopes, which are of 
considerable mathematical importance. In [2], two approaches 
were compared in branched and looped channel networks: the 
direct elimination method and the use of branch-segment 
transformation equations. This study revealed that the 
technique based on the Newton-Raphson method is at least five 
times faster than the algorithm based on the branch-segment 
transformation equations. In [3], a method was developed to 
model the subcritical flow in channel systems, following the 
implicit finite-difference method. Backflow effects at junction 
points were treated based on water level prediction and 
correction. The results obtained were almost similar to those of 
the three-phase algorithms and fit well with the observed data. 
In addition, this algorithm reduced storage requirements and 
simulation time. Based on Lipschitz's theorem, the study in [4] 
focused on the transition from subcritical to supercritical flow, 
finding that the initial value problem for the ordinary 
differential energy equation has no unique solution. 
Consequently, the discrete energy equation can have several 
roots, depending on the conditions. In [5], the finite-volume 
method was adopted to solve the flow transport equations in the 
pipes. The results exhibited that inertial forces have an effect 
on the change in flow in the pipes and that EPANET and 
EPANET2 may have flaws in calculations. 

In [6], two models were developed to simulate water flow 
in a real fish habitat. The findings, based on one- and two-
dimensional assumptions, revealed a clear difference between 
the results of the two approaches. In [7], Artificial Neural 
Networks (ANNs) and Genetic Programming (GP) were 
considered to estimate gradually varying flow lengths when the 
water depth was higher than the normal and critical depths for 
various slopes of trapezoidal channels. The results showed that 
the greater the number of subreaches considered in the direct 
method is, the better are the results obtained. In [8], an 
algorithm for a subcritical flow was proposed, which 
performed correctly and therefore can be considered a valid 
approach to studying gradually varying flows in open channel 
networks. In [9], two explicit finite-difference schemes were 
developed by studying the applicability of the Lax-Wendroff 
and McCormack diagrams to model unsteady flow with fast 
and gradual variations in a prismatic open channel. The 
numerical results of the improved McCormack scheme 
corresponded more closely to the analytical solution. 
Furthermore, the McCormack model simulated more accurately 
the gradually varying flow than the Lax-Wendroff approach. 

In [10], a systematic laboratory study was carried out, 
presenting an empirical equation to distinguish the impact of 
the vegetation stem distribution pattern on the hydrodynamics 
of a gradually varied flow through emergent blade-type 
vegetation. In [11], a semi-analytical solution was proposed to 
solve the equation of gradually varying flow in circular and 
parabolic prismatic channels, using the Adomian 
Decomposition Method (ADM) for any channel size (wide or 

not) and slope. The results displayed that the water surface 
profile in circular and parabolic channels using the semi-
analytical ADM method was in good agreement with that 
produced with FDM. In [12], a genetic algorithm-based 
simulation and optimization method was deployed to solve 
water surface profiles, and the results were validated using 
synthetic data generated by FLDWAV. The results disclosed 
that the accuracy of the proposed method decreased as the 
rugosity coefficient and the error in the water depth 
measurements increased. This method provided better results in 
the subcritical flow regime at high Froude numbers. In [13], the 
fourth-order Runge-Kutta scheme was applied to numerically 
solve the differential equation for gradually varying flow and 
calculate the influence length for rectangular and trapezoidal 
prismatic channels. The results showed how the influence 
distance changes with various upstream and downstream flow 
conditions, as well as with different channel shapes. In [14], the 
unsteady and gradually varying flow of an open channel in tidal 
rivers was examined, based on theoretical analysis and two-
dimensional numerical simulations. The results demonstrated 
that the control equations for the total flow of the open channel 
can be obtained directly from the mathematical model of 
viscous fluid flow. In [15], theoretical findings were confirmed 
with numerical simulations performed by solving the complete 
nonlinear problem implementing the Herschel and Bulkley 
rheological model. This study concluded that under subcritical 
conditions, frequently encountered in gradual sludge flows, 
even in conjunction with the development of rolling waves, 
capable of inducing deceleration or acceleration of the current, 
it could prevent or promote the development of instabilities. A 
good agreement between experimental and numerical results 
was demonstrated in [16], indicating that both the Reynolds 
model and the finite volume method are capable of simulating 
hydraulic flow in open channel transitions (rectangular to 
trapezoidal). The results demonstrated that as the upstream 
Froude number increases, the transition efficiency and energy 
loss coefficient decrease and increase, respectively. In [17, 18], 
a finite element algorithm was utilized, based on the multiple 
grid technique, to solve the one-dimensional equations for 
shallow water in a rectangular prismatic open channel spilling 
over a weir. The model developed accurately reproduced the 
behavior of the transient flow, and the multiple grid technique 
slightly improved the performance of the standard grid in terms 
of computation time consumed. In [19], the effect of roughness 
on the transition from laminar to turbulent flow was examined, 
exhibiting that the transition Reynolds number of a flat plate 
with a zero pressure gradient is a function of the ratio between 
the height of the rugosity element and the displacement 
thickness of the boundary layer at the element. Further findings 
showed that the effects of roughness are similar in streams with 
different initial turbulence. 

In [20], an overview of the effects of rugosity on surface 
runoff was presented, where experiments on the hydraulic 
resistance of concentrated flow channels revealed that the 
spatial organization of runoff is influenced by rugosity and 
topography. The location and geometry of large runoff 
collectors can be predicted deterministically. In [21], three 
different approaches were adopted to study the influence of 
rugosity on the laminar flow in microchannels. Three-
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dimensional numerical simulations, a one-dimensional rough-
layer model, and volumetric averaging experiments disclosed 
that the Poiseuille number increased with relative rugosity and 
was independent of the Reynolds number in the laminar 
regime. The increase in Poiseuille observed in the experiments 
was well predicted by both the three-dimensional simulations 
and the rough layer model. In [22], a non-hydrostatic numerical 
model was used to study the hydraulic effect of different bed 
geometries. A function was developed for Nikuradse rugosity 
(ks), and a new equation was proposed, which directly related 
ks to relative bed height, aspect ratio, and side angle. In [23], a 
three-dimensional thin-wall model was employed, using 
ANSYS Fluent 14.5 software, to avoid heat transfer effects,  
demonstrating that the friction factor increased with increasing 
hydraulic diameter. 

In [24], Froude similarity conditions were derived to 
describe dam failure waves in a smooth rectangular horizontal 
channel, utilizing a characteristic theory to analytically 
determine both positive and negative waves. The results 
provided a better understanding of the mechanism of dam 
failure waves. In [25], the effect of bed friction on the stability 
of transverse shear flows in shallow open channels was 
examined deploying a linear hydrodynamic stability analysis. 
The results showed that in the limiting case of a shallow 
transverse shear flow when the velocity change is small, bed 
rugosity becomes the only parameter governing the stability of 
transverse shear flows. In [26, 27], a numerical model was 
developed to understand the dynamic behavior of the flow 
field, influenced by the shape and rugosity lengths on large 
bedforms during a tidal cycle. The findings provided a better 
understanding of the hydrodynamics of natural bedforms in a 
tidal environment. In [28], the impact of spontaneous reed on 
flow was evaluated, both in terms of resistance and velocity 
distribution, employing full-scale field hydraulic experiments 
on an existing drainage channel. The results revealed that the 
effect of the plant led to a decrease in flow resistance for 
increasing flow velocities, due to reconfiguration of the 
submerged leaves. The study in [29] attempted to calibrate the 
roughness coefficient along a channel by simulating channel 
flows and water depths using the HEC-RAS model. The results 
manifested that for both channels, an increase in rugosity 
coefficients led to a corresponding increase in water levels, 
whereas a decrease in rugosity coefficients led to a decrease in 
water levels. Manning coefficient values between 0.023 and 
0.016 gave the best results for both channels.  

In [30], two computational methods were developed to 
solve the equations of gradually varying steady flow in 
irrigation canals. The results displayed that in most situations, 
the backwater curves extend far enough upstream to 
significantly affect the performance of the control section at the 
upstream end. In many situations, it is not even possible to 
operate the canal at the expected flow rates. Based on the 
definition of the Froude number and the general flow 
relationship, a new approach was proposed in [31] to analyze 
the critical flow regime in an egg-shaped channel. The findings 
demonstrated the influence of slope on the frequency of 
occurrence of the critical regime. In [32, 33], the limitations of 
surface flow equations were highlighted when applied to 
irregular topography. The numerical process, implicit in the 

Saint-Venant equations, and the diffusion wave approximation 
fail when the flow surface changes rapidly. It appears that, 
while the numerical procedure may require a fine mesh dictated 
by computational accuracy, measurements need to be 
performed on a larger scale to obtain smoother surfaces to 
satisfy the assumption of gradual variation of the flow 
equations.  

II. GOVERNING EQUATION FOR GRADUALLY 

VARYING FLOW 

Suppose a constant flow, with no lateral entry or exit, 
flowing in a prismatic channel. The slope of the channel 
channel concerning the horizontal plane (h) is assumed to be 
constant and positive. In the following, it is assumed that (a) 
spatial variations occur on scales larger than the flow depth, (b) 
flow resistances by walls and bottom are homogeneous, and (d) 
curvature effects are neglected. 

���� = �� ��	�×��×�
����������
=
⎝
⎜⎛� × �� �� �� ���	�×��×�
�

���� �� ��
��� �� � ⎠

⎟⎞  (1) 

This equation is a first-order differential equation that 
describes a gradually varied flow. It allows to determine the 
water depth h(x) as a function of the distance (x) for a given 
flow rate Q. This is the simplified Barré de Saint-Venant 
equation and is valid for prismatic and non-prismatic channels. 
The problem that arises when studying gradually varying flows 
is to determine the position x and the shape h(x) of the free 
surface for a given flow Q and geometric shape (section S). For 
a given channel, the arguments C and S are functions of x and 
h, while I is a function of x. 

III. ITERATIVE METHOD [34] 

The iterative method generally takes the longest to apply 
but is often the most accurate. Its basic equation is (1), which 
gives: 

 ! = ��������� ��"��# = $%$
�"��# = �&��#    (2) 

Passing from differential equations to finite differences can 
give:  

∆! = !� − !) = ∆&��#* = &+�&���#*     (3) 

where Jm represents the average pressure drop, defined in the 
middle of the Δx interval by: 

,- = #."�/0."+/)      (4) 

∆! = !) − !� = 1"02+���3�1"02����3
��4.
�/5.
+/�

    (5) 

Therefore: 

ℎ� − ℎ) = .!) − !�/�� − #."�/0."+/) � − �7+�)8 − 7��)8� (6) 
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Finally, the equation for gradually varying flows can be written 
simply as: 

ℎ� − ℎ) = .!) − !�/�� − #."�/0."+/) � − 9�
)8 � �:+� − �:��� (07) 

This can be solved in two ways: by the section method (∆x 
fixed) or by the depth variation method (∆h fixed). 

A. Depth Variation Method (Δh is fixed) 

The depth variation or direct step method applies to 
prismatic channels and is used for small depths to reduce 
errors. It also applies to (3) for gradually varied motion. This 
method consists of finding the value of the abscissa x2 for a 
depth h2 very close to h1 using (5), then calculating the abscissa 
x2 and moving on to the next section, etc. 

B. Chow Method [35] 

Chow (1959) considered that the parameter ;  is not 

constant. He generalized 
�"�� = � "��"<�"��"=� and wrote it as: 

�"�� = � ">�"<>"?�"=?      (08) 

where N and M are always hydraulic exponents that depend on 
the shape of the cross-section and the roughness coefficient 
chosen. For a section of any shape, the Chow method gives: 

@.ℎ/ � )"
A: .5C ( 2E" �F

�")   (09) 

G.ℎ/ � "
: .3C ( :

I
�I
�"      (10) 

The two hydraulic exponents are functions of the water 
depth h. Their usual variations are: 

2.0 M  @ M  5.3   and   3 M  G M  4.8 

Using the same Bresse variables, that is: 

"
"< � P  and   ℎ � ℎQ 
  P 

Equation (8) becomes: 

 ! � "<
� 11 ( � �

��S>� T �"=
"<�U �S>V?

��S> �3  P (11) 

By integrating between two sections with abscissas x0 and 
x1, is obtained: 

!W ( !� �  

"<
� �.PW ( P�/ ( X �

��S>  PS
W T �"=

"<�U X S>V?
��S>

S
W  P� (12) 

The first integral is identical to Bakhmeteff's: 

Y.P, @/ � X �
��S>  P � ( X �

S>��  P  

Chow expresses the second integral as: 

X S>V?
��S>

S
W  P � [

\ X �
��]^  _ � [

\ Y._, `/  

where _ � P\ [� . The function Y._, `/ is similar to the function Y.P, @/ , and the variables P  and @  are replaced by the 
variables _ and `. Equation (12) then becomes: 

!� ( !W � "<
� ..P� ( PW/ ( .Y.P�, @/ ( Y.PW, @/ T  

    �"=
"<�U [

\ .Y._�, `/ ( [
\ Y._W, `////   (13) 

IV. NUMERICAL SIMULATION 

The complexity and large number of parameters involved in 
the study of gradually varying permanent flows make this 
problem difficult to solve using conventional analytical 
methods. The solution to this type of problem is based on 
numerical simulation deploying a calculation code (FBA) 
designed in-house, programmed utilizing the Delphi 
programming language, and based on Pascal. 

 

 
Fig. 1.  Design code interface 1. 

A. Example of Calculation 1 

A trapezoidal channel with fixed parameters (positive slope 
I = 0.001, width b = 10 m, flow Q = 30 m3/s, slope coefficient 
m = 1.5 and water depth h = 1.5 m), and varied rugosity 
coefficients (n = 0.012 m-1/3s, n = 0.08 m-1/3s, n = 0.13 m-1/3s). 

a � b 
 c � �
Q 
 E"

) A� 
 �� )
� c,   a � d8
:=�
I  ,  

and given the above conditions: 

1) 1
st
 Case 

hc = 0.723m, hn= 0.842m, Ic = 0.0017. Since h > hn > hc and 
Ic > I and the Froude number Fr < 1, the backwash curve 
obtained is of the type M branch M1. 

2) 2
nd

 Case 

hc= 0.723 m, hn= 2.552 m, Ic = 0.0739. Since hn > h > hc 
and Ic > I, and the Froude number Fr < 1, the backwash curve 
obtained is of the type M branch M2. 

3) 3
rd

 Case 

hc= 0.723 m, hn= 3.358m, Ic = 0.1952. Since hn > h > hc and 
Ic > I, Fr < 1, the backwash curve obtained is of the type M 
branch M2. 

B. Example of Calculation 2 

A rectangular channel with fixed parameters (positive slope 
I = 0.001, width b = 10 m, flow Q = 30 m3/s, slope coefficient 
m = 1.5 and water depth h = 1.5 m), and varied rugosity 
coefficients (n = 0.012 m

-1/3
s, n = 0.08 m

-1/3
s, n = 0.13 m

-1/3
s). 

Given the above conditions: 
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1) 1st Case 

hc= 0.742 m, hn= 0.866 m, Ic = 0.0018. Since h > hn > hc 
and Ic > I, and the Froude number Fr < 1, the backwash curve 
obtained is of the type M branch M1. 

2) 2nd Case 

hc= 0.742 m, hn = 3.03 m, Ic = 0.0786. Since hn > h > hc and 
Ic > I, and the Froude number Fr < 1, the backwash curve 
obtained is of the type M branch M2. 

3) 3rd Case 

hc = 0.742 m, hn = 4.233 m, Ic = 0.2076. Since hn > h > hc 
and Ic > I, and Fr < 1, the backwash curve obtained is of the 
type M branch M2. 

C. Example of Calculation 3 

A triangular channel with fixed parameters (positive slope  
I = 0.001, width b = 10 m, flow Q = 30 m

3
/s, slope coefficient 

m = 1.5 and water depth h = 1.5 m), and varied rugosity 
coefficients (n = 0.012 m-1/3s, n = 0.08 m-1/3s, n = 0.13 m-1/3s). 
Given the above conditions: 

1) 1
st
 Case 

hc= 2.411 m, hn = 2.662 m, Ic = 0.0017. Since hn > hc > h 
and Ic > I, and the Froude number Fr < 1, the backwash curve 
obtained is of the type M branch M3. 

2) 2nd Case 

hc = 2.411 m, hn = 5.423 m, Ic = 0.0754. Since hn > hc > h 
and Ic > I, and Fr < 1, the backwash curve obtained is of the 
type M branch M3. 

3) 3rd case 

hc = 2.411 m, hn = 6.506 m, and Ic = 0.1991. Since hn > hc > 
h and Ic > I, and Fr < 1, the backwash curve obtained is of the 
type M branch M3. 

D. Example of Calculation 4 

A parabolic channel with fixed parameters (positive slope  
I = 0.001, width b = 10 m, flow Q = 30 m3/s, slope coefficient 
m = 1.5 and water depth h = 1.5 m), and varied rugosity 
coefficients (n = 0.012 m

-1/3
s, n = 0.08 m

-1/3
s, n = 0.13 m

-1/3
s). 

Given the above conditions: 

1) 1
st
 Case 

hc= 0.985 m, hn = 1.144 m, Ic = 0.0016. Since h > hn > hc 
and Ic > I, and the Froude number Fr < 1, the backwash curve 
obtained is of the type M branch M1. 

2) 2
nd

 Case 

hc = 0.985 m, hn = 3.713 m, Ic = 0.073. Since hn > h > hc 
and Ic > I, and Fr < 1, the backwash curve obtained is of the 
type M branch M1. 

3) 3
rd

 Case 

hc = 0.985 m, hn = 5.15 m, Ic = 0.2076. Since hn > h > hc 
and Ic > I, Fr < 1, the backwash curve obtained is of the type M 
branch M2. 

V. RESULTS AND DISCUSSION 

The influence of rugosity on gradually varying permanent 
flows is decisive, as it has a direct influence on normal depth 
and critical slope. Each time the bottom resistance to flow 
increases, these parameters increase, and the desired distance 
on which the second boundary condition depends also 
increases, so these parameters are said to be directly 
proportional to rugosity. When these parameters are size 
parameters in the determination and classification of eddy 
curves and are influenced by rugosity, rugosity can be said to 
be one of the parameters for classifying eddy curves. 

The influence of channel geometry on gradually varying 
permanent flows is less significant. This slight influence on the 
normal and critical depths and the critical slope is clearly 
shown in Figures 2 to 6, except for the triangular shape, where 
the influence is more significant and the eddy curve is always 
of branch 3 regardless of the class of the curve. The cross-
section of the channel should be as close as possible to the 
actual cross-section, for both economic reasons and to ensure 
that the channel is correctly dimensioned, so that the 
developments to be planned do not influence the flow regime 
and do not alter the natural flow. When calculating the water 
line using both the iterative and direct integration methods, it 
can be seen that rugosity has a major influence on the results.  

 

 
Fig. 2.  Water line calculation using the depth variations method with the 

same rugosity (low) and different forms. 

 
Fig. 3.  Water line calculation using the Chow method with the same 

rugosity (mean) and different forms. 
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Fig. 4.  Water line calculation using the depth variations method with the 

same rugosity (mean) and different forms. 

 
Fig. 5.  Water line calculation using the Chow method with the same 

rugosity (high) and different forms. 

 
Fig. 6.  Water line calculation using the depth variations method with the 

same rugosity (high) and different forms. 

For this purpose, the method of depth variations for low 
rugosity is the most suitable for all geometric shapes except the 
parabolic, where Chow's method is the most suitable for 
medium rugosity. For fairly pronounced rugosity, Chow's 
method is the most suitable for all geometric shapes, except for 
the rectangular, where the first method is the most suitable. 

Chow's method is best suited for trapezoidal and parabolic 
geometries, while for rectangular and triangular geometries, the 
depth variation method is the most appropriate. 

 

 
Fig. 7.  Water line calculation using Chow in trapezoidal form with 

different rugosity. 

 
Fig. 8.  Water line calculation using the depth variations method in 

trapezoidal form with different rugosity. 

 
Fig. 9.  Water line calculation using Chow in rectangular form with 

different rugosity. 
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Fig. 10.  Water line calculation using depth variations in rectangular form 

with different rugosity. 

 
Fig. 11.  Water line calculation using the Chow method in triangular form 

with different rugosity. 

 
Fig. 12.  Water line calculation using the depth variations method in 

triangular form with different rugosity. 

 
Fig. 13.  Calculation of the water line using the Chow method in trapezoidal 

form with different rugosity. 

 
Fig. 14.  Calculation of the water line using the variation of depths method 

in parabolic form with different rugosity. 

VI. CONCLUSION 

This study investigated the influence of rugosity, geometric 
form, and calculation methods on gradually varying permanent 
flows. The eddy curves were determined using two methods, 
namely the successive approximation method and the Chow 
method. These methods were coded, allowing visualization of 
the longitudinal profile of the water line for flows of known 
volume. When the eddy curve was calculated deploying these 
methods, rugosity was found to have a major influence on the 
calculation results. For low rugosity, the method of depth 
variations is the most suitable for all geometric shapes, except 
for the parabolic shape, where Chow's method is the most 
suitable. For medium rugosity, Chow's method is the most 
suitable for all geometric shapes, except for the rectangular 
shape where the first method is the most suitable. For high 
rugosity, Chow's method is the most suitable for trapezoidal 
and parabolic geometries, whereas for rectangular and 
triangular geometries, the depth variation method is the most 
suitable.  

Determining the backwater curves (lowering/raising) 
enables us to make a judicious choice regarding the 
development measures to be taken along the non-prismatic 
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channel under consideration. Ultimately, the accuracy of the 
calculations must be considered about all the physical and 
hydrodynamic parameters that can influence the results. As 
these parameters are generally difficult to estimate, we were 
able to only estimate an average. Thus, knowing the flow 
parameters (channel size, flow rate, slope, rugosity, etc.), they 
could determine the longitudinal profile of the water line in the 
channel at the level of the various sections, and thus localize 
the phenomena generating surface waves, and perhaps even 
quantify the waves and disturbances themselves. The direct 
consequences of flooding are often considered to be limited to 
the maximum flood zone generated at a particular point on the 
river. However, given the magnitude of the exceptional flood 
flows, the river bed could undergo profound upheavals, which 
can be summed up in very significant changes to the channel 
geometry. There is still a lot of work to be done on this subject. 
That said, superimposing the various specific treatments on the 
scale of a given channel seems likely to produce interesting 
visual results, and, above all, at a reasonable computational 
cost. 
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