
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14945-14955 14945  
 

www.etasr.com Ben Miled et al.: Enhanced Chaos Game Optimization for Multilevel Image Thresholding through … 

 

Enhanced Chaos Game Optimization for 
Multilevel Image Thresholding through Fitness 
Distance Balance Mechanism 

 

Achraf Ben Miled 

Computer Science Department, Science College, Northern Border University, Saudi Arabia 
ashraf.benmilad@nbu.edu.sa (corresponding author) 
 
Mohammed Ahmed Elhossiny 

Applied College, Northern Border University, Saudi Arabia | Faculty of Specific Education, Mansoura 
University, Egypt 
mohammed.elhossiny@nbu.edu.sa 
 
Marwa Anwar Ibrahim Elghazawy 

Applied College, Northern Border University, Saudi Arabia 
miss_marwa80@hotmail.com 
 
Ashraf F. A. Mahmoud 

Computer Science Department, Science College, Northern Border University, Saudi Arabia 
ashraf.abubaker@nbu.edu.sa 
 
Faroug A. Abdalla 

Computer Science Department, Science College, Northern Border University, Saudi Arabia 
faroug.abdalla@nbu.edu.sa 

Received: 2 May 2024 | Revised: 13 May 2024 | Accepted: 15 May 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7713 

ABSTRACT 

This study proposes a method to enhance the Chaos Game Optimization (CGO) algorithm for efficient 

multilevel image thresholding by incorporating a fitness distance balance mechanism. Multilevel 

thresholding is essential for detailed image segmentation in digital image processing, particularly in 

environments with complex image characteristics. This improved CGO algorithm adopts a hybrid 

metaheuristic framework that effectively addresses the challenges of premature convergence and the 

exploration-exploitation balance, typical of traditional thresholding methods. By integrating mechanisms 

that balance fitness and spatial diversity, the proposed algorithm achieves improved segmentation 

accuracy and computational efficiency. This approach was validated through extensive experiments on 

benchmark datasets, comparing favorably against existing state-of-the-art methods. 

Keywords-chaos game optimization; fitness distance balance; multilevel image thresholding; computer vision; 

optimization algorithms 

I. INTRODUCTION 

Image segmentation is a fundamental problem in digital 
image analysis involving partitioning images into semantically 
uniform regions or objects. Among existing segmentation 
techniques, thresholding aims to separate foreground from 
background pixels based on intensity value differences using 
one or more threshold values [1]. However, selecting optimal 
thresholds remains challenging due to intrinsic image 
complexities and application-dependent variability in factors, 

such as illumination, contrast, noise, and scene content. 
Traditional thresholding methods often need more robustness 
to adapt to heterogeneity in real-world settings. Global 
thresholding techniques, like the Otsu method, are simple but 
sensitive to noise and intensity inhomogeneity [2]. Local 
thresholding somewhat addresses this issue but requires 
additional parameters and computational effort. Furthermore, 
existing techniques primarily focus on bi-level thresholding, 
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whereas many applications demand multi-thresholding to 
partition multi-modal intensity distributions. 

Metaheuristic optimization algorithms have proven 
effective for large and complex search spaces by iteratively 
exploring and exploiting the solution landscape according to 
heuristic principles [3-4]. This makes them well-suited to 
enhance thresholding techniques by formulating selection as an 
optimization task to determine thresholds that maximize 
segmentation performance, image quality, and accuracy 
criteria. Previous studies incorporated metaheuristics, namely 
Genetic Algorithms (GAs), Particle Swarm Optimization 
(PSO), and ant colony optimization, into thresholding, 
demonstrating improved adaptability and effectiveness 
compared to traditional methods. However, existing 
approaches also encounter limitations from premature 
convergence, local optima trapping, and computational 
inefficiency, particularly for multi-modal images that require 
multi-thresholding [5]. Moreover, different applications 
demand specialized thresholding capabilities that are suited to 
their characteristic data and constraints. Therefore, more 
innovation is needed to develop hybrid metaheuristic 
frameworks that synthesize the complementary strengths of 
multiple algorithms for enhanced adaptability, robustness, and 
computational efficiency in diverse contexts. 

This study aims to significantly improve the efficiency and 
accuracy of the Chaos Game Optimization (CGO) algorithm 
for multilevel image thresholding. This study introduces a 
novel Fitness Distance Balance (FDB) mechanism that 
combines metaheuristic optimization with principles of chaos 
theory to address premature convergence and enhance the 
exploration-exploitation balance. This mechanism allows the 
algorithm to dynamically adjust search strategies based on real-
time performance metrics, thus improving segmentation results 
in complex imaging environments. Validated through 
comprehensive experiments on benchmark datasets, this 
approach not only surpasses traditional methods but also 
highlights the potential of hybrid metaheuristic strategies in 
advanced image processing applications. 

II. META-HEURISTIC OPTIMIZATION IN 
MULTILEVEL THRESHOLD IMAGE SEGMENTATION 

Metaheuristic algorithms have been pivotal in exploring 
image segmentation techniques, particularly multilevel 
thresholding. The Artificial Bee Colony (ABC) algorithm 
stands out for its innovative applications and adaptations, 
significantly enhancing the field's capabilities. The MEABCT 
algorithm [6] represents a paradigm shift by offering 
substantial improvements in segmentation accuracy over 
established methods, such as honey bee mating optimization, 
hybrid cooperative comprehensive learning-based algorithms, 
the Otsu method, and PSO. This algorithm has demonstrated 
exceptional proficiency in identifying thresholds that closely 
align with the optimal one, showcasing its suitability for 
complex segmentation tasks. The Modified ABC (MABC) 
algorithm [7] enhanced image segmentation by integrating 
opposition-based learning and chaotic systems, outperforming 
traditional techniques involving genetic and PSO in precision. 
The KABC algorithm [8] merged ABC with the krill herd 
algorithm and leveraged the HSV color scale and structural 

similarity index matrix to successfully deal with luminance 
variations, improving segmentation accuracy. A novel three-
stage process synergized ABC with particle swarm and ant 
colony optimization algorithms [9], demonstrating its 
effectiveness over conventional methods through rigorous 
statistical validation, and showcasing the potential of 
metaheuristic strategies to advance image segmentation. 

Parallel to the development of ABC-based methods, the 
Bacterial Foraging Algorithm (BFA) was adapted and refined 
for multilevel thresholding challenges. A variant of this 
approach, the modified BFA, demonstrated its ability to 
identify optimal thresholds through comparisons with PSO, 
standard BFA, and GAs [10]. In addition, cooperative BFA 
[11] and hybrid approaches incorporating bat algorithms [12] 
have contributed to the evolution of segmentation methods, 
each offering unique solutions to optimize threshold values for 
enhanced image segmentation. The Cuckoo Search Algorithm 
(CSA) has also seen significant application in this field, with 
variants, such as wind-driven optimization coupled with CSA 
[13] and adaptive CSA [14] being developed to optimize 
multilevel thresholding. These CSA-based methods have 
demonstrated their efficacy in achieving accurate and efficient 
segmentation results across various applications, from satellite 
image segmentation to coastal video image analysis. 

In [15], the Electromagnetic Optimization (EMO) algorithm 
was introduced, enhanced by a multilevel thresholding 
approach and the Levy function, termed EMO-Levy. This 
algorithm stands out for its ability to determine optimal 
threshold values with a reduced number of iterations, showing 
superior efficiency and effectiveness relative to existing 
methods. Further innovation was introduced by the Chaotic 
Electromagnetic Field Optimization (CEFO) algorithm, which 
amalgamated the Electromagnetic Field Optimization (EFO) 
technique with fuzzy entropy criteria and a novel chaotic 
strategy. This approach outperformed other well-established 
algorithms in multilevel thresholding for color image 
segmentation, underscoring its superior performance and 
potential to incorporate chaotic dynamics into EMO strategies 
[16]. 

Various studies have introduced novel approaches to 
multilevel thresholding optimization putting into service PSO 
and its variants. For instance, a collaborative learning-based 
PSO variant, termed HCO-CLPSO, demonstrated enhanced 
performance by breaking down high-dimensional swarms into 
one-dimensional and employing complete learning approaches 
[17]. Additionally, integrating PSO with quantum principles, as 
seen in QPSO and CQPSO, improves segmentation accuracy 
and computational efficiency [18, 19]. Other approaches, such 
as DMTBPSO [20] and IPSO [21], deployed dynamic 
threshold filtering and chaotic sequences to improve PSO's 
searching ability, resulting in superior segmentation outcomes. 
Hybrid methods, like KPSO [22], which combines K-means, 
PSO, and learning automata, and Fibonacci PSO (FPSO) [23] 
achieved competitive segmentation results. Moreover, PSO 
variations entailing HCPSO [24] and NrQPSO [25] addressed 
issues such as premature convergence and computation 
efficiency, exhibiting notable advancements in image 
segmentation. Furthermore, specialized adaptations, namely 
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APSOW [26] for color image thresholding, demonstrated 
significant improvements in segmentation accuracy and 
robustness. These studies demonstrate the continuous evolution 
of PSO-based approaches and their competence in optimizing 
multilevel thresholding for image segmentation. 

GAs have been widely used for multilevel image 
thresholding due to their ability to efficiently search large and 
complex solution spaces. In [27], wavelet transform was 
employed to first shorten the length and complexity of an 
image histogram, before applying a GA to determine the 
optimal number of thresholds and their values in the reduced 
histogram, and then project the thresholds back to the original 
space. Similarly, combining the discrete wavelet transform 
with GA has been shown to improve the speed and accuracy of 
multilevel thresholding by first shortening the histogram before 
GA calculates thresholds and numbers on the reduced 
histogram for projection back to the original space [28]. 
Hybridizing GAs with other metaheuristics, such as PSO, can 
further optimize thresholding, as demonstrated in [29], which 
combined PSO and GA to address PSO's weakness of 
premature convergence, finding that the hybrid PSO-GA 
approach outperformed standard PSO. Spatial information 
inclusion can also ameliorate GA-based thresholding, as 
observed in [30], which considered the spatial context of an 
image by using an "energy curve" instead of a histogram as GA 
input, where comparative evaluations manifested that it was 
effective for context-sensitive segmentation. Meanwhile, 
quantum GAs have been applied to multilevel thresholding 
problems, such as IQGA [31], which incorporates adaptive 
rotation and cooperative learning to improve convergence, 
stability, and searchability over high-dimensional spaces, 
outperforming QGA, GA, and PSO in experiments. Therefore, 
the ability of GAs to efficiently explore large search spaces, 
combined with techniques, namely wavelet transforms [27-28], 
cooperative evolution [29], or spatial data inclusion [30], have 
supported their popularity for automatic multilevel image 
thresholding and segmentation applications. 

Many innovative approaches have been introduced for 
multilevel thresholding in image segmentation, showcasing the 
effectiveness of various metaheuristic algorithms. In [32], the 
Galaxy-based Search Algorithm (GbSA) was presented as a 
metaheuristic approach for evolutionary algorithms, utilizing 
spiral arms and chaos enforced by the logistic map to 
efficiently locate optimal thresholds. In [33], a new swarm 
intelligence method was introduced for image segmentation, 
optimizing the Kapur and Tsallis objective functions and 
demonstrating reliability and effectiveness compared to 
traditional methods such as PSO. Hybrid Memetic Algorithms 
(MAs) were proposed in [34] to enhance standard evolutionary 
methods like as GAs, demonstrating improved segmentation 
accuracy and convergence speed compared to GA. In [35], the 
Chaotic Multi-Verse Optimizer (CMVO) method was proposed 
to effectively determine optimal thresholds using the Kapur 
objective function with substantial efficiency gains. In [36], a 
Grey Wolf Optimizer (GWO)-based approach was presented 
for multilevel thresholding, delivering robust and superior 
segmentation results compared to existing methods. In [37], the 
effectiveness of PSO and CSO was evaluated for multilevel 
thresholding, with displaying superior performance. In [38], the 

Masi-Water Cycle Algorithm (WCA) was introduced for color 
image segmentation, outperforming existing methods in terms 
of efficiency and accuracy.  

In [39], an adaptive Genetic Optimization Algorithm 
(GOA) was suggested to optimize the multilevel Tsallis cross-
entropy, demonstrating enhanced segmentation accuracy and 
efficiency compared to traditional methods. In [40], the Hybrid 
Harmony Search Optimization with Differential Evolution 
(HHO-DE) method was introduced, exhibiting essential 
improvements in segmentation effectiveness and efficiency 
compared to other techniques. In [41], segmentation by Salp 
Swarm Algorithm (SSA) was recommended, providing realistic 
segmentation effectiveness through levy flow enhancement, 
while in [42] a BMO-DE-based hybrid optimization method 
was introduced for effective image segmentation, surpassing 
the performance of existing methods. In [43], a Threshold 
Estimation Optimization (TEO) method was proposed, 
enhanced by Levy flying and exhibiting superior efficiency 
compared to conventional techniques. In [44], the Enhanced 
Moth flame Optimization Algorithm (EMA) was introduced for 
image segmentation, demonstrating high accuracy and 
reliability. The Logistic Chaotic Barnacles Mating Optimizer 
(LCBMO) method [45] effectively addressed multilevel 
threshold image segmentation challenges, offering optimal 
outcomes. In [46], the Volleyball Premier League with Whale 
Optimization Algorithm (VPLWOA) was proposed for 
multilevel image segmentation, outperforming existing 
methods in terms of efficiency and accuracy. In [47], a 
Modified Water Wave Optimization (MWWO) algorithm 
demonstrated efficient multilevel image segmentation with 
improved reliability and effectiveness compared to other 
techniques. In [48], a Black Widow Optimization (BWO)-
based method was introduced to determine optimal thresholds, 
showing superior efficiency and reliability compared to other 
methods. In [49], the Opposition-Based Laplacian Equilibrium 
Optimizer (OB-L-EO) method was presented, exhibiting 
enhanced segmentation performance through improved search 
precision and convergence. In [50], the Modified Ant Lion 
Optimizer (MALO) technique was proposed for optimal 
threshold determination, demonstrating superior performance 
compared to traditional methods. Finally, in [51], the Marine 
Predators Algorithm (MPA) recommended, displaying its 
effectiveness in multilevel thresholding and establishing its 
reliability and efficiency in image segmentation tasks. 

III. MULTILEVEL THRESHOLDING TECHNIQUES 

Multilevel thresholding is an advanced image segmentation 
technique used to separate an image into multiple regions 
beyond the simple foreground and background classification 
offered by bi-level thresholding. This approach is particularly 
effective in complex imaging scenarios where multiple objects 
or features need to be distinguished. The efficacy of multilevel 
thresholding is based on the selection of optimal threshold 
values, which are determined through the maximization or 
minimization of a specific objective function. Among the 
various thresholding methods, Kapur's entropy and Otsu's 
between-class variance are the most prevalent. These 
techniques provide a systematic approach to determining the 
thresholds that best segment an image. 
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A. Kapur's Entropy Method 

Kapur's entropy method [52] is based on the concept of 
entropy maximization to determine the optimal thresholds that 
segment an image into multiple classes. In this context, the 
entropy of an image measures the information content that is 
essential for describing the complexity within it. The aim is to 
maximize the entropy across the classes formed by the 
thresholds, which corresponds to maximizing the information 
captured about the different regions. The method begins by 
calculating the probability of occurrence for each grayscale 
level in the image. This probability, denoted as �� , is computed 
as the frequency of each level divided by the total number of 
pixels given by: �� =  ���      (1) 

where ��  is the number of times a grayscale level i occurs, and 
N is the total number of pixels. For a set of thresholds 	 =
��, ��, … , ���, the entropy for each segment is calculated. The 
total entropy �(	)  for these thresholds is the sum of the 
entropies of all segments: �(	)  =  − ∑ ∑ �� ���(��)����������� �!   (2) 

where �! = 0  and ��#� = $ , with $ being the maximum 
grayscale level. The optimal thresholds are those that maximize 
this total entropy. 

B. Otsu's Between-Class Variance Method 

The Otsu method [53], on the other hand, focuses on 
maximizing the between-class variance, thus enhancing the 
separability of classes. This method calculates the optimal 
threshold to minimize the intra-class variance or equivalently 
maximize the inter-class variance, which is a measure of how 
distinct the classes are. The initial step involves calculating the 
same probabilities ��  as in Kapur's method. Using these 
probabilities, the algorithm then calculates the total mean level 
of the image and the mean levels for each class defined by the 
thresholds. The between-class variance %&�(	) is defined by: %&�(	)  =  ∑ '�() − )*+�� �!    (3) 

where '� and )  are the probability and mean level of class ,, 
respectively, and )*  is the total mean level of the image. The 
thresholds that maximize this between-class variance are 
considered optimal, as they provide the clearest separation 
between classes. 

Both Kapur's entropy and Otsu's between-class variance 
methods offer robust frameworks for determining the 
thresholds in multilevel thresholding. While the Kapur method 
maximizes the information content across the segmented 
regions, the Otsu method enhances class separability by 
maximizing the variance between them. The choice of method 
depends on the specific requirements of the image processing 
task and the characteristics of the image being analyzed. These 
techniques enable the effective segmentation of complex 
images into multiple meaningful regions, facilitating advanced 
image analysis tasks. 

IV. PROPOSED APPROACH 

The CGO algorithm [54] is constructed upon the theoretical 
foundations of the chaos theory, particularly emphasizing the 
principles of fractals and their application through the chaos 
game mechanism. This section delineates the mathematical 
formalization employed in CGO, which facilitates an 
innovative approach to optimization by incorporating the 
complex patterns and self-similarity inherent in fractals. 

A. Chaos Game Optimization (CGO) Algorithm Formulation 

The CGO algorithm integrates principles from the chaos 
theory and fractals, specifically using the Sierpinski triangle to 
shape the search space. It takes advantage of the structured, yet 
unpredictable nature of chaos games to effectively navigate 
through the solution space. 

1) Initialization of Solution Candidates 

The CGO algorithm starts with a set of solution candidates, 
denoted as - , which represent potential solutions within a 
Sierpinski triangle. Each solution candidate -�  consists of 
decision variables .�, , which position these candidates within 
the fractal search space. The mathematical representation of 
these candidates is given by: 

- =  /.�,�-�,� .�,�.�,� ⋯ .�,1.�,1⋮ ⋱ ⋮.4,� .4,� ⋯ .4,1
5 , 6 =  1, 2, … 9 (4) 

where 9 represents the number of solution candidates, and : is 
the dimensionality of the decision variables. 

2) Initialization of Positions 

The initial positions of these solution candidates, or seeds, 
are randomly determined within the predefined bounds of the 
search space: .�, (0) = .�, ;�4 + =>9: ∗  (.�, ;@A − .�, ;�4+,  

     6 = 1, 2, … , 9;      , = 1, 2, … , :  (5) 

This initialization is crucial as it sets the starting points for the 
exploration of the search space. 

3) Generation of New Candidates via Temporary Triangles 

The core mechanism for generating new solution candidates 
involves the creation of temporary triangles utilizing three 
specific points: 

 The position of the Global Best (CD), 

 The position of the Mean Group (EC�), 
 The position of the selected solution candidate (-�). 

These points serve as vertices for temporary triangles 
within which new seeds are generated, simulating the iterative 
fractal construction of a Sierpinski triangle. 

4) Mathematical Descriptions for Seed Updates 

The equations describing the updates for seeds within these 
triangles are: 
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FGG:1 =  -� + H�(I�  ∗  CD − J� ∗  EC�) (6) FGG:2 =  CD + H�(I�  ∗  -�  −  J� ∗ EC�) (7) FGG:3 =  EC�  +  H�(I�  ∗  -�  −  J� ∗  CD) (8)   6 = 1, 2, … , 9  

These updates leverage chaos game dynamics to drive the 
exploration and exploitation processes, ensuring diverse and 
comprehensive search behavior. 

5) Mutation and Exploration Control 

The algorithm also includes a mutation mechanism to 
escape local optima: FGG:4 =  -�(.� = .�  +  M), N = O1, 2, … , :P (9) 

where M is a random number in the range [0, 1], and .� is the N th decision variable of the seed -� . The exploration and 
exploitation rates are controlled by adjusting H� , which 
modulates the influence radius around the seeds: 

H� =  QM>9:                             2 ∗  M>9:                    (R ∗  M>9:)  +  1      (S ∗  M>9:)  +  (~S)   (10) 

The process iteratively evaluates the fitness of new seeds 
against existing ones, promoting only those that enhance the 
quality of the solution. This selection process is crucial to 
maintaining the integrity and effectiveness of the search 
strategy. 

B. Fitness Distance Balance (FDB) 

The FDB selection method [55] introduces a sophisticated 
approach designed to prevent premature convergence in meta-
heuristic search algorithms. This method enhances the selection 
process by balancing the fitness and the diversity of candidates 
within the population, which is essential for effective 
exploration and exploitation. The calculation of the distance 
from each candidate to the best solution found so far is a 
critical first step. This distance is calculated using the 
Euclidean formula: 

U� = V∑ (.�, − .WXY� +�1 ��    (11) 

where U� denotes the distance of the 6th candidate from the best 
solution, .�,  represents the ,th dimension of the 6 th candidate, .WXY�  is the ,th dimension of the best solution found, and : is 
the total number of dimensions in the problem space. 

Following the computation of distances, both the fitness 
values and the distances are normalized to prevent any single 
metric from dominating the selection process. Normalization 
ensures a balanced consideration of both fitness and diversity, 
supporting a more robust global search capability by 
maintaining genetic diversity within the population. The score 
for each candidate is then calculated using a weighted sum of 
the normalized fitness and normalized distance, which 
facilitates the selection of candidates that are not only 
promising in terms of their fitness, but also diverse enough 

from the best solution to explore potentially unsearched areas 
of the solution space: FZ�=G� =  ' ∗  9�=[\6�9G]]� + (1 −  ') ∗   

    9�=[U6]�>9ZG�     (12) 

where ' is a weight factor between 0 and 1 that balances the 
influence of fitness and distance on the score. Adjusting ' 
allows the algorithm to emphasize exploration or exploitation 
as needed by the specific dynamics of the search process or 
stages of algorithm convergence. This method has been 
validated through extensive empirical testing across various 
benchmark functions, demonstrating its ability to enhance the 
search performance of meta-heuristic algorithms by preventing 
premature convergence and maintaining a diverse set of 
solutions. 

C. FDB-CGO Algorithm 

The primary objective of modifying the exploration strategy 
within the CGO algorithm is to transition from a purely random 
seed generation to a more guided and adaptive approach [56]. 
This modification intends to augment the CGO's exploration 
capabilities by strategically leveraging insights accrued 
throughout the optimization process. The refined strategy not 
only enhances the algorithm's potential to escape local optima, 
but also aims to efficiently exploit promising regions of the 
search space, thus expediting convergence towards the global 
optimum. 

The original exploration mechanism in CGO is 
encapsulated by (9), which generates new seeds based entirely 
on random values uniformly distributed within the problem's 
defined boundaries ($D and ^D). While this ensures a broad 
and non-discriminatory exploration of the search domain, it can 
lead to suboptimal convergence behaviors due to its 
indiscriminate nature. The proposed strategy introduces a 
combination of strategic guidance and stochastic elements by 
utilizing both the globally best solution and a fitness-distance 
balanced approach to direct the exploration process more 
effectively. The formulation of the new exploration equation is 
as follows: 69:G. =  

    _6�9G]]U6]�>9ZGD>�>9ZG(FGG:], _6�9G]]FGG:]) (13) 

where 69:G.  is determined by the _6�9G]]U6]�>9ZGD>�>9ZG 
function, which strategically selects a seed from the Seeds 
array by evaluating both fitness and spatial diversity criteria 
represented in _6�9G]]FGG:]. �G=�`=a>�6�9 =  H (DG]�FGG: − FGG:�41XA)  +  

     I(^D −  $D)    (14) 

where �G=�`=a>�6�9 is calculated to introduce a guided 
deviation towards the globally optimal position DG]�FGG: , 
moderated by the parameter H  and a random exploratory 
component scaled by I that respects the upper (^D) and lower 
($D) bounds of the search space. FGG:4 =  FGG:�41XA +  �G=�`=a>�6�9  (15) 
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The above equation updates the seed at 69:G. by applying 
the �G=�`=a>�6�9, thus generating a new candidate solution, FGG:4, for further evaluation in the optimization process. 

This technique retains the inherent randomness essential for 
a robust exploration in CGO but ameliorates it with strategic 
inputs based on the algorithm's performance and provides a 
comprehension of the search landscape. This method is 
designed to dynamically balance between exploring uncharted 
territories and exploiting promising solutions, thus optimizing 
the performance of CGO across various complex problem 
landscapes. Figure 1 presents a detailed flowchart that outlines 
the procedural steps of the proposed algorithm. 

 

 
Fig. 1.  Flowchart of FDB-CGO algorithm. 

V. EXPERIMENTAL RESULTS 

The performance of the proposed algorithm for multilevel 
thresholding segmentation was thoroughly evaluated. A suite 
of images, meticulously chosen from the USC-SIPI Image 
Database [57], named peppers, airplane, man, tank, and 
Barbara served as the dataset for this analysis. The 
experimental studies were executed on MATLAB R2018a, 
running on a workstation equipped with an AMD Ryzen 7 
5800X CPU @ 3.80 GHz and 32 GB of RAM. To obtain 
reliable statistical insights, each algorithm was iteratively tested 
across 30 runs for every individual image, providing a robust 
sample size for analysis. This method facilitates the acquisition 
of a comprehensive performance dataset, allowing the 
calculation of mean values and standard deviations, thereby 
providing a substantive analysis of the algorithmic efficacy 
across a range of conditions and scenarios. 

A. Evaluation Metrics 

Two established evaluation metrics were employed to 
review the performance of the proposed algorithm for 
multilevel thresholding segmentation: Peak Signal-to-Noise 
Ratio (PSNR) and Structural Similarity Index (SSIM). PSNR is 
a reflective measure of the reconstruction quality for a 
segmented image, relative to its original counterpart, defined 
as: 

bFcM =  10 . ����! efghijfkl m   (16) 

where En-o  denotes the maximum potential intensity of the 
image's pixel values. The Mean Squared Error (MSE), 

indicative of the average squared intensity differences between 
the segmented and original images, is given by: EFp =  �;4  ∑ ∑ Oq(6, ,) −  r(6, ,)P�4�� �!;����!  (17) 

where q  and r  represent the original and segmented images 
respectively, and [ ∗ 9 signifies the dimensions of the images. 
SSIM, on the other hand, quantifies the perceptual difference 
between two similar images. It is an advanced metric that 
considers changes in structural information, luminance, and 
contrast. The SSIM index is given by: 

FFqE(., s) =  (�tutv#w�+(�xu,v# wj+(tuj# tvj #w�+(xuj#xvj#wj+  (18) 

where . and s are two windowed samples of the images under 
comparison. The )A  and )y  variables represent the sample 
means of . and s, while %A� and %y� are the variances, and %A,y  
is the covariance. The constants Z� and Z� serve to stabilize the 
fraction in situations where the denominator is small, 
enhancing the metric's robustness. 

B. Statistical Analysis 

This analysis starts with a comparison of the objective 
function values obtained through the implementation of 
different optimization algorithms, namely PSO [58], GWO 
[59], MFO [60], GA [61], CGO [54], and FDB-CGO, using 
both the Kapur and Otsu methods. The performance of these 
algorithms was evaluated based on their mean and standard 
deviation of the objective function values across various 
images at different threshold levels, as shown in Tables I and 
II. The data from the Kapur method indicate that FDB-CGO 
consistently outperformed the other algorithms in terms of 
higher mean objective function values across all images and 
levels. For example, in the case of the Airplane image at a 
threshold level of 20, FDB-CGO achieved a mean value of 
66.81, significantly higher than its closest competitor, GWO, 
which had a mean of 50.76. This trend of superior performance 
of FDB-CGO is evident across the other images, particularly at 
higher threshold levels. 

Similarly, in the evaluation using the Otsu method, FDB-
CGO again showed superior performance compared to the 
other algorithms. For the Man image at a threshold level of 20, 
FDB-CGO reached a mean objective function value of 
15911.09, markedly higher than the next-best score of 
10559.78 by CGO. This pattern of achieving the highest mean 
values is consistent across all listed images and levels. Standard 
deviation values display the stability of the algorithms. FDB-
CGO not only achieved the highest mean values, but also 
exhibited moderate variability, suggesting robust performance 
across different settings and images. While FDB-CGO tends to 
have higher standard deviations at higher threshold levels, 
these were accompanied by significantly improved mean 
values, indicating a trade-off between variability and 
performance enhancement. 

1) Evaluation of Image Segmentation Algorithms Based on 
PSNR 

Table III provides the mean PSNR values obtained from the 
image segmentation algorithms, applied to a set of images 
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using the Kapur and Otsu methods with different threshold 
levels. The PSNR values highlight the effectiveness of each 
algorithm in preserving post-segmentation image quality. 
Higher PSNR values indicate better preservation of image 
quality. In the the Kapur method, FDB-CGO frequently 
demonstrated competitive or superior performance, particularly 
at higher threshold levels. For example, in the Airplane image 
at level 20, FDB-CGO achieved a PSNR of 25.987, the highest 
among the algorithms evaluated at this level. The Otsu method 
showed a different trend, where FDB-CGO consistently 

outperformed other algorithms in various images and levels, 
achieving the highest PSNR values. This suggests that FDB-
CGO is particularly well-tuned for the Otsu method, as noticed 
in the Airplane image at level 20, where it recorded 35.085 
PSNR, leading the table. These results manifest that while all 
algorithms perform variably across different settings and 
images, FDB-CGO offers a more robust solution for achieving 
high-quality image segmentation, which is critical in 
applications demanding high fidelity relative to the original 
image. 

TABLE I.  COMPARISON OF OBJECTIVE FUNCTION VALUES: FDB-CGO VERSUS OTHER ALGORITHMS USING THE KAPUR METHOD 

Image Level 
PSO GWO MFO GA CGO FDB-CGO 

mean std mean std mean std mean std mean std mean std 

Airplane 

8 25.58 0.68 27.22 0.05 27.07 0.26 27.16 0.09 24.51 0.89 27.47 0.43 
12 33.37 0.90 37.20 0.16 35.88 0.95 36.39 0.69 32.25 1.10 41.31 0.67 
16 38.76 1.24 44.44 0.23 42.48 1.45 43.23 1.05 38.43 1.18 53.63 1.47 
20 44.30 1.27 50.76 0.40 47.77 1.69 48.57 1.49 44.32 1.56 66.81 1.38 

Barbara 

8 32.29 0.48 33.68 0.07 33.60 0.08 33.53 0.16 30.89 0.64 33.65 0.29 
12 44.32 0.87 47.23 0.17 46.36 0.68 46.72 0.60 42.61 1.15 48.60 1.78 
16 52.96 1.21 57.93 0.23 55.75 1.06 57.05 0.55 50.94 1.13 64.96 2.32 
20 60.62 1.20 67.17 0.25 63.92 1.46 65.99 1.26 59.29 1.27 80.35 1.64 

Man 

8 33.99 0.21 34.41 0.00 34.37 0.04 34.37 0.03 33.27 0.56 36.09 0.42 
12 45.99 0.84 47.85 0.05 47.38 0.38 47.66 0.19 44.80 0.64 54.02 0.71 
16 55.21 0.91 59.07 0.19 57.57 1.02 58.39 0.78 54.48 1.46 70.63 1.17 
20 63.19 1.23 68.77 0.33 65.97 1.30 67.44 1.30 63.10 1.88 87.30 1.58 

Peppers 

8 34.01 0.42 35.46 0.00 35.27 0.12 35.34 0.10 33.17 0.64 36.20 0.31 
12 46.23 1.02 48.75 0.06 47.94 0.58 48.25 0.55 44.83 0.90 53.62 0.99 
16 55.31 1.03 59.46 0.19 57.71 1.28 58.59 0.66 54.28 1.36 71.22 1.25 
20 62.62 1.34 68.91 0.21 65.66 1.43 67.08 0.98 62.99 1.88 87.65 1.54 

Tank 

8 28.16 0.87 30.47 0.18 30.38 0.18 30.36 0.23 27.30 0.72 30.75 0.23 
12 37.75 0.90 41.83 0.31 40.50 1.12 40.87 0.57 36.59 1.04 45.11 1.19 
16 45.23 1.31 50.65 0.43 47.88 1.59 48.30 1.18 44.11 1.69 58.79 2.25 
20 51.25 1.50 57.80 0.61 53.98 1.38 55.10 1.64 51.88 2.13 72.25 2.44 

TABLE II.  COMPARISON OF OBJECTIVE FUNCTION VALUES: FDB-CGO VERSUS OTHER ALGORITHMS USING THE OTSU METHOD 

Image Level 
PSO GWO MFO GA CGO FDB-CGO 

mean std mean std mean std mean std mean std mean std 

Airplane 

8 568.41 82.88 480.88 0.02 475.95 2.60 478.05 2.17 1013.76 91.43 1383.21 90.32 
12 656.59 90.65 485.08 0.25 481.43 1.55 482.33 1.59 1264.42 147.19 1933.91 134.31 
16 735.46 97.01 486.35 0.22 483.56 1.43 484.45 0.69 1525.23 156.16 2568.63 173.59 
20 747.84 76.67 487.03 0.25 484.72 1.52 485.11 1.01 1742.54 205.92 3093.35 143.53 

Barbara 

8 785.47 45.29 758.02 0.01 754.37 4.36 755.39 3.44 1067.60 124.17 1425.74 63.07 
12 903.31 60.37 767.89 0.19 764.10 2.68 765.44 1.78 1258.38 176.66 2040.05 92.33 
16 995.67 52.75 772.15 0.15 768.35 1.96 770.43 1.22 1480.86 151.05 2619.88 134.69 
20 1085.70 82.83 774.20 0.15 771.00 1.82 772.56 0.82 1714.54 246.74 3162.63 176.95 

Man 

8 3584.72 388.37 3242.90 0.00 3236.95 7.59 3239.56 4.21 5883.82 468.60 7093.90 283.23 
12 4239.45 461.00 3271.21 0.10 3263.59 5.20 3265.10 4.15 7314.42 440.11 10107.86 334.90 
16 4427.13 445.90 3281.56 0.15 3273.99 4.41 3276.39 2.99 9055.39 591.44 12904.21 506.09 
20 5025.43 533.14 3286.37 0.16 3280.64 2.83 3282.22 1.66 10559.78 787.29 15911.09 508.58 

Peppers 

8 3113.47 193.71 2848.94 0.01 2840.72 6.87 2844.95 6.35 4498.58 262.09 6013.70 233.18 
12 3520.52 294.46 2878.71 0.13 2868.83 6.81 2871.54 3.91 5855.11 419.09 8644.88 262.96 
16 3877.72 294.51 2888.81 0.19 2879.45 4.39 2880.31 5.29 7000.27 531.91 11153.50 406.10 
20 4033.36 831.02 2893.54 0.33 2886.04 3.01 2886.82 3.09 7893.18 518.40 13430.44 563.89 

Tank 

8 601.44 42.76 568.52 0.01 561.55 5.45 564.70 3.40 1128.98 168.57 1566.81 122.03 
12 610.24 126.42 574.79 0.18 567.68 3.64 569.79 2.49 1340.44 119.59 2160.74 141.98 
16 368.84 355.96 577.20 0.32 570.78 2.76 571.93 2.57 1582.23 197.73 2763.50 177.65 
20 46.26 177.25 577.87 0.78 573.02 2.06 572.90 2.32 1874.31 290.57 3355.00 231.79 

 
2) Evaluation of Image Segmentation Algorithms Based on 
SSIM Metric 

Table IV provides a detailed comparison of the SSIM 
metric for various image segmentation algorithms applied 
employing the Kapur and Otsu thresholding methods. The 

SSIM metric was applied to evaluate the segmentation quality 
relative to the structural integrity of the original images. The 
results reveal a varying performance between algorithms and 
methods. In the Kapur method, FDB-CGO often achieved the 
highest SSIM values, preserving the image structure more 
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competently than other algorithms. For example, in the 
Airplane image at level 20, FDB-CGO scored an SSIM of 
0.892, which was higher compared to PSO and GWO. In the 
Otsu method, FDB-CGO consistently demonstrated superior 
performance, particularly at higher threshold levels, showing 
robustness in maintaining structural integrity in various 
operational settings. For instance, in the Man image at level 20, 

FDB-CGO attained an SSIM of 0.928, closely matching the 
highest value of 0.934 by GA, and significantly better than 
CGO's 0.480. These results underscore the importance of 
selecting appropriate segmentation algorithms based on 
specific requirements for image fidelity and structural 
preservation, especially in applications requiring high accuracy 
and consistency. 

TABLE III.  EVALUATION BASED ON MEAN PSNR METRICS ACROSS DIFFERENT THRESHOLD LEVELS AND METHODS 

Image Level 
Kapur Otsu 

PSO GWO MFO GA CGO FDB-CGO PSO GWO MFO GA CGO FDB-CGO 

Airplane 

8 19.899 7.500 19.689 19.598 19.290 19.471 19.023 4.987 27.774 28.011 14.839 28.459 
12 20.431 7.858 20.284 19.888 19.198 22.009 17.928 4.876 31.156 31.230 15.668 30.566 
16 16.843 6.816 21.004 21.383 17.804 23.735 18.199 4.711 32.547 33.143 15.312 33.602 
20 14.463 6.356 22.504 24.104 17.952 25.987 17.795 4.551 34.485 34.445 15.351 35.085 

Barbara 

8 21.163 11.886 20.726 20.975 20.634 20.301 19.829 7.906 25.042 25.134 17.200 25.292 
12 25.670 12.078 25.056 25.403 20.691 26.853 19.071 7.402 28.574 28.849 16.706 29.068 
16 24.830 12.008 26.935 28.508 16.806 29.509 18.937 7.082 30.626 31.300 16.576 31.292 
20 19.850 11.487 29.646 29.886 16.254 30.762 18.770 7.086 32.454 33.303 16.466 33.416 

Man 

8 23.393 14.788 23.230 23.328 16.364 23.087 18.734 9.546 24.869 25.044 15.483 25.377 
12 26.751 14.730 26.093 26.304 16.192 26.733 18.623 9.522 27.670 27.872 14.845 28.848 
16 23.480 14.616 28.114 28.376 14.410 28.573 18.787 9.337 29.525 30.000 16.173 31.284 
20 15.906 13.495 30.276 30.003 13.190 30.357 18.514 9127 31.188 31.621 16.349 33.199 

Peppers 

8 22.213 11.984 21.006 21.116 15.497 21.317 17.156 8.387 24.065 24.203 12.508 24.329 
12 25.807 12.028 25.102 25.366 14.148 26.098 16.696 8.357 26.822 27.209 12.909 27.976 
16 21.736 11.019 27.730 27.772 14.726 28.406 15.814 8.384 28.668 28.847 13.360 30.409 
20 16.144 10.642 28.971 29.174 11.955 30.368 15.563 8.064 30.247 30.448 13.873 32.408 

Tank 

8 21.144 12.797 20.800 20.828 19.205 20.826 20.350 7.601 28.444 29.201 16.998 29.883 
12 22.292 12.704 22.389 22.887 17.441 23.911 20.276 7.086 30.235 31.137 17.323 32.519 
16 20.984 11.346 25.293 24.815 16.174 26.719 20.443 7.335 31.766 32.161 18.060 34.767 
20 18.307 10.811 26.486 26.347 13.682 28.658 20.796 7.426 32.809 32.894 17.700 35.649 

TABLE IV.  EVALUATION BASED ON MEAN SSIM METRICS ACROSS DIFFERENT THRESHOLD LEVELS AND METHODS 

Image Level 
Kapur Otsu 

PSO GWO MFO GA CGO FDB-CGO PSO GWO MFO GA CGO FDB-CGO 

Airplane 

8 0.894 0.560 0.892 0.892 0.873 0.889 0.793 0.290 0.874 0.881 0.820 0.919 
12 0.866 0.590 0.898 0.897 0.871 0.906 0.751 0.271 0.919 0.920 0.800 0.947 
16 0.710 0.489 0.902 0.904 0.827 0.903 0.765 0.244 0.936 0.944 0.808 0.961 
20 0.635 0.433 0.901 0.895 0.832 0.892 0.766 0.222 0.949 0.949 0.765 0.967 

Barbara 

8 0.889 0.765 0.887 0.888 0.878 0.882 0.848 0.443 0.897 0.897 0.818 0.898 
12 0.920 0.775 0.916 0.918 0.843 0.923 0.837 0.368 0.922 0.920 0.816 0.909 
16 0.905 0.772 0.930 0.934 0.748 0.939 0.835 0.329 0.930 0.933 0.816 0.938 
20 0.787 0.714 0.942 0.942 0.743 0.947 0.812 0.321 0.940 0.947 0.815 0.956 

Man 

8 0.709 0.617 0.713 0.714 0.491 0.697 0.575 0.280 0.781 0.785 0.451 0.777 
12 0.809 0.629 0.819 0.802 0.476 0.806 0.579 0.281 0.868 0.872 0.429 0.852 
16 0.708 0.607 0.873 0.854 0.388 0.847 0.589 0.259 0.903 0.911 0.476 0.899 
20 0.471 0.509 0.913 0.893 0.341 0.881 0.569 0.241 0.928 0.934 0.480 0.928 

Peppers 

8 0.701 0.608 0.683 0.681 0.509 0.683 0.572 0.357 0.741 0.738 0.388 0.737 
12 0.787 0.615 0.794 0.793 0.453 0.792 0.551 0.342 0.817 0.829 0.401 0.832 
16 0.676 0.508 0.852 0.848 0.469 0.844 0.518 0.351 0.862 0.866 0.423 0.883 
20 0.484 0.474 0.879 0.878 0.354 0.885 0.510 0.304 0.893 0.896 0.445 0.917 

Tank 

8 0.777 0.550 0.772 0.773 0.717 0.769 0.648 0.222 0.866 0.885 0.627 0.904 
12 0.776 0.547 0.796 0.803 0.632 0.812 0.638 0.157 0.903 0.916 0.623 0.946 
16 0.719 0.468 0.828 0.820 0.577 0.832 0.640 0.177 0.925 0.932 0.625 0.962 
20 0.635 0.430 0.828 0.836 0.443 0.863 0.648 0.200 0.941 0.937 0.611 0.966 

 

VI. CONCLUSION 

This study introduced a novel approach to image 
processing, leveraging the innovative application of multilevel 
thresholding for image segmentation. This research stands out 
by incorporating the FDB mechanism within the CGO 
algorithm to address critical inefficiencies noted in previous 
methods. Traditional thresholding and basic metaheuristic 
techniques often suffer from premature convergence and need 

more robustness to handle complex images in diverse real-
world settings. This analysis highlighted a significant gap in the 
ability of existing methods to balance the exploration and 
exploitation phases necessary for optimal segmentation. The 
proposed FDB-CGO algorithm demonstrated superior 
performance over the existing algorithms, validated through 
extensive experiments on benchmark datasets. The proposed 
algorithm had improved segmentation accuracy and reduced 
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computational demands, making it practical for real-time image 
processing applications. The results underlined the potential to 
integrate advanced optimization techniques with chaos theory 
to refine the robustness and effectiveness of image 
segmentation processes. Future research could refine and 
expand the proposed strategies for a broader application in 
image-based tasks. Exploring alternative combinations of 
metaheuristic algorithms may yield valuable insights. 
Advances in computational technology offer opportunities to 
develop more sophisticated models capable of handling larger 
datasets, potentially revolutionizing automated image analysis 
in critical sectors, such as healthcare, environmental 
monitoring, and autonomous systems. 
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