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ABSTRACT 

The desired Surface Roughness (SR) can be achieved via general machining methods by using a cutting 

tool to remove a material layer on the workpiece surface. Cutting Parameters (CP), cutting tool properties, 

and workpiece properties must be considered. The finishing machining methods that can be applied to 

produce the desired SR are turning, milling, grinding, boring, and polishing. The technological parameters 
must be tightly combined in the Machining Process (MP). The CP selection presents some issues regarding 

time, cost, and practical skill when considering different cutting methods, cutting tools, and workpiece 

materials. SR predicting methods of machined parts have the advantages of shortening the time of CP 

selection, reducing machining cost, and bringing the desired SR. This paper reviews the recent methods 

followed in predicting the SR of the MPs. The SR prediction methods will bring many benefits for MP, 

such as improved SR, reduced cost, improved cutting conditions, and enhanced quality. 

Keywords-machining parameter; surface roughness; optimization; prediction; finishing machining   

I. INTRODUCTION  

Surface Roughness (SR) is one of the most important 
criteria of the metal cutting area. There are many vital 
applications of the machine parts with high Surface Quality 
(SQ) that are produced by using finishing machining methods, 
such as optimizing the Turning Process (TP) to get the required 
SR of the magnetic material for aerospace applications [1], 
introducing the grinding and polishing to enhance the SQ of the 
bladed rotor of aero engines [2], introducing a Fuzzy Logic 
(FL) model to predict the SR during the turning of carbon fiber 
reinforced polymer composites for automobile, aircraft, and 
sport applications [3], using techniques of grey relational 
techniques for order preferences by similarity to ideal solution 
(TOPSIS) method, and response surface analysis to optimize 
the SR during processing the magnesium alloy for aircraft 
engine, helicopter component, airframe, light truck, computer, 
and automotive parts [4], controlling the SR by using the 
Artificial Neural Networks (ANN) for milling wind turbine 
parts [5], using the integration method of grey and fuzzy 
methods to minimize the SR of AA6082/Sic/Gr material during 
TP on CNC [6], using the Taguchi Method (TM) to conduct 
experiments on the SR during the hard turning of EN24 steel 
[7], investigating the machining factors to improve surface 
roughness at turning titanium or its alloys [8, 9], milling 
SCM440 steel [10], milling 6061 Al alloy [11], turning Inconel 
718 super alloy [12], and lowing the SR by using the TM for 
the mold surface application of 7075-T6 material [31]. The SR 
quality has been closely related to many mechanical properties 
of product like fatigue behavior, wear, and corrosion resistance. 
Many researches focus on methods and techniques to improve 

product SQ for its application such as deploying Response 
Surface Methodology (RSM) to minimize the SR for mold 
surface [14, 15], analyzing the SR [16], and utilizing ANN to 
improve the SR of steel [17].  

The SR can be achieved via machining methods by using 
the cutting tools to remove a material layer on the product 
surface with many Cutting Parameters (CP), namely the 
machining parameters, cutting tool properties, workpiece 
properties, and coolant condition. The technological parameters 
must be tightly combined together in the Machining Process 
(MP). The CP selection has some issues regarding time, cost, 
and practical skill in accordance with the utilized cutting 
method, cutting material, and workpiece material. The selected 
CP in the MP are traditionally based on experiment, practical 
skill, and physicochemical phenomena occurring in the cutting 
process. To solve this problem, many researchers have 
performed experiments to acquire relationships between CP 
and the desired quality of product, such as using the predictive 
models [18], prediction tools [19, 20], vibration information 
[21-24], and evolutional programing methods [25] to predict 
the SR. Advanced technologies have been developed for 
improving the product quality purpose, enhancing the quality 
with CNC machine tools [26-29] and using Artificial 
Intelligence (AI) [30] in machining. Figure 1 shows the effect 
of these parameters on the SR. There are four basic groups of 
cutting conditions that effect SR including: (1) CP with feed 
rate, cutting speed, tool angle, step-over, process kinematics, 
and cooling fluid, (2) cutting tool with tool shape, tool material, 
nose radius, and runout errors, (3) cutting phenomena with 
acceleration, chip formation, vibration, cutting friction, cutting 
force, and (4) workpiece with diameter, length, and hardness.  
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Many algorithms and mathematical models have been 
extensively studied with the aim to find the best solution for 
minimizing the SR of the machined parts. Some examples are: 
building SR modeling for turning 080A67 steel using Box-
Behnken (BB) and Box-Cox (BC) transformations [31], 
enhancing SR modeling with BB & BC during the milling of 
3×13 steel [32], using FL tool and regression analysis (RA) to 
predict the SR for face milling [33], applying the FL set for 
predicting the SR during milling process on the CNC [34], 
building a Genetic Algorithm (GA) model for SR minimization 
[35], using the GA for optimizing the SR of the hard TP [36], 
improving the SQ by using ANNs [37], studying the influence 
of CP to get effective SR prediction with Particle Swarm 
Optimization (PSO) [38], and developing a nested-ANN for 
predicting the SR [30]. CP optimization methods have been 
applied in the surface finishing machining of many materials, 
e.g. minimizing SR of titanium alloy via turning [9], finding 
the factors effecting on the SR for MDN350 steel by 
employing the Taguchi technique [39], improving the SR via 
implementing a Prediction Model (PM) with the LM algorithm 
for processing the SR of AL-7075 Al alloy [40], employing the 
Taguchi design technique to minimize the SR of C-103 Nb-
alloy during machining with micro-end-milling [41], applying 
the machine learning technique to predict the SR of diamonds 
[42], predicting the SR of AISI H13 material after TP by using 
ANNs [43], introducing an orthogonal array and PSO for SR 
processing of AISI1045 steel during milling [44], and applying 
ANNs to predict the SR of Inconel 718 during the TP [45].  

 

 
Fig. 1.  Parameters affecting  surface roughness. 

Research groups have been focused on finding new 
solutions for enhancing SR, such as using minimal lubrication 
of carbon nanotube lubricant with multi-objective optimization 
for predicting the SR [46], SR modeling by developing an 
ANN and regression method [47], monitoring SR during TP on 
CNC by utilizing the wavelet packet transformation [48], 
developing an adaptive neuro fuzzy inference and a radial 
function neural network to predict the SR of milling [49], 
constructing an online monitoring method by employing the 

improved firework algorithm for SR enhancement of grinding 
[50], developing a numerical control kernel data model to 
monitor SR in the manufacturing process [51], building a high 
precision model of abrasive belt grinding for SR prediction 
during grinding of aero-engine blades [52], using ANNs to 
optimize the SR in TP [53], developing a soft computing model 
for predicting the SR during the milling of 606 Al [71], 
predicting SR by deploying a co-kriging model for the 
manufacturing process [54]. 

This paper reviews the most recent methods adopted in SR 
prediction of the MPs. SR prediction methods bring many 
positive characteristics on the manufacturing process, such as 
improved SR, reduced cost, and increased productivity quality 
of product.  

II. CLASSIFICATION 

The SR prediction models can be generally divided into 
four groups: (a) methods based on the cutting theory to create 
analytical models and numerical algorithms to solve the SR 
problem in machining, (b) the methods based on the effect of 
the technological factors acquired from machining practice and 
data analysis of the cutting process (experimental 
investigation), (c) the methods based on AI, and (d) the 
methods based on the experimental design. 

III. METHODS BASED ON THE CUTTING THEORY 

These methods focus on the machining theory to predict the 
SR of the machined parts. Parameters, such as the tool 
properties, process kinematics, and mechanism of chip 
formation are considered. PMs are acquired via computer tools, 
e.g. computer-aided design, computer-aided manufacturing, 
and computer-aided engineering to perform analysis and 
simulation of the cutting behavior for the purpose of assessing 
the SR of machined parts [55]. Mathematical models are built 
to explain the relationships between the parameters and the SR 
of the machined part and computer algorithms are constructed 
to solve the complicated calculations [56]. These methods have 
the advantage of solving problems considering huge amounts 
of data. On the machining theory, the chip thickness was used 
to predict the roughness of the machining part in the cutting 
process with the focus placed on the minimum of undeform 
thickness [57], showing the difference between the measured 
roughness value and the value of the theoretical model. The 
reason for this is that material adhesion occurs at the interface 
of the cutting tool and chip causing the minimum of chip 
thickness in deformation corresponding to the transformation 
from ploughing to another kind of micro-cutting. As a result, a 
predicting model was built to predict the SR of the machined 
surface. CP, tool geometry, and cutting motions have been 
considered in the model to improve the SR prediction. 

IV. EXPERIMENTAL INVESTIGATING METHOD 

In the experimental method, experiments are conducted 
considering the factors and their effect on the quality or the 
working mechanism of the system [58]. Designers often use 
RA to construct the desired models from the experimental 
values. In this case/study, the designer should be equipped with 
skills and experience and be able to understand the 
experimental area and to analyze the experimental data. For 
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example, the researches of the relationship of the tool life, 
vibration, and SR were done by utilizing the variables of feed 
rate, cutting speed, depth of cut, tool overhang, workpiece 
geometry, approach angle, and tool-nose radius. This work 
employed an FFT analyzer and accelerometer to measure the 
vibration and process the experimental data with Matlab from 
ASCII format converted by a binary file [59]. 

V. THE ARTIFICIAL INTELLIGENCE (AI) METHOD 

AI exhibits satisfactory characteristics at solving 
engineering problems, such as monitoring the MP, controlling 
technological parameters in manufacturing, computing 
technical solutions, simulating the act of systems, and 
predicting SR in cutting process [60-63]. AI uses complicated 
algorithms, like ANNs [64-66], FL models [67-69], GA 
solution [70, 71], and expert systems [72] to solve the 
roughness-related cutting problems. Some AI tools that have 
been successfully applied to predict the SR are GL [73, 75], 
ANNs [74, 76, 76]. ANNs are effective at noise management. 
The GL has the positive attribute of simple operation and high 
efficiency in solving optimization issues [25, 63, 78, 79]. 
Figure 2 portrays an ANN as an information processing 
system. 

  

 
Fig. 2.  An artificial neutral network for roughness surface prediction. 

This model manifests efficiency in predicting the SR of the 
machined parts [80, 81]. The general mathematical model can 
be expressed by: 

y � f�W��     (1) 

The x1, x2, x3, and x4 variables represent the survey 
parameters, in this case the machining parameters. The w1, w2, 
w3, and w4 represent weights. 

VI. THE METHOD OF EXPERIMENT DESIGN 

A. Design of Experiment (DoE) with the Taguchi Method 

DoE constructs a range of experiments to perform a 
machining duty using many CP in the cutting process [82] and 
the MP [83-85]. The purpose is to reduce the number of 
experiments to get the optimal SR via CP selection. The TM 
have been successfully applied in predicting the SR of 
manufacturing processes. Some examples are analyzing the SR 
during the turning of 7075-T6 Al alloy [86], minimizing the SR 
for turning the hardened AISI 4140 steel on the CNC [87], 

optimizing the turning parameters by utilizing TM for 
improving the SR [88], minimizing the SR of Al alloy on the 
CNC machine tool [89], investigating the optimal cutting 
parameters by using TM and ANOVA analysis when 
machining Al 6082 on CNC lathe [90], and enhancing the SR 
by employing the TM during milling [91]. Figure 3 depicts the 
diagram of the DoE following TM. This method has three main 
stages, including the planning stage, the execution stage, and 
the analysis stage. In the first stage, researchers need to 
complete the problem statement, set objectives for 
experimentation, quality requirement, measurement methods, 
select related factors, set levels for these factors, set orthogonal 
arrays or fractional matrices, set the interactions for quality 
requirements, and set the factor for the orthogonal and 
interactions. In the second stage, the researchers carry out the 
set experiments following the orthogonal arrays. In the third 
stage, the researchers analyze the results from the experiment 
data, and finish with the conformation of the experiments. In 
the first and second stages, the orthogonal arrays can be the 
minimum values/ parameters that respond to the problem. In 
the third stage, a large number of experiments can be 
conducted to get high resolution. The range of resolution is 
from one to four, indicating the effect of the factors and the 
evaluation of their interaction in the experiments. Columns of 
the orthogonal arrays arrange the factors and take proper 
mathematical properties into account. A next column of factor 
will be automatically created after one is finished. The column 
patterns are the interaction columns of the orthogonal arrays 
and are used in the analysis with linear graphs and tables. 
Taguchi-based SR predictions tend to build prediction and 
optimization models from CP to support technological 
engineers’ beneficial choices on the manufacturing field [96]. 

 

 
Fig. 3.  The diagram of the experiment design following the Taguchi 

method with three basic stages. 

B. Response Surface Methodology (RSM) 

RSM uses factors to construct a polynomial equation with 
the independent variable as the experimental response. The 
experiments must be considered and designed to get the 
minimum value of response. In that, the response surface 
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gradient goes along with an algorithm with the sharpest slope 
[94]. The two basic models of this method are shown in Figure 
4. The series of steps in RSM allows the designer to study the 
process by deploying the advanced experiment distribution. 
With RSM, the number of experiments can be proposed, the 
optimization position can be acquired, and the approximately 
mathematical expression can be achieved [95].  

 

 
Fig. 4.  The response surface methodology. 

Results show the effectiveness of the predictive models that 
use RSM to predict the SR of MPs in turning [95, 97-99]. 

VII. HYBRID METHODS (HMS) 

HMs have been applied to solve technological problems in 
manufacturing processes and to meet the criteria of SR 
optimization and prediction. Some examples are the use of an 
HM of ANNs, GA, and PSO in predicting the SR and to 
increase computation speed and efficiency [73], combining FL 
and TOPSIS to minimize the SR during the machining of pure 
titanium with quantitative and qualitative  benefits [100], using 
combinations of grey relational analysis, the TOPSIS, and the 
response surface analysis to optimize the SR of TP [101] and 
milling Ti-6Al-4V alloy [102], coupling TM and fuzzy multi 
decision making to optimize SR during TP of stainless steel 
[103], utilizing RSM and ANNs for predicting the SR during 
TP of Al 7075 ceramic and Al 7075 hybrid composite [104], 
combining TM and ANOVA for SR during turning [90], 
predicting the SR of MPs of milling, grinding, and turning 
[105], using a combination of Taguchi and RSM methods for 
improving the SR of the facing process on CNC [106], 
optimizing the SR of the machined part by employing TM, 
ANOVA, GA in coupling with RSM to optimize the cutting 
condition when machining a mold cavity [15], constructing a 
combination of TA and grey analysis for Al6063A-T6 turning 
to optimize the cutting factors with the purpose of minimizing 
SR [92], and RA during turning EN-45 steel on CNC [93]. 

VIII. CONCLUSION 

The current paper demonstrates a review of recent SR 
prediction methods in machining. The prediction methods are 
really important in the selection of CP to acquire the desired 
SR during the cutting process. Recent approaches tend to 
deploy complex multi-parameter systems to get the best SR 
utilizing advanced techniques of online cutting-process 
monitoring, such as AI, DoE based on TM, RSM, and HMs of 
ANNs, GA, and FL. The recent methods also focus on using 
the ability of large data storage and high speed processing of 
modern computers to process big data volumes to receive a PM 
of SR with more accuracy. The results are a useful reference 
for designers and engineers who want to find ways to predict 
SR or build PMs of SR and optimize machining conditions. 
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