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ABSTRACT 

Electric Energy Consumption (EEC) prediction for building operations can be performed using a Baseline 

Energy Model (BEM), which is vital to ensure the efficiency of the EEC estimates with its respective 

independent variables. However, developing the BEM to represent the relationship between independent 

variables can be a complex task due to the EEC variability in an educational building that differs during 

its operation period. The best-suited BEM must be continuously improvised to achieve good modeling with 

accurate and reliable predictions that capture the building operations’ current dynamics. This study aims 

to conduct a comparative performance assessment between deep learning, machine learning, and statistical 

models to develop the BEM and, therefore, predict the EEC of the building for 24, 48, 72, and 96 hours, 

while considering the operation of the lecture weeks and the associated number of students and staff. The 

hours and temperature are considered as independent variables to be tested with residual error 

evaluations, whilst the correlation coefficient, coefficient of determination, and training time are also taken 

into account. Three models with different categories involving Long Short-Term Memory (LSTM), 
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Support Vector Regression (SVR), and AutoRegressive Integrated Moving Average with Exogenous inputs 

(ARIMAX) were compared, concluding that SVR was the best and can be used as a universal model in the 

Machine Learning Baseline Energy Model (MLBEM) studies. Accurate EEC prediction will offer a huge 

advantage for building operators to properly monitor, plan, and manage the EEC, hence avoiding 

excessive utility bills. 

Keywords-energy efficiency forecast; machine learning; deep learning; baseline model; buildings 

I. INTRODUCTION  

The surge in the expansion of new infrastructure buildings 
is expected to lead to an increase in Electric Energy 
Consumption (EEC), and the energy demand from buildings is 
expected to increase by 50% by 2050. This accounts for 
factors, such as population growth, urbanization, and higher 
living standards contributing to higher greenhouse gas 
emissions. The trend of increasing EEC will greatly impact 
greenhouse gas production. The International Energy Agency 
(IEA) reported that global electricity consumption increased by 
1.7%, reaching 22,848 TWh at the end of 2019 [1]. 
Furthermore, global electricity consumption increased by 2% 
in 2022, and Asia experienced the highest increase of 3.6% [2]. 
This rising trend in electricity consumption may have adverse 
environmental effects. Notably, the increase in EEC is 
primarily attributed to energy use in buildings [3-6]. At a 
global level, several plans tried to promote energy efficiency 
measures to reduce electricity consumption in buildings, 
mitigating the environmental impact of increased energy use. 
Such plans involve Malaysia’s National Energy Efficiency 
Action Plan (2016-2035) [7], China’s 14th Five-Year Plan for 
Renewable Energy Development (2021-2025) [8], India’s 
National Mission for Enhanced Energy Efficiency (NMEEE) 
[9], and Germany’s Energy Efficiency Strategy 2050 [10].  

Prior to any energy efficiency steps being implemented to 
quantify savings, it is crucial for building operators to establish 
a good Baseline Energy Model (BEM). This BEM model 
represents the EEC with its respective independent variables. It 
is important to establish a model driven by the data, such as the 
Machine Learning Baseline Energy Model (MLBEM), in order 
to evaluate the electric energy savings due to its capability to 
recognize the pattern underlying the examined dataset. 
Therefore, MLBEM can be considered a powerful tool that can 
be used to observe the pattern of the EEC, enabling operators to 
predict the future EEC in the building. The energy savings 
were calculated based on the difference between the predicted 
and the measured EEC after the implementation of the energy 
efficiency steps. A bad BEM will provide inaccurate 
predictions, which deviate, thus underestimating energy 
savings. Conversely, a good BEM will provide accurate 
prediction and will therefore quantify good energy savings. 
Further understanding of energy savings quantification is 
depicted in Figure 1 [11]. The figure illustrates two important 
sections: the baseline period and the post-Energy Conservation 
Measures (ECM) period. The baseline period is where the 
measurement of EEC is conducted. During this period, the EEC 
is known as the normal consumption without any ECM 
intervention. After any ECMs are implemented, the period is 
known as the post-ECM period, where EEC is measured after 
ECMs have been conducted. During the post-ECM period, an 
adjustment of the EEC is necessary to estimate the EEC as if no 
ECMs were conducted during this period. This adjustment is 

established by predicting the EEC using the BEM. The 
adjustment of EEC through prediction is made since energy 
savings from ECM activities are not simply the subtraction of 
the post-ECM period EEC from the baseline period EEC. This 
is due to the fact that the independent variables that govern the 
EEC during the baseline period and the post-ECM period may 
change. Hence, predicting the EEC in order to adjust it through 
a BEM is a vital action. 

 

 
Fig. 1.  International Performance Measurement and Verification Protocol 
(IPMVP) energy savings quantification framework. 

The prediction of EEC in Malaysia is not new, as certain 
studies have been conducted on this subject [12-14]. Authors in 
[13] developed a BEM using a hybrid artificial neural network 
to perform EEC predictions of a commercial building. EEC 
was predicted during the post-energy efficiency period and then 
subtracted from the measured energy consumption for energy 
savings quantification. Authors in [12] predicted the EEC 
utilizing models, such as Support Vector Machine (SVM), 
Artificial Neural Networks (ANN), and K-Nearest Neighbor 
(KNN), aiming to improve the accuracy of the prediction made 
by the building energy management system. A prediction of 
energy demand in Malaysia [14] was made deploying a Non-
linear Autoregressive Exogenous Artificial Neural Network 
(NARX-ANN) and a Multiple Non-linear Regression (MNLR) 
model. It is important to note that the prediction model from 
NARX-ANN has a higher Coefficient of Determination (R2) 
compared to the MNLR model. Prediction serves as an 
important aspect in planning activities. Hence, models that 
provide the best accuracies are of utmost importance. 

Challenges arise where the BEM development requires an 
appropriate modelling technique to accurately model the EEC 
with its related independent variables. Furthermore, no known 
specific investigations have used a certain analysis of the 
selection of independent variables. However, an in-depth 
review of the independent variables selected, such as 
occupations in the educational building, is available [15-18]. 
The modeling technique is essential to model the EEC with its 
related independent variables that have a strong correlation in 
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the building. Different operation periods will lead to different 
EECs based on the occupied spaces in the building. 
Discrimination of the operation period has to be executed. 
Thus, this work will model two different BEMs representing 
two different operation periods in one educational building, i.e. 
lecture week and non-lecture week. The method utilizes 
Machine Learning (ML), where a learning algorithm was 
employed to study the historical data without prior knowledge 
to become a model representing the EEC [14, 19, 20]. The 
choice of the modeling technique for the EEC prediction 
significantly influences the accuracy of predictions. The use of 
ML techniques for EEC prediction purposes is rapidly 
increasing [21, 22]. Furthermore, it is apparent that the ML 
models in [23, 24] perform well, with the EEC data typically 
recorded over the course of a year. Notably, ML has gained 
prominence due to its ability to provide accurate predictions 
after the modeling stage, making it a robust choice. In [12], ML 
techniques (SVM and ANNs) are proposed to predict EEC in 
Malaysia’s smart buildings, addressing the issue of low 
precision in building energy management system predictions. 
Authors in [25] involved large-scale energy prediction in the 
residential and commercial sectors. Independent factors such as 
the Gross Domestic Product (GDP) were used in the ML 
models, resulting in highly accurate predictions. Energy 
predictions in various countries were performed using ANNs 
with the NARX model for heating loads in [26]. Authors in 
[27] focussed on predicting cooling loads employing various 
Deep Learning (DL) and ML methods. In [28], weather data 
served as independent variables for the EEC prediction in 
Malaysian educational buildings. Notably, the predictions of 
the Long Short-Term Memory (LSTM) model were compared 
with (SVR) and Gaussian process regression, with LSTM 
demonstrating superior performance using four years of EEC 
data. 

However, in practice, regular measurement and recording 
of EEC may not be feasible for certain building operators due 
to the high cost of installing dedicated building energy 
management systems. This limitation results in a scarcity of 
data for building owners to make accurate predictions about 
their buildings’ EEC. Furthermore, as far as is known, a limited 
number of studies involve the prediction of EEC using data 
collected for less than a year and comparative modelling 
between DL, ML, and statistical model analysis in MLBEM 
studies.  

II. DATASET DESCRIPTION 

The building selected for the case study is the building of 
the Electrical Engineering Studies College of Engineering. It is 
a 6-story building, and the spaces contained within the building 
are summarized in Table I. The building’s main activity is to 
conduct teaching and learning activities. The case study will 
consider the building’s operation during lecture weeks. Mainly, 
the occupants in the building use the lecturers' offices, 
classrooms, and laboratories. These spaces are primarily 
utilized weekly from Sunday to Thursday, which are the 
working days. The main operating hours are from 8:00 a.m. to 
5:00 p.m. The measurement of the EEC and the collection of 
independent variables will be discussed below. 

A. Electrical Energy Consumption 

The building receives a three-phase 0.415 kV source from 
the secondary voltage of an 11 kV/0.415 kV transformer. The 
11 kV voltage is supplied by the local utility. This work will 
measure the EEC in the building from Sunday to Thursday. 
The EEC used for this study is the hourly EEC from 12:00 a.m. 
until 11:00 p.m. The measured EEC will be the input to the 
MLBEM. A data logger was connected at the 0.415 kV voltage 
level in the main switch room, which supplied the voltage to 
the building. The EEC interval used in this work is the hourly 
EEC interval. The EEC during weekends and public holidays 
will not be included in this study since the EEC in the building 
is relatively low. Additionally, modeling the EEC during 
weekends and public holidays may require a special model, as 
the factors governing the EEC during these periods may not be 
the same as on weekdays. The measured hourly EEC is 
displayed in Figure 2. 

TABLE I.  LIST OF SPACE AND NUMBER OF UNITS IN THE 
BUILDING 

Space Number of units 

Lecturer’s office room 80 
Classroom 4 
Laboratory 24 

Meeting room 5 
Toilets 16 

 

 
Fig. 2.  Measured hourly EEC. 

B. Independent Variables 

The independent variables that may impact the EEC are 
lecturers’ occupancy in office rooms, lecturers’ occupancy in 
classrooms, lecturers’ occupancy in laboratories, students’ 
occupancy in classrooms, students’ occupancy in laboratories, 
and outdoor temperature. In total, six different independent 
variables will be used as factors governing the EEC in the 
building. Details of the independent variable data collection 
will be further explained below. 

1) Lecturer’s Occupancy in the Building 

Lecturer occupancy in the building is segmented into three 
categories. The first category is lecturers in office rooms. 
Occupancy in lecturers’ office rooms is counted based on the 
attendance system recorded in a database. This is due to the 
fact that most lecturers spend their time in their office rooms 
except for classes and laboratory sessions. Lecturers need to 
scan a biometric fingerprint when arriving at and leaving the 
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building. The attendance record will reveal the timestamp for 
the arrival and departure of each lecturer. If one of the 
timestamps is not available in the record, it will be counted for 
the day. It is assumed that the loads in the office rooms are 
fully utilized during office hours. Meanwhile, lecturers in 
classrooms and laboratories will be counted based on the 
lecture and laboratory session timetable. The presence of 
lecturers in classrooms can have a significant impact due to the 
use of plug loads such as LCD projectors and LED TVs. The 
presence of lecturers in these spaces will be recorded during 
lecture weeks from 8:00 a.m. to 5:00 p.m. From 12:00 a.m. 
until 7:00 a.m. and from 6:00 p.m. until 11:00 p.m., there will 
be no occupants. Hence, occupancy is zero during these hours. 

2) Student’s Occupancy and Outdoor Temperature 

The occupancy of students in the lecture rooms and 
laboratories was counted based on the lectures and laboratory 

sessions conducted in these spaces. First, the students’ subjects 
and laboratory sessions carried out in these spaces were 
identified from the timetable. Next, the number of students 
registered for the subjects and laboratory sessions in these 
spaces was retrieved from the student information system. 
Then, the total number of students occupying the spaces was 
counted. It is assumed that the lectures and laboratory sessions 
took place during the measurement of EEC. Similar to 
lecturers’ occupancy, students’ occupancy will be zero from 
12:00 a.m. to 7:00 a.m. and from 6:00 p.m. to 11:00 p.m. The 
outdoor temperature will be based on hourly historical data 
retrieved from www.weatherunderground.com using nearby 
satellite data. A sample of 24-hour tabulated data of the EEC 
and respective independent variables is illustrated in Figure 3 
for clearer understanding. 

 

 
Fig. 3.  Hourly EEC plot with the independent variables. 

III. METHODOLOGY  

The flowchart displayed in Figure 4 depicts the 
comprehensive methodology of this study, which aims to 
compare the performance of three ML models, i.e. LSTM, SVR, 
and AutoRegressive Integrated Moving Average with 
Exogenous inputs (ARIMAX) in order to compare the state-of-
the-art of BEM for building EEC. 

A. Dataset Acquisition and Pre-Processing 

The independent input variables represent the most 
influential aspects of academic operations that could impact the 
EEC of the building that was acquired to develop the MLBEM. 
The input variables comprise time and date, staff occupancy, 
and the number of students in classrooms or laboratories. These 
reflect the occupancy levels and activities occurring within the 
building and weather conditions determined using temperature 
data. A total of 496 hours of data points were collected during 
the lecture weeks. The data were partitioned into training and 
testing sets, respectively, comprised 400 and 96-hours of data 
points. The testing set aimed to assess the accuracy and 
predictive capability of the trained models on unseen data. 

Following the data collection process, the data were pre-
processed prior to being incorporated into the ML models. 
During this step, the mapminmax method was used to 

normalize the independent data between -1 and 1, placing the 
data on the same scale and avoiding data domination during the 
learning process. In the subsequent process, the pre-processed 
data went on to model training, which was divided into three 
distinct paths for each ML model under consideration. The 
hyperparameters of each model were tweaked to achieve the 
greatest possible performance of BEM, and the models were 
initially evaluated to estimate the performance of the MLBEM 
model in the step ahead of 12 hours. Further analysis was 
conducted to examine the performance of the MLBEM to be 
tested for the next step ahead in 24, 48, 72, and 96 hours. The 
developed models were evaluated on how they learned from 
the training data and how they could generalize to data they 
had not previously encountered. In the final phase, a 
comparison of the models’ overall performance with respect to 
the prediction outcome and actual data was conducted using a 
number of metrics. This includes residual error, correlation 
coefficient, and coefficient of determination.  

B. Model Configurations 

1) Long Short-Term Memory (LSTM) 

An LSTM network is a Recurrent Neural Network (RNN) 
that is designed to handle sequential data and is suited for time 
series analysis and can be categorised as a DL model. It is a 
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member of the class of ANNs that include a memory cell and 
gating mechanisms. It is efficient in identifying long-term 
dependencies in the data and learning complex temporal 
patterns. 

 
Fig. 4.  Workflow diagram of the overall methodology proposed for 
MLBEM developed using the ML approach. 

2) Support Vector Regression (SVR) 

SVR is normally used in regression analysis, which extends 
the original method based on an SVM when developing the 
prediction model. One advantage of SVR is that it can capture 
linear and non-linear data relationships. It finds the most 
accurate estimation from the observed target values for all 
training data by identifying a hyperplane in a feature space with 
a high number of dimensions. The SVR algorithm seeks to 
minimize an epsilon-insensitive loss function and 
simultaneously maximize the margin surrounding the 
hyperplane to generate precise regression predictions. 

3) AutoRegressive Integrated Moving Average with 
Exogenous Inputs (ARIMAX) 

The ARIMAX model is one of the statistical time series 
models that extends the capabilities of the Autoregressive 

Integrated Moving Average (ARIMA) model. The additional 
component of independent variable X is incorporated into the 
ARIMA model. Accordingly, it could improve prediction 
model accuracy due to its ability to capture relationships 
between past observations and future values. 

C. Evaluating Model Performance 

A comprehensive evaluation of the prediction models 
related to building EEC is essential for quantifying the 
developed MLBEM in terms of model’s accuracy, efficiency, 
and reliability. In this study, the performance is assessed 
through residual error metrics, namely Root Mean Square Error 
(RMSE), Mean Square Error (MSE), and Mean Absolute Error 
(MAE). Other metrics were also considered, including 
correlation coefficient (R), coefficient of determination (R2), 
and training time. Parameters to formulate performance metrics 
involve �� as the actual data instance, 

⌢

iy as the predicted data 

instance, ���  as the mean of the actual data instance, �� as the 
mean of the predicted data instance, and � as the number of 
data. 

RMSE quantifies the model’s accuracy by measuring the 
differences between the predicted values and the actual 
observations. It is particularly effective for assessing predictive 
models in EEC analysis, where a lower RMSE signifies a 
closer alignment between predictions and real-world data: 

RMSE ( )



 

⌢n

i ii
y y

n
   (1) 

MSE represents the average squared difference between the 
estimated values and the actual data. It serves as a critical 
indicator of variance in the predicted EEC for the building, 
providing insights into the model’s tendency to underpredict or 
overpredict: 

MSE ( )
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MAE quantifies the average magnitude of errors in 
MLBEM, thereby providing a straightforward measure of 
accuracy and predicted model reliability: 

MAE 
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   (3) 

R evaluates the strength and direction of the linear 
relationship between predicted and actual values. In developing 
the MLBEM, a high correlation coefficient indicates the 
insights of a strong predictive relationship related to how well 
(or good fit) the prediction model aligns with the observed 
data: 

R 
(( ( )( )
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   (4)  

R-squared measures the variability between the predicted 
and the actual values, demonstrating how well the MLBEM fits 
the observed data points. This metric provides an intuitive 
understanding of the proportion of variance explained by the 
model in which high R-squared values indicate a better fit: 
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Training time refers to the duration required to train the 
model. This metric is crucial for evaluating the computational 
efficiency of different modelling approaches in the context of 
EEC prediction. 

D. Hyperparameter Tuning 

Each model’s hyperparameters were tuned for optimal 
performance [29-31]. Table II presents a summary of various 
tuning hyperparameters. 

TABLE II.  HYPERPARAMETERS USED TO OPTIMIZE THE 
MLBEM 

Model Hyperparameter Tuning range 

LSTM 

No. of hidden units 10,20,30,40,50,60 
Learning rate 0.0001,0.001,0.01,0.1 

Activation function sigmoid 
Optimization Adam 

Drop out 0.5 

SVR 

Epsilon 0.1,1,5,10,15,20 
Regularization parameter, C 0.1,1,2,3,4,5,6,7,8,9,10 

Kernel 
Radial Basis Function 

(RBF) 

ARIMAX 

Autoregressive lags 
(ARLags) 

1,2,3,4,5,6,7,8,9,10 

Differencing order, D 1,2,3,4,5 
Moving average lags 

(MALags) 
1,2,3,4,5,6,7,8,9,10 

 

To assess the best performance of the LSTM network, the 
number of hidden units and learning rate varied within a 
specified tuning range. These hyperparameters represent the 
learning capacity of the LSTM network and the rate at which 
the model updates its weights during training. Main 
hyperparameter tuning for the SVR model was conducted on 
two parameters, namely epsilon and C, which respectively 
signify the width of the margin of tolerance for errors and the 
trade-off between a training error and the margin within the 
defined range. It varies from 0.1 to 20 to understand its impact 
on the model’s performance. The tuning process for the 
ARIMAX model focuses on AutoRegressive Lags (ARlags), D 
(order of differencing), and Moving Average Lags (MALags). 
The ARlags and MALags parameters indicate the dependency 
on past values and errors, respectively, and vary from 1 to 10. 
Meanwhile, the D parameter signifies the number of times the 
observations are differenced, varying from 1 to 5.  

IV. RESULTS AND DISCUSSION  

The most optimal hyperparameter tuning is initially 
examined on the 12-hour step ahead. The result is tabulated in 
Table III. The LSTM model performed best when configured 
with 40 hidden units and a learning rate of 0.01. The SVR 
model worked best with an epsilon of 0.1 and a C value of 10. 
The ideal parameters for the ARIMAX model were determined 
to be ARlags = 2, D = 1, and MALags = 5. These tuning 
parameters demonstrate that each model has unique setups that 
can improve its forecasting ability. Following the selection of 
hyperparameters, the resulting models for 12-hour forecasting 
were evaluated using the performance metrics and data 

provided in Table IV. The LSTM model had a higher MAE of 
2.790 than the other two models. Nevertheless, the highest R2 
value of 0.700, R-value of 0.837, and training time of 56.32 s 
were recorded. This suggests that the LSTM model revealed a 
significant ability to explain the variability of the data set, even 
though the model has drawbacks in terms of computation 
model training. 

TABLE III.  BEST-TUNED PARAMETERS FOR 12-HOUR EEC 
PREDICTION 

Model Hyperparameter Selected values 

LSTM 

No. of hidden units 40 
Learning rate 0.01 

Activation function sigmoid 
Optimization Adam 

Drop out 0.5 

SVR 
Epsilon 0.1 

Regularization parameter, C 10 
Kernel RBF 

ARIMAX 
Autoregressive lags (ARLags) 2 

Differencing order, D 1 
Moving average lags (MALags) 5 

 

Meanwhile, the SVR model demonstrated a promising 
compromise between error metrics and training time. It had the 
lowest RMSE, MSE, MAE, and training time values among the 
three models, with 1.914, 3.664, 0.866, and 0.686, respectively, 
indicating the best-fit and efficient training model. However, 
lower R2 and R values, of 0.159 and 0.443, respectively, can be 
observed in SVR as compared to the LSTM model. 

TABLE IV.  PERFORMANCE METRICS FOR 12-HOUR EEC 
PREDICTION 

Metrics 
12-hours 

LSTM SVR  ARIMAX  

RMSE 2.985 1.914 3.220 
MSE 8.909 3.664 10.371 
MAE 2.790 0.866 2.540 

R 0.837 0.443 0.066 
R2 0.700 0.159 2.280 

Training time 56.323 0.686 3.390 
 

The ARIMAX model produced the highest error metrics, 
with RMSE and MSE values of 3.220 and 10.371. Although it 
reported the highest R2 value of 2.280, its R of 0.066 was the 
lowest among the three models, exhibiting a poor correlation 
between the predicted and actual data instances. 

The result performance of each model was further 
experimented with and tested using various metrics at different 
future step hours, i.e. 24, 48, 72, and 96, as displayed in Table 
V. The efficacy of the models was determined by their ability 
to correctly predict steps ahead of EEC. Each step hour 
demonstrates that different metrics recorded were 
inconsistently performed to predict the outcome of the 
MLBEM. Analysis of the residual error metrics was highly 
contributed by ARIMAX compared to LSTM and SVR, 
disclosing the weakest predictive relationship in terms of 
correlation analysis with the dataset. It can be observed that the 
ARIMAX model is unable to perform well in BEM. On the 
contrary, SVR’s residual error metrics, specifically RMSE, 
MSE, and MAE, manifest the least error when compared 
between actual and predicted values of building EEC. 
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Similarly, SVR also demonstrates the shortest training time, 
indicating its superior efficiency. Therefore, it showcased a 
promising balance of prediction accuracy and computational 
efficiency throughout the testing of BEM for the 24- to 96-
hours steps ahead. The R and R2 values between LSTM and 
SVR are comparable most of the time. Although the LSTM 
model exhibited a strong capability to consistently explain the 
variability in the dataset, the longer training time introduced 
during the model training has presented a computational 
challenge, which may be due to the complex network layer.  

TABLE V.  PERFORMANCE METRICS OF EEC PREDICTION 
AT VARIOUS STEP-AHEAD HOURS 

Metrics 
24-hours 

LSTM SVR  ARIMAX  

RMSE 7.516 3.411 39.491 
MSE 56.491 11.638 1559.527 
MAE 5.448 1.855 31.531 

R 0.994 0.997 0.737 
R2 0.980 0.993 0.075 

Training time 54.867 1.215 3.804 

Metrics 
48-hours 

LSTM SVR  ARIMAX  

RMSE 8.231 3.400 34.241 
MSE 67.745 11.562 1172.435 
MAE 5.787 1.541 26.639 

R 0.993 0.997 0.705 
R2 0.966 0.993 0.278 

Training time 55.702 0.739 3.889 

Metrics 
72-hours 

LSTM SVR  ARIMAX  

RMSE 8.434 3.621 40.348 
MSE 71.140 13.108 1627.932 
MAE 5.489 1.494 32.004 

R 0.992 0.996 0.653 
R2 0.957 0.992 -0.030 

Training time 56.479 0.742 3.566 

Metrics 
96-hours 

LSTM SVR  ARIMAX  

RMSE 8.275 3.625 38.819 
MSE 68.481 13.137 1506.890 
MAE 5.671 1.545 30.106 

R 0.990 0.996 0.611 
R2 0.959 0.992 0.039 

Training time 56.277 0.718 3.851 
 

Besides observing the BEM performances through residual 
error metrics and good fit model accuracy, visual insights 
through comparative graphical illustration can demonstrate the 
pattern of the BEM test performances, as depicted in Figure 5. 
When analysing the ARIMAX plotting of the predicted output 
of the BEM, the most apparent picture displays the large 
deviation or discrepancy to inaccurately produce the BEM, 
resulting in a weak fitted model. SVR plotting consistently 
tracks the actual building EEC throughout all hour steps. In 
addition, as the hour step increased, BEM with LSTM and 
SVM could exactly capture the pattern of peak values in 
building EC up to 72- and 96-hour steps, respectively. 
Visualisation of the training and testing dataset, along with its 
R and R2 analysis for the SVR model, is presented in Figures 6 
and 7. Considering the maximum step ahead of 96-hours, the 
relationship between the predicted and actual data instances of 
building EEC suggests a strong linear correlation, with a 
correlation coefficient of 0.996 (R≈1) and a coefficient of 

determination of 0.992 (R≈0.99). Based on this, it is evident 
that the SVR can efficiently model the EEC of the building for 
MLBEM studies. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 5.  MLBEM tested on varying step ahead hours performance at (a) 24, 
(b) 48, (c) 72, and (d) 96 hours. 
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Fig. 6.  Illustration of the best performance between actual and predicted 
EEC plotting. 

 
Fig. 7.  The best R and R2 metrics of the SVR model for MLBEM. 

V. CONCLUSION AND FUTURE SCOPE  

Comparative evaluations between deep learning, machine 
learning, and statistical models provide a comprehensive 
elucidation of how the model configurations influence the 
predictive performances and their variability in developing the 
predictive models for estimating EEC in an educational 
building based on the outdoor temperature, and the number of 
occupants in the building within the space of offices room, 
classrooms, and laboratories. Among the investigated models, 
SVR was discovered to be the most appropriate and effective 
for up to 96-hour predictions to develop as MLBEM that 
involves EEC prediction for building applications. This is due 
to the main attributes and well-balanced trade-off in terms of its 
high R and R2 of at least 99% performances and the least 
computational training time. Overall, SVR consistently 
performed well as the model capability in capturing the 
patterns underlying the data instance in EEC. 

These findings are promising for the advancement of the 
system in the future and continuous improvement in 
incorporating more variables. This includes building attributes 
and external influences, yielding a more comprehensive 
understanding of energy usage patterns and enhancing 
precision and dependability in EEC prediction. Thereby, the 
developed MLBEM is reliable. Moreover, the real-time 
integration of the MLBEM is achieved by continuously 

monitoring the building EEC, facilitating prompt identification 
of irregularities or excessive EEC. This real-time feedback 
enables the implementation of more proactive and targeted 
energy management strategies. 
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