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ABSTRACT 

The Industrial Internet of Things (IIoT) is experiencing rapid expansion, forming a vast network of 

interconnected devices, sensors, and machines that generate large volumes of data. In the context of 

Industry 5.0, ensuring the accuracy and reliability of this data is essential. This paper addresses the 

challenges of detecting and classifying cyberattacks within the IIoT by employing advanced analytical 

techniques. Specifically, we explore the application of Machine Learning (ML) algorithms, focusing on the 

comparison between the XGBoost and Naïve Bayes models. Our study uses the KDD-99 and NSL KDD 

datasets to evaluate the performance of these models in terms of accuracy, precision, recall, and F1 score. 

The results demonstrate that the XGBoost model significantly outperforms the Naïve Bayes model across 

all metrics, achieving an accuracy of 99%. This study contributes to the improvement of intrusion 

detection and classification of cyberattacks in IIoT environments. 

Keywords-cyberattacks in IIoT; XGBoost; Naïve Bayes 

I. INTRODUCTION  

The progress of Industry 4.0 has enabled the integration of 
digital and physical technologies through IoT-based processes 
[1]. This integration is facilitated by a vast network of 
interconnected devices, machines, applications, and human 
engagement [2]. The Industrial Internet of Things (IIoT) has 
the potential to revolutionize the landscape for businesses and 
governments, heralding a new era of smart automation with the 
creation of smart factories, advances in smart healthcare 
systems, the development of smart homes and cities, and the 
enhancement of intelligent transportation systems. However, 
with the complex nature of IIoT comes a set of security 
challenges and privacy concerns that need to be addressed. The 
intricate Cyber-Physical Systems (CPSs) network faces cyber 
security risks as cyber-attackers evolve their methods and 
strategies, exploiting AI technologies to enhance their 
capabilities. Technological advancements demand continuous 
research to safeguard against the misuse of AI by cyber 
criminals [3]. Industrial installations often feature 
geographically dispersed infrastructures, increasing the 
potential for cyber adversaries to cause significant damage. 
These challenges can lead to threats potentially resulting in 
widespread operational failures with catastrophic consequences 
[4]. The rapid proliferation of internet-connected devices raises 

concerns about the resilience of industrial networks against 
increasingly sophisticated cyber threats. Existing cybersecurity 
measures in industrial settings fall short of addressing the 
magnitude and complexity of threats posed in the IIoT 
environment, necessitating the development of more robust and 
adaptable security frameworks to effectively safeguard 
industrial networks [5]. As IIoT systems become more 
autonomous and interconnected, they become more vulnerable 
to sophisticated cyberattacks, particularly with the advent of 
AI-powered cyberattacks that can bypass conventional security 
measures. This underscores the need for advanced, AI-based 
security solutions [6]. The use and evolution of Deep Learning 
(DL) methods has reduced web-based attacks, such as DDoS 
and SQL injection [7]. Machine Learning (ML) methods have 
emerged as highly effective tools in various fields, and they 
now present a promising avenue for enhancing cybersecurity in 
Industry 5.0. DL methods such as Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), and 
transformer models stand out for their ability to autonomously 
learn complex patterns and representations directly from raw 
data [7]. This attribute is particularly valuable in cybersecurity, 
enabling DL models to uncover new and sophisticated attacks 
that traditional ML methods might miss [2]. This study aims to 
explore the utilization of ML algorithms in enhancing the 
security of IIoT systems. The objectives of this study are: 
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 To emphasize the efficiency and effectiveness of ML 
algorithms in identifying intrusion attacks within IIoT 
systems. 

 To investigate the integration of ML algorithms, 
specifically XGBoost, into Intrusion Detection Systems 
(IDSs) for IIoT security enhancement. 

 To examine existing research findings and current 
limitations regarding the use of DL and ML for intrusion 
detection in IIoT environments. 

 To provide a comprehensive overview of the subject by 
detailing the discovered insights and limitations. 

The novelty of this research lies in its detailed exploration 
of the XGBoost algorithm's capability to provide enhanced 
cyber threat detection within IIoT systems. Previous research 
has recognized the general effectiveness of XGBoost in various 
applications, however, our study goes a step further by 
providing robust empirical evidence of its superior 
performance in the nuanced context of IIoT. The proposed 
Extreme Gradient Boosting (XGBoost) model achieved an 
impressive 99.98% accuracy on the KDD-99 dataset and 
99.97% on the NSL-KDD dataset surpassing previous 
benchmarks [4, 26]. By also testing Gaussian Naive Bayes 
(NB), this study identifies key limitations in accuracy and 
effectiveness across datasets, particularly for NSL-KDD. Such 
findings highlight areas where the XGBoost model excels, 
establishing a clearer path for future research. 

II. RELATED WORK 

Research papers focusing on cybersecurity in IIoT are 
critical to ground the research in the current state of 
knowledge, understand the complexity of the security 
landscape, identify critical vulnerabilities, and guide future 
research and practical applications. 

Authors in [4] introduced a sophisticated detection and 
classification system designed to improve security within the 
Industrial Internet of Things (IIoT). This system employs 
Decision Tree (DT), Random Forest (RF), Support Vector 
Machine (SVM), Logistic Regression (LR), Gaussian NB, 
Bagging, XGBoost, and Adaboost and applies them to the 
KDD-99 dataset for the precise identification and 
categorization of Advanced Persistent Threats (APTs). 
Through a comparative analysis, the XGBoost classifier 
demonstrated notable performance with an accuracy of 98.7%, 
a precision of 96.1%, a recall rate of 97.5%, and an F1 score of 
96.6%. Additionally, the Gaussian NB classifier also showed 
strong results with an accuracy of 97.2%, a precision of 96.3%, 
a recall of 97.4%, and an F1 score of 96.7%. Authors in [8] 
initially tackle current cybersecurity threats and evaluate how 
ML can address these issues. Authors in [9] conducted an 
extensive analysis on DL methods for detecting cybersecurity 
intrusions, focusing on federated learning. They tested the 
effectiveness of RNN, CNN, and Deep Neural Network (DNN) 
models using three innovative real IoT traffic datasets. Authors 
in [10] provide a comprehensive review of neural networks and 
DL techniques applied to cybersecurity, evaluating their 
effectiveness across various cybersecurity tasks. Authors in 
[11] offer a detailed overview of advanced DL solutions for 

detecting cyber-attacks, specifically in CPSs. They propose a 
six-step methodology for reviewing and applying DL 
techniques in CPS, covering scenario analysis, threat 
identification, problem formulation, model customization, data 
acquisition, and performance evaluation. The paper also 
addresses current challenges, outlines opportunities, and 
suggests directions for future research [11]. Authors in [12] 
examined the use of DL techniques for detecting cybersecurity 
breaches, emphasizing the importance of datasets in improving 
IDSs. The study showcased various neural network methods 
suited for cybersecurity tasks, such as DNNs, constrained 
Boltzmann machines, deep belief networks, CNNs, deep 
Boltzmann machines, and deep autoencoders. 

Authors in [7] developed an innovative DL approach to 
detect web-based attacks in Industry 5.0 settings, utilizing 
CNNs, RNNs, and transformers. Their findings highlighted that 
the transformer-based model outperformed traditional ML and 
DL models in terms of accuracy, precision, and recall, thus 
significantly enhancing the protection of critical infrastructure 
and sensitive data against cyber threats [7]. Authors in [13] 
studied the effectiveness of XGBoost for IDSs in Wireless 
Sensor Networks (WSNs) facing imbalanced data and 
cyberattacks such as black hole, gray hole, flooding, and 
scheduling. The study compared the performance of XGBoost 
with DT and NB. The results indicate that while three 
categories of attacks showed moderate imbalance, the flood 
attack category was severely imbalanced. XGBoost 
outperformed the standard methods, showing the highest AUC 
values in all categories, demonstrating its superior detection 
ability in diverse attack scenarios. Authors in [14] conducted 
research using the CSE-CIC-IDS2018 dataset to evaluate the 
use of ML algorithms (DT, RF, NB, LR, Catboost, LightGBM, 
and XGBoost) for detecting malicious network traffic. The 
study focused on the impact of ensemble feature selection on 
the performance of the classifiers, particularly in terms of their 
ability to detect breakthroughs. In [15], the authors examined 
two cyber data sets, each containing five classes, using three 
different classification algorithms: RF, XGBoost, and the Keras 
Sequential model. The findings confirmed that these classifiers 
are effective in detecting cybersecurity threats. In [16], focus 
was given on the use of ML techniques for identifying 
cybercrime activities. The study delves into the mathematical 
foundation of the XGBoost algorithm and explains how this 
mathematical basis contributes to the efficient and quick 
detection of cybercrime activities. Authors in [17] evaluated 
the performance of various ML algorithms in detecting attacks 
on IoT networks using simulated attack data. The study found 
that the RF algorithm achieved a detection accuracy of 99.9%, 
demonstrating its effectiveness. Additionally, the research 
highlighted that blockchain technology could enhance security 
and privacy in IoT networks by establishing a tamper-proof 
decentralized communication system [17]. Authors in [18] 
propose enhancing IoT cybersecurity by introducing a 
combined model based on DL. The model for malware 
detection utilizes Deep CNNs (DCNNs). Additionally, 
TensorFlow Deep Neural Networks (TFDNNs) are introduced 
for the identification of software piracy threats based on source 
code plagiarism. In [19], IPIDS, a novel comprehensive IDS 
tailored for IoT applications, capable of accurately detecting 
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intrusions via MQTT, HTTP, and CoAP protocols, is 
presented. The findings demonstrate that IPIDS surpasses the 
performance of other models trained on the same datasets. 
Furthermore, the DT and Long Short-Term Memory (LSTM) 
models developed in this study reached an impressive accuracy 
of 99.9%. 

Authors in [20] discussed the integration challenges of AI-
based cybersecurity within the aviation industry, emphasizing 
the need to align proposed solutions with existing regulations. 
The study covers the necessity for design verification of AI/ML 
algorithms and the certification requirements for AI/ML 
solutions applicable to manufacturers and agencies in the 
sector. Authors in [21] introduced the Enhanced Naïve Bayes 
Posterior Probability (ENBPP) algorithm designed to improve 
accuracy and reduce processing time for cyber-attack 
predictions. This algorithm combines a modified NB posterior 
probability function with a revised risk assessment function, 
aiming to enhance threat prediction efficiency. The results 
showed a significant improvement compared to traditional 
methods, with prediction accuracy increasing to 92-96% and 
processing time decreasing to 0.028 s from 0.043 s. Authors in 
[22] assessed the security performance of a WSN using 
Gaussian NB, Multinomial NB, and Bernoulli NB. These were 
compared against three established algorithms: K-Nearest 
Neighbors (kNN), SVM, and Multilayer Perceptron (MLP), 
utilizing the Spearman correlation for univariate feature 
selection [22]. Authors in [23] examined the cybersecurity 
challenges Autonomous Transportation Systems (ATSs) face. 
They underlined the critical role of integrating AI to improve 
the efficiency of cyber defense tactics and ensure the security 
of ATS assets [23]. Authors in [26] employed a Hybrid Meta-
heuristic approach that integrates an LSTM classification 
model for dimension selection. When applied to the KDD-99 
dataset, the XGBoost classifier achieved an accuracy of 
94.06%, a precision of 92.94%, a recall of 93.53%, and an F1 
score of 94.50%. Additionally, using the NSL-KDD dataset, 
the XGBoost classification reported an accuracy of 95.50%, a 
precision of 92.00%, a recall of 98.00%, and an F1 score of 
95.55%. 

III. THE RESEARCH METHOD 

Identifying and understanding cyberattack techniques are 
significant steps in cybersecurity research. These initiatives are 
critical because they help in the swift development and 
implementation of cybersecurity policies. The examination of 
historical cyberattack data informs researchers and practitioners 
about potential threats and vulnerabilities, enabling the creation 
of proactive strategies to enhance an organization's defense 
mechanisms. This systematic approach to data analysis and 
model application, as shown in Figure 1, is fundamental in 
strengthening cybersecurity measures. 

A. Data Collection 

Collecting data related to IIoT datasets is a key step to 
conducting analysis using datasets such as KDD Cup 1999 [24] 
and NSL-KDD [25]. These datasets encompass various types 
of cyber-attacks, including DoS, U2R, Probe, R2L, providing 
researchers with diverse examples of cyber threats to analyze 
and mitigate. 

 

Fig. 1.  Research methodology. 

B. Data Preprocessing 

Data preprocessing is crucial for effective model training, 
involving steps such as cleaning missing values and outliers, 
conducting feature engineering, normalizing data, and 
addressing class imbalances. These steps ensure that the dataset 
is well-organized and reliable for machine learning. In the 
context of the KDD99 and NSL-KDD datasets, this process 
involves partitioning the dataset into training (80%) and testing 
(20%) subsets, followed by normalization and one-hot 
encoding before moving on to model training and evaluation 
phases. 

C. Ensemble XGBoost and Gaussian Naïve Bayes 
Implementation 

Ensemble XGBoost is adept at handling complex data and 
significantly improves model accuracy. Meanwhile, the NB 
algorithm, respected for its simplicity and efficiency, 
introduces a complementary perspective to the modeling 
process. Algorithm 1 shows the steps taken for the 
implementation of the XGBoost model. 

Algorithm 1: XGBoost Algorithm 

Input: Dataset with features and target 

labels. 

Output: model_predictions, 

model_performance 

Def TrainAndEvaluateXGBoost(Dataset, 

Features, Labels) 

Reprocess Dataset to transform Features 

and Labels 

Training_set, testing_set <- split 

preprocessed_data 

Xgb_model <- initialize XGBoost 

(parameters) 

Train xgb_model on training_set 

Best_params<-

tune_hyperparameters(xgb_model, 

training_set) 

Xgb_model <- reinitialize 

XGBoost(best_params) 

Model_predictions <-predict xgb_model 

using testing_set 
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Model_performance<-evaluate 

model_predictions against testingset 

Labels 

Return model_predictions, 

model_performance 

End def 

D. Training and Testing 

In this step, we train the cybersecurity models to recognize 
and predict cyber threats accurately. The models are taught 
with historical data, which include normal operations and past 
cyberattacks. This training allows the models to identify 
unusual patterns that could indicate a security risk. After 
training, we rigorously test the models to ensure they can detect 
actual threats without confusing them with normal behavior.  

E. Cyber Attack Detection and Classification 

After the model was tested, its predictions were used to 
identify anomalies within the data. Anomalies are unusual 
patterns or data points that stand out from the typical data. 
These could point to errors, unique outliers, or rare and 
significant events that need further investigation. 

F. Final Report 

The research culminates in a final report that outlines the 
methodology, evaluates the model's performance, and shares 
insights from the anomaly detection and classification process. 
It includes key performance metrics such as accuracy, 
precision, recall, and F1 score, along with any 
recommendations or conclusions drawn from the analysis. 

G. The XGBoost Mathematical Model 

1) Preprocessing and Feature Representation for XGBoost 
Implementation 

 Feature Encoding: Encoding methods such as one-hot 
encoding are utilized to transform categorical attributes into 
numerical formats. 

 Normalization: The scale of numerical attributes is adjusted 
to enhance learning efficiency. 

 Label Encoding: Categorical target variables (such as attack 
types) are transformed into numerical codes. 

2) Defining the Objective Function 

In network intrusion detection scenarios, the objective 
function generally includes a classification loss function 
tailored to categorize network behaviors. For tasks 
distinguishing between normal and attack activities (binary 
classification), the binary logistic loss function is frequently 
selected. Conversely, when differentiating normal from various 
kinds of attacks (multi-class classification), a multi-class log 
loss function is utilized. For a set of n training data points and 
K trees, the objective function at iteration t is given by: 
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�

���
��
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where 
 is the log loss function appropriate for binary or multi-

class classification, ��  is the true label for instance i, ��̂
�����

 is 
the predicted probability distribution over classes, for instance i 
from all trees up to the (t-1)

th
, �� is the new tree being added at 

iteration �, and Ω represents the regularization term. 

3) Regularization 

The regularization term in XGBoost modeling is: 

Ω��� =  T + �
" λ 	 $%" 

&

%��
   (2) 

Ω  aids in avoiding overfitting of the model, which is 
essential in cybersecurity contexts, given that False Positives 
(FP), i.e. identifying normal activities as attacks, and False 
Negatives (FN), i.e. overlooking actual attacks as normal can 
lead to significant consequences. In (2), '  is the number of 

leaves in the tree, $% is the score on the � leaf, and   and ( are 

parameters that control the degree of regularization. 

4) Optimization Process 

The optimization process adheres to the standard approach 
utilized by XGBoost. Nonetheless, it is crucial to customize 
specific parameters, such as the learning rate and the trees' 
maximum depth, to suit the cybersecurity environment. This 
customization should take into account the intricacy of attack 
patterns and the need to strike a balance between minimizing 
FP and FN. 

$%∗ =  − *+
,+-.      (3) 

where /%  is the sum of gradients of the loss function for all 

instances in the �  leaf and 0%  is the sum of second-order 

derivatives (Hessians) of the loss function for all instances in 
the � leaf. 

IV. IMPLEMENTATION 

A computer with an AMD Ryzen 9 5900X processor and 
32 GB of DDR4 RAM was used running Windows 10 and 
Python 3.9 as the primary programming language. Jupyter 
3.2.0 served as the interactive development environment, 
providing an efficient workspace for experimentation. Key 
Python libraries played a crucial role. NumPy and Pandas were 
used for numerical computations and data manipulation, while 
Matplotlib and Seaborn enabled data visualization. The Scikit-
learn library was used for ML tasks, including train_test_split 
for dividing data into training and testing sets. Metrics such as 
accuracy_score, precision_score, recall_score, f1_score, and 
confusion_matrix were essential for evaluating model 
performance. The Gaussian NB classifier (GaussianNB) and 
XGBoost classifier (XGBClassifier) were imported to build 
and evaluate classification models. Data handling began with 
loading the datasets into Pandas DataFrames, followed by 
dividing them into training and testing sets using the 
train_test_split. Both Gaussian NB and XGBoost classifiers 
were trained on the training dataset and evaluated on the testing 
dataset using various performance metrics. The results were 
visualized through Matplotlib and Seaborn, providing 
comprehensive insights into the models' accuracy, precision, 
recall, F1 score, and confusion matrices. 
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A. Evaluation Metrics 

The evaluation regarded performance metrics accuracy, 
precision, recall, and F1 score. These metrics are derived from 
the counts of True Positives (TP), True Negatives (TN), False 
Positives (FP), and False Negatives (FN).  

1) Accuracy 

Accuracy reflects the model's overall effectiveness by 
determining the proportion of instances that have been 
correctly classified out of the total instances assessed. 

Accuracy =  78-79
78-79-:8-:9   (4) 

2) Precision 

Precision measures the accuracy of the model in predicting 
positive labels. 

Precision = 78
78-:8    (5) 

3) Recall 

Recall measures the model's ability to correctly identify all 
actual positives. 

Recall = 78
78-:9         (6) 

4) F1 score 

F1 score is the harmonic mean of Precision and Recall 
offering a balanced metric between the two. 

F1 Score =   "∗8EFGHIHJK∗LFGMNN 
8EFGHIHJK-LFGMNN         (7) 

B. Exploring Datasets 

Tables I and II describe the considered datasets and the 
attack classes and types. Tables III and IV display the 
distribution and number of attack classes within the datasets. 

TABLE I.  DESCRIPTION OF KEY FEATURES AND SIZE OF 
KDD99 AND NSL-KDD 

Feature Description 

Duration Length (s) of the connection 

Protocol type Type of protocol used (TCP, UDP, etc.) 

Service Type of service requested or provided 

Flag Status of the connection (normal, error, etc.) 

Failed logins Number of failed login attempts 

Other features 

Number of records 
KDD99:  494,021 records 

NSL-KDD:  125,973 records 

TABLE II.  ATTACK CLASSES AND TYPES IN KDD99 AND 
NSL-KDD 

Attack 

class 
Attack Type 

Normal Data without intrusion. 

DoS 
back, land,Neptune, pod,smurf,teardrop, 

mailbomb,apache2,process table, udpstorm 

U2R 
buffer_overflow, loadmodule, perl, rootkit, httptunnel, 

ps, sqlattack ,xterm 

Probe ipsweep, nmap, portsweep, satan, mscan, saint 

R2L 

ftp_write, guess_passwd, imap, multihop, phf, spy, 

warezclient, warezmaster, sendmail, named, 

snmpgetattack, snmpguess, xlock, xsnoop,worm 

TABLE III.  ATTACK TYPE DISTRIBUTION IN KDD99 

Attack type Count Percentage 

Normal 97278 19.69% 

DoS 391458 79.23% 

R2L 1126 0.22 

U2R 52 0.01% 

Probe 4107 0.83% 

TABLE IV.  ATTACK TYPE DISTRIBUTION IN NSL-KDD  

Attack type Count Percentage 

Normal   67342 53.45% 

DoS   45927 36.45% 

R2L 995 0.78% 

U2R 52 0.04% 

Probe 11656 9.25% 

 

Figures 2 and 3 show the attack distribution over the 
considered datasets.  

 

 

Fig. 2.  KDD-99 attack protocol distribution. 

 

Fig. 3.  NSL-KDD attack protocol distribution. 

V. RESULTS AND DISCUSSION 

A. Results 

1) KDD-99  

In the evaluation of the KDD-99 dataset (Table V and 
Figures 4 and 5), XGBoost showcased exceptional 
performance with high accuracy, precision, recall, and F1 
score, indicating robustness in detecting attacks across various 
types. On the other hand, Gaussian NB exhibited lower 
accuracy and effectiveness, particularly in balancing precision 
and recall, leading to less reliable performance in 
distinguishing attacks from normal behavior. Figure 6 shows 
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the confusion matrix of the results for the XGBoost model. The 
model is very effective at classifying different types of network 
behavior with a high number of TP and a low number of FP 
and FN. The Gaussian NB classifier shows good accuracy in 
detecting DoS attacks and with the least possible errors in 
classification, as can be seen in Figure 7. But it faces 
challenges in accurately identifying Probe, R2L, and U2R 
attacks, as evidenced by high FN and FP. 

TABLE V.  PERFORMANCE OF XGBOOST AND NAIVE 
BAYES ON KDD-99 DATASET 

 XGBoost NB 

Accuracy 99.98% 90.04% 

Precision 98.21% 90.93% 

Recall 99.73% 90.04% 

F1 score 98.94% 89.43% 
 

 

Fig. 4.  Performance of XGBOOST on KDD-99 dataset. 

 

Fig. 5.  Performance of NB on KDD-99 dataset. 

 

Fig. 6.  Confusion matrix for XGBoost on KDD-99 dataset. 

 

Fig. 7.  Confusion matrix for NB on KDD-99 dataset. 

2) NSL-KDD  

In evaluating the models using the NSL-KDD dataset, 
Table VI and Figure 8 and 9 demonstrate that XGBoost 
maintained high performance. Conversely, Gaussian NB 
exhibited lower accuracy, precision, and recall. Figure 10 
presents a confusion matrix for the XGBoost model, which 
effectively classifies Normal, DoS, and Probe attacks with high 
accuracy. On the other hand, as depicted in Figure 11, the 
confusion matrix of the NB model indicates proficient 
identification of Normal behavior and DoS attacks, but it 
reveals challenges in accurately classifying Probe, R2L, and 
U2R attacks, leading to a substantial number of FN. 

TABLE VI.  PERFORMANCE OF XGBOOST AND NAIVE 
BAYES ON NSL-KDD DATASET 

 XGBoost NB 

Accuracy 99.97 39% 

Precision 99.86 61% 

Recall 98.45 39% 

F1 score 99.12 27% 
 

 

Fig. 8.  Performance of NB on the NSL-KDD dataset. 

 

Fig. 9.  Performance of XGBoost on NSL-KDD dataset. 
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Fig. 10.  Confusion matrix for XGBoost on the NSL-KDD dataset. 

 

Fig. 11.  Confusion matrix for NB on the NSL-KDD dataset 

3) Comparative Analysis 

Table VII and Figure 12 compare the performance metrics 
of the XGBoost and NB models across the KDD99 and NSL-
KDD datasets, illustrating their accuracy, precision, recall, and 
F1 score. 

TABLE VII.  FINAL RESULT COMPARISON  

Dataset Model Accuracy Precision Recall F1 Score 

KDD99 
XGBoost 99.98 98.21 99.73 98.94 

NB 90.04 90.93 90.04 89.43 

NSL-KDD 
XGBoost 99.97 99.86 98.45 99.12 

NB 39 61 39 27 
 

 

Fig. 12.  Final result comparison between the XGBoost and NB models 

across the KDD99 and NSL-KDD datasets. 

Table VIII states the comparative analysis of the proposed 
Model with recent relevant research. The proposed approach 
has undergone rigorous evaluation against the KDD-99 and 
NSL-KDD datasets. The results indicate a significant 
enhancement in detection capabilities, with our model 
achieving an outstanding performance on the KDD99 dataset 
and an exemplary performance on NSL-KDD. The 
performance metrics values not only underscore the precision 
of our model but also its ability to minimize FP and FN, a 
crucial aspect of IDS performance. When juxtaposed with the 
findings of [4, 26], our methodology not only surpasses their 
reported metrics, but also sets a new standard for accuracy and 
reliability in the field of cybersecurity, paving the way for more 
resilient and intelligent defense mechanisms against network 
threats. While [4, 26] laid the groundwork with their pioneering 
approaches, our research builds upon and optimizes these 
techniques. Our usage of XGBoost, coupled with extensive 
parameter tuning and feature selection methods, has evidently 
closed the gap in detection rates that previous models faced. 
Moreover, our model's ability to generalize across different 
datasets with minimal performance drop-off underscores its 
practicality for real-world applications. 

TABLE VIII.  PERFORMANCE COMPARISON WITH OTHER 
WORKS 

Ref. Model Metric KDD-99 NSL-KDD 

[26] XGBoost 

Accuracy 94.06 95.50 

Precision 92.94 92.00 

Recall 93.53 98.00 

F1 score 94.50 95.55 

[4] 

Gaussian 

NB 

Accuracy 97.2 - 

Precision 96.3 - 

Recall 97.4 - 

F1 score 96.7 - 

XGBoost 

Accuracy 98.7 - 

Precision 96.1 - 

Recall 97.5 - 

F1 score 96.6 - 

This 

study 

XGBoost 

Accuracy 99.98% 99.97 

Precision 98.21% 99.86 

Recall 99.73% 98.45 

F1 score 98.94% 99.12 

Gaussian 

NB 

Accuracy 90.04% 39% 

Precision 90.93% 61% 

Recall 90.04% 39% 

F1 score 89.43% 27% 

 

The results emphasize key trends and patterns in the data, 
beginning with the clear superiority of XGBoost over NB. 
XGBoost consistently achieved nearly perfect metric scores 
across both datasets, demonstrating its robustness and 
reliability in detecting diverse attack types. NB, on the other 
hand, experienced significant performance drops, particularly 
on the NSL-KDD dataset, underscoring its limitations in 
handling complex data patterns. In terms of effectiveness in 
detecting different attack types, XGBoost excelled across all 
classes, particularly in Normal, DoS, and Probe attacks. It 
maintained a high performance, even for R2L and U2R attacks, 
which have fewer instances. Conversely, NB struggled to 
distinguish between Normal and malicious traffic, leading to 
high FP for Normal and difficulty in classifying the more 
complex R2L and U2R attacks. 



Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15074-15082 15081  
 

www.etasr.com Alenazi & Mishra: Cyberatttack Detection and Classification in IIoT systems using XGBoost and … 

 

A significant unexpected finding was the comparatively 
poor performance of the Gaussian NB model, particularly on 
the NSL-KDD dataset. The model exhibited low accuracy 
(39%) and low F1 scores (27%), especially for certain attack 
categories like R2L and U2R. This result contrasted starkly 
with the XGBoost model, which achieved outstanding 
performance on both datasets, with accuracy nearing 100%. 
The poor performance of Gaussian NB may highlight the 
limitation of assuming feature independence, which often does 
not hold true for complex cybersecurity data. In real-world 
scenarios, feature interactions are crucial for accurately 
identifying nuanced attack patterns. 

The impact of class imbalance was notable in the results, 
with XGBoost effectively handling this challenge due to its 
ensemble learning approach. However, NB struggled, revealing 
that simpler models may require additional preprocessing or 
oversampling techniques to enhance performance. Across both 
datasets, XGBoost consistently outperformed NB, suggesting 
that ensemble methods are generally better suited for managing 
the intricate patterns present in network traffic data. XGBoost's 
scalability was not affected by dataset size, demonstrating its 
ability to scale efficiently. 

The strong performance of XGBoost suggests that 
ensemble methods can better adapt to changing data patterns, 
making them more suitable for modern cybersecurity 
challenges. It also underlines the need for tailored ML 
algorithms to suit the dynamic attack vectors present in IIoT 
networks. 

B. Discussion 

In this study, the XGBoost model consistently 
outperformed NB and previous models across all performance 
metrics. XGBoost achieved an impressive 99.98% accuracy on 
the KDD99 dataset and 99.97% on the NSL-KDD dataset, 
significantly surpassing the results attained in [4, 26]. These 
nearly flawless results show XGBoost's robust capability in 
distinguishing various attack types. In contrast, the NB model 
produced mixed results, performing well on KDD99 with a 
respectable 90.04% accuracy, but struggling with the more 
complex NSL-KDD dataset, only achieving 39% accuracy. 
This outcome aligns with literature findings that indicate that 
NB often faces challenges with imbalanced datasets and 
complex attack vectors due to its assumption of feature 
independence. 

Studies like [26] emphasize the power of hybrid models for 
intrusion detection by blending DL with optimization 
algorithms like Artificial Raindrop and Harmony Search. 
Authors in [16] corroborate this by demonstrating the efficacy 
of classification algorithms like XGBoost when coupled with 
feature selection techniques such as ExtraTrees. This research 
further supports the use of hybrid approaches, which combine 
the strengths of multiple techniques to improve accuracy. 

The XGBoost model's consistently high accuracy signifies 
its potential for real-world cybersecurity applications, as its 
precision and ability to detect various attack types ensure 
robust network security for IIoT and other similar 
environments. Although NB underperforms compared to 

XGBoost, its computational efficiency still makes it valuable in 
environments with limited computing resources. 

However, the NSL-KDD dataset's inherent limitations in 
attack diversity and data imbalance negatively impacted NB's 
performance. Future research should focus on creating new 
datasets that better reflect the evolving cybersecurity landscape 
and provide comprehensive data for accurate model training. 
Despite XGBoost's high performance, it could remain 
susceptible to adversarial attacks, so future studies should 
explore hybrid models that combine ensemble methods with 
adversarial training. 

Integrating explainable AI methods into models like 
XGBoost is crucial for practical applications, as this allows 
cybersecurity analysts to understand and trust the decision-
making process. Our XGBoost model remains powerful due to 
its scalability, adaptability to different datasets, and ability to 
handle data imbalances, while the NB model is best suited for 
straightforward, resource-constrained datasets but struggles 
with complex cybersecurity data. Harnessing hybrid 
approaches that combine classifiers and optimization 
algorithms is promising, and future research should use 
different techniques to develop comprehensive cybersecurity 
solutions 

VI. CONCLUSIONS AND FUTURE WORK 

The study advances the knowledge in the Industrial Internet 
of Things (IIoT) domain by demonstrating the effectiveness of 
advanced machine learning algorithms, specifically XGBoost 
and Naive Bayes, in enhancing cybersecurity measures against 
an array of cyber threats. By overcoming the limitations 
inherent in traditional intrusion detection systems, our research 
highlights the superior accuracy and efficiency of these 
algorithms in detecting anomalies and security breaches within 
IIoT environments. The study's findings validate the robustness 
of the XGBoost algorithm in identifying and mitigating various 
cyber threats, outperforming conventional models in accuracy, 
precision, recall, and F1 score metrics. This advancement is 
crucial given the increasing complexity and volume of cyber-
attacks in the IIoT domain. Moreover, the integration of 
machine learning techniques into cybersecurity frameworks as 
demonstrated in our research, offers a dynamic approach to 
protecting IIoT systems against evolving threats. 

Future avenues of research could explore the fusion of 
different machine learning strategies to foster collaborative and 
distributed intrusion detection systems. This approach could 
further enhance real-time threat detection capabilities while 
maintaining data privacy and network efficiency in the IIoT 
context. Future studies ought to deliver a meticulous dissection 
of data preprocessing and feature selection, alongside the 
deployment of algorithms specifically crafted for IIoT systems. 
It is crucial to compile varied and exhaustive datasets that 
accurately delineate the subtleties of emergent cyber threats, 
particularly those involving advanced persistent threats, to 
ensure comprehensive coverage and robust defense 
mechanisms. 

Our study not only contributes to the academic field but 
also serves as a valuable resource for industry practitioners 
aiming to bolster their cybersecurity defenses. our research thus 
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represents a significant step forward in securing IIoT networks, 
promoting safer and more reliable industrial operations. 

REFERENCES 

[1] S. Pal and Z. Jadidi, "Analysis of Security Issues and Countermeasures 
for the Industrial Internet of Things," Applied Sciences, vol. 11, no. 20, 
Jan. 2021, Art. no. 9393, https://doi.org/10.3390/app11209393. 

[2] S. F. Tan and A. Samsudin, "Recent Technologies, Security 
Countermeasure and Ongoing Challenges of Industrial Internet of 
Things (IIoT): A Survey," Sensors, vol. 21, no. 19, Jan. 2021, Art. no. 
6647, https://doi.org/10.3390/s21196647. 

[3] A. J. G. de Azambuja, C. Plesker, K. Schützer, R. Anderl, B. Schleich, 
and V. R. Almeida, "Artificial Intelligence-Based Cyber Security in the 
Context of Industry 4.0—A Survey," Electronics, vol. 12, no. 8, Jan. 
2023, Art. no. 1920, https://doi.org/10.3390/electronics12081920. 

[4] S. H. Javed, M. B. Ahmad, M. Asif, S. H. Almotiri, K. Masood, and M. 
A. A. Ghamdi, "An Intelligent System to Detect Advanced Persistent 
Threats in Industrial Internet of Things (I-IoT)," Electronics, vol. 11, no. 
5, Jan. 2022, Art. no. 742, https://doi.org/10.3390/electronics11050742. 

[5] T. N. I. Alrumaih, M. J. F. Alenazi, N. A. AlSowaygh, A. A. Humayed, 
and I. A. Alablani, "Cyber resilience in industrial networks: A state of 
the art, challenges, and future directions," Journal of King Saud 
University - Computer and Information Sciences, vol. 35, no. 9, Oct. 
2023, Art. no. 101781, https://doi.org/10.1016/j.jksuci.2023.101781. 

[6] A.-A. Bouramdane, "Cyberattacks in Smart Grids: Challenges and 
Solving the Multi-Criteria Decision-Making for Cybersecurity Options, 
Including Ones That Incorporate Artificial Intelligence, Using an 
Analytical Hierarchy Process," Journal of Cybersecurity and Privacy, 
vol. 3, no. 4, pp. 662–705, Dec. 2023, https://doi.org/10.3390/ 
jcp3040031. 

[7] A. Salam, F. Ullah, F. Amin, and M. Abrar, "Deep Learning Techniques 
for Web-Based Attack Detection in Industry 5.0: A Novel Approach," 
Technologies, vol. 11, no. 4, Aug. 2023, Art. no. 107, https://doi.org/ 
10.3390/technologies11040107. 

[8] M. Ahsan, K. E. Nygard, R. Gomes, M. M. Chowdhury, N. Rifat, and J. 
F. Connolly, "Cybersecurity Threats and Their Mitigation Approaches 
Using Machine Learning—A Review," Journal of Cybersecurity and 
Privacy, vol. 2, no. 3, pp. 527–555, Sep. 2022, https://doi.org/ 
10.3390/jcp2030027. 

[9] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, and L. Shu, "Federated 
Deep Learning for Cyber Security in the Internet of Things: Concepts, 
Applications, and Experimental Analysis," IEEE Access, vol. 9, pp. 
138509–138542, 2021, https://doi.org/10.1109/ACCESS.2021.3118642. 

[10] I. H. Sarker, "Deep Cybersecurity: A Comprehensive Overview from 
Neural Network and Deep Learning Perspective," SN Computer Science, 
vol. 2, no. 3, Mar. 2021, Art. no. 154, https://doi.org/10.1007/s42979-
021-00535-6. 

[11] J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, "Deep 
Learning Based Attack Detection for Cyber-Physical System 
Cybersecurity: A Survey," IEEE/CAA Journal of Automatica Sinica, vol. 
9, no. 3, pp. 377–391, Mar. 2022, https://doi.org/10.1109/ 
JAS.2021.1004261. 

[12] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, "Deep 
learning for cyber security intrusion detection: Approaches, datasets, and 
comparative study," Journal of Information Security and Applications, 
vol. 50, Feb. 2020, Art. no. 102419, https://doi.org/10.1016/j.jisa. 
2019.102419. 

[13] A. G. Putrada, N. Alamsyah, S. F. Pane, and M. N. Fauzan, "XGBoost 
for IDS on WSN Cyber Attacks with Imbalanced Data," in International 
Symposium on Electronics and Smart Devices, Bandung, Indonesia, 
Nov. 2022, pp. 1–7, https://doi.org/10.1109/ISESD56103.2022.9980630. 

[14] J. L. Leevy, J. Hancock, R. Zuech, and T. M. Khoshgoftaar, "Detecting 
cybersecurity attacks across different network features and learners," 
Journal of Big Data, vol. 8, no. 1, Feb. 2021, Art. no. 38, 
https://doi.org/10.1186/s40537-021-00426-w. 

[15] R. Alenezi and S. A. Ludwig, "Explainability of Cybersecurity Threats 
Data Using SHAP," in Symposium Series on Computational Intelligence, 

Orlando, FL, USA, Dec. 2021, pp. 1–10, https://doi.org/10.1109/ 
SSCI50451.2021.9659888. 

[16] G. Abdiyeva-Aliyeva, J. Aliyev, and U. Sadigov, "Application of 
classification algorithms of Machine learning in cybersecurity," 
Procedia Computer Science, vol. 215, pp. 909–919, Jan. 2022, 
https://doi.org/10.1016/j.procs.2022.12.093. 

[17] N. A. Alsharif, S. Mishra, and M. Alshehri, "IDS in IoT using 
Machine  Learning and Blockchain," Engineering, Technology & Applied 
Science Research, vol. 13, no. 4, pp. 11197–11203, Aug. 2023, 
https://doi.org/10.48084/etasr.5992. 

[18] K. Aldriwish, "A Deep Learning Approach for Malware and Software 
Piracy Threat Detection," Engineering, Technology & Applied Science 
Research, vol. 11, no. 6, pp. 7757–7762, Dec. 2021, 
https://doi.org/10.48084/etasr.4412. 

[19] R. Alsulami, B. Alqarni, R. Alshomrani, F. Mashat, and T. Gazdar, "IoT 
Protocol-Enabled IDS based on Machine Learning," Engineering, 
Technology & Applied Science Research, vol. 13, no. 6, pp. 12373–
12380, Dec. 2023, https://doi.org/10.48084/etasr.6421. 

[20] A. B. Garcia, R. F. Babiceanu, and R. Seker, "Artificial Intelligence and 
Machine Learning Approaches For Aviation Cybersecurity: An 
Overview," in Integrated Communications Navigation and Surveillance 
Conference, Dulles, VA, USA, Apr. 2021, pp. 1–8, https://doi.org/ 
10.1109/ICNS52807.2021.9441594. 

[21] A. Sentuna, A. Alsadoon, P. W. C. Prasad, M. Saadeh, and O. H. 
Alsadoon, "A Novel Enhanced Naïve Bayes Posterior Probability 
(ENBPP) Using Machine Learning: Cyber Threat Analysis," Neural 
Processing Letters, vol. 53, no. 1, pp. 177–209, Feb. 2021, 
https://doi.org/10.1007/s11063-020-10381-x. 

[22] S. Ismail and H. Reza, "Evaluation of Naïve Bayesian Algorithms for 
Cyber-Attacks Detection in Wireless Sensor Networks," in IEEE World 
AI IoT Congress, Seattle, WA, USA, Jun. 2022, pp. 283–289, 
https://doi.org/10.1109/AIIoT54504.2022.9817298. 

[23] O. Illiashenko, V. Kharchenko, I. Babeshko, H. Fesenko, and F. Di 
Giandomenico, "Security-Informed Safety Analysis of Autonomous 
Transport Systems Considering AI-Powered Cyberattacks and 
Protection," Entropy, vol. 25, no. 8, Aug. 2023, Art. no. 1123, 
https://doi.org/10.3390/e25081123. 

[24] "SIGKDD : KDD Cup 1999 : Computer network intrusion detection." 
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Dat. 

[25] "NSL-KDD." https://www.kaggle.com/datasets/hassan06/nslkdd. 

[26] M. G. Raj and S. K. Pani, "Intrusion Detection System using Long Short 
Term Memory Classification, Artificial Raindrop Algorithm and 
Harmony Search Algorithm," International Journal of Advanced 
Computer Science and Applications, vol. 13, no. 12, pp. 95–103, 2022, 
https://doi.org/10.14569/IJACSA.2022.0131214. 

 


