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ABSTRACT 

This study develops a new controller for an industrial crane system in a three-dimensional space. First, the 

dynamic model of the industrial crane system with two subsystems, the tower crane and the overhead 

crane is presented. A bidirectional mapping is established between the system's input and output, allowing 

for efficient trajectory generation. Additionally, the design process explicitly considers the system's 

kinematic constraints, ensuring safe and feasible motions. This designed trajectory serves as an input for 

Model Predictive Control (MPC). The MPC is designed with the dual objectives of trajectory tracking and 

payload anti-swing. Finally, simulations are conducted and the results are compared with those of other 

control strategies under different cases to demonstrate the effectiveness of the proposed method. 

Keywords-tower crane; gantry crane; flatness; three-dimensional tower crane; model prediction controller 

I. INTRODUCTION  

Cranes are designed and built into all sizes for different 
applications. The load transportation requires the combination 
of the cooperative motions of the trolley and the lifting and 
lowering motion of the payload. These actions must 
simultaneously be performed to reduce traveling time. 
However, moving at a high speed increases the payload swing 
angles, which can be dangerous to people and surrounding 
structures. While moving at low speed, although the swing 
angle of the payload is reduced, the transport efficiency of the 
three-Dimensional Overhead Crane (3DOC) system is also 
reduced. Therefore, the problem of designing an optimal time-
based motion trajectory for the three-Dimensional Tower Crane 
(3DTC) system is obvious, ensuring both small payload swing 
and system performance. The problem of reducing load 

vibration during the positioning process of a 3DOC system is 
presented in [1, 2]. In addition, a stable time optimization 
technique with input shaping is used to control vibration [3]. 
The online synthetic trajectory design method is proposed in 
[4]. The proposed trajectory ensures the moving position of the 
jib and trolley and ensures the swing angle with the damping 
component. A real-time trajectory design method for a tower 
crane system with variable lengths to raise/lower loads is 
presented in [5]. The time-optimal anti-swing controller is 
suggested in [6] deploying a low-pass filter to achieve minimal 
swing angle and a smooth velocity trajectory to avoid jerk. In 
[7], a time-optimal motion and an energy consumption 
controller for crane systems are developed, in which the 
constraints of the actuator on velocity and acceleration are 
considered. Authors in [8, 9] introduce an optimal trajectory 
solution based on a time polynomial for tower cranes, which 
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aims to minimize transportation time while satisfying various 
constraints. In [10], an optimal controller for reducing 
transition time and path error is developed for a five Degree of 
Freedom (5DOF) tower crane system to compute the transition 
trajectory between two reference points. The mentioned above 
real-time optimal algorithms employ a significant 
computational burden to the controllers, which makes practical 
implementation difficult. To solve this problem, the flatness-
based theory is utilized to construct the motion planning for the 
3DTC system. At this point, the problem becomes motion 
planning for the payload satisfying the constraints. The control 
signal and state variables can be expressed as functions of the 
payload position and its level derivatives. As in [11], a 
backstepping controller combined with trajectory planning is 
proposed to prevent an antisway problem in the overhead crane 
system under wind disturbances. The desired trajectory is 
acquired by solving the optimal parameter problem of flat 
output based on the time-flatness of the underactuated crane 
system and the tracking controller [12, 13]. 

In addition to developing a time-optimal trajectory that 
satisfies the constraints to improve the performance of the 
crane system, the control issue is also of equal concern. 
Adaptive control for a double-pendulum overhead crane with 
an uncertain model and external disturbances is presented in 
[14], guaranteeing the position error of the trolley within a 
permissible bound, and quickly converging to zero. The 
construction of a controller that considers variable cable length 
to improve robustness, accurate tracking, and more effective 
anti-vibration of payloads is suggested in [15, 16]. Adaptive 
fuzzy controllers [17, 18] overcome the uncertainty model and 
compensate for external disturbances in the tower crane 
system. The controller ensures reduced vibration of the payload 
when transported to the desired position. The recommended 
nonlinear adaptive backstepping controller in [19] eliminates 
the pendulum swing and positioning for the crane. An adaptive 
payload lifting/lowering tracking controller for double-
pendulum cranes, which accurately tracks and suppresses the 
oscillation of the double-pendulum while estimating the 
unknown parameters of gravity, is presented in [20]. An 
adaptive input shaper for payload swing control in a tower 
crane with uncertain parameters and obstacle avoidance is 
introduced in [21]. The shaper parameters are updated based on 
the current parameters of the crane. The crane system is moved 
by the drive system, which can only respond within a limit. All 
the above controllers are designed without considering input 
constraints or the conditions of the state variables. The Model 
Predictive Controller (MPC) takes into account the system 
constraints when designing the controller. In [22], an MPC 
approach is built upon the designed system model, which 
minimizes an objective function that integrates both energy 
cost and swing angle. In [23], an MPC controller is 
implemented for the internal control loop of a tower crane. This 
approach generates references that achieve both accurate 
tracking of the desired position and efficient damping of 
payload oscillations. In [24], a distributed MPC scheme for 
3DTC that ensures asymptotic stability by utilizing three 
independent MPC controllers, each designed to be locally 
stabilizing, is introduced. 

Based on the flatness-based theory, this paper presents a 
motion planning approach for the payload that satisfies the 
conditions of the 3DTC system. This designed trajectory serves 
as an input for MPC, with input constraints and system state 
variables to improve the ability to better control the payload. 
By exploiting the system's flatness property, a bidirectional 
mapping is established between the system's input and output, 
allowing for efficient trajectory generation. Additionally, the 
design process explicitly considers the system's kinematic 
constraints, ensuring safe and feasible motions. The MPC 
strategy for the dual objectives of trajectory tracking and 
payload anti-swing control is proposed. The MPC controller 
guarantees the stability of the closed-loop system. 

II. MODEL OF INDUSTRIAL CRANES 

The structures of the 3DOC and 3DTC can be seen in 
Figure 1. The 3DTC consists of three main parts: a supporting 
column and rotating rod with an equivalent moment of inertia 

0J , the car with mass tM , and the load with mass m . To bring 
the load to the desired position, the rotary bar is rotated at an 
angle   and the trolley is moved to the desired position. The 
coordinates of the load will be determined indirectly through 

the vector [ , , , , ]Tx l  q , where x  is the position of the 

cart in the x -axis, l  is the length of the cable,   is the angle 
of the rotation of the load relative to the x -axis, and   is the 
angle of the rotation of the load relative to the y -axis. The 
tower crane is a MIMO system with three control inputs: the 
force acting on the trolley cap Fx, the force acting on the rope 
cap Fl, and the rotating rod  . Then, the control signal vector 

is defined as [ , , ,0,0]Tx lU f f , where xf  and lf  denote 

the force applied to the cart and the force applied to the cable l, 
respectively. The 3DOC system includes a single pendulum 
and a moving trolley: x, y denote the position of the trolley,  , 
  are the swing angles, and the position of the cargo is related 
to the length l of the rope. , ,x y lm m m  are the equivalent masses 

of the rotating part flows , ,x y l , and m  is the load mass. The 
driving forces along the x -direction, the y -direction, and the 

z-direction are , ,x y lf f f , respectively and [ ; ; ;0;0]x y lf f fU  

is the force applied to the 3DOC system, with a state vector 

[ , , , , ]Tx y l  q . 

The Euler–Lagrange approach is followed to derive the 
equations of motion of industrial cranes [25, 26]. The dynamics 
of the system, including friction and disturbance, can be written 
in matrix form as: 

( ) ( , ) ( ) ( , , )b    M q q C q q q G q F q q q D Uɺɺ ɺ ɺ ɺ ɺɺ   (1) 

where 5 5( ) M q  is the mass matrix, 5 5( , ) C q qɺ  is the 

inertial matrix, 5 1( ) G q  is the vector gravity, 
5 1( , , )b
F q q qɺ ɺɺ  denotes vector friction, and 5 1D  is the 

external disturbance. 
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(a) 

 

(b) 

 
Fig. 1.  Industrial crane models: (a) Overhead crane, (b) tower crane. 

III. FLATNESS SYSTEM 

Formulated upon flat theory principles, the proposed 
methodology first forms the load motion and then recalculates 
system states. This two-step approach aims to achieve a dual 
benefit: reducing computational burden and enhancing real-
time control capabilities. Research shows that the tower crane 
system is a flat system, meaning that the reference signal of the 

crane [ , , , , ]Tx l  q  and the control signal 

[ , , ]Ta x lU f f  can be derived from the flat output. 

The assumption is that the payload is a point mass located 
at coordinates [ , , ]l l lx y z  and representing the flat output by 

0 [ , , ]Tl l lx y zy . Therefore, the 3DTC system becomes a flat 
system. This implies that the following conditions hold 
satisfyingly: 

1. The system's flat output 0y  can be expressed as a 

function of the state q , the control input aU , and a 
finite number of its derivatives: 

( )
0 ( , , ,..., )n

a a a y q U U Uɺ  

2. The desired state [ , , , , ]Tq x l    and control input 

[ , , ]Ta x lU f f  can be expressed entirely in terms 

of the flat output 0y , and its derivatives by: 

0 0 0( , , )qgq y y yɺ ɺɺ  

(3) (4)
0 0 0 0 0( , , , , )a fgU y y y y yɺ ɺɺ  

Based on the definition of the flat output, the load's position 
can be determined utilizing the system's states through:  

cos( ) sin( )cos( )

sin( ) sin( )

cos( )cos( )

l

l

l

x x l

y x l

z h l

  
 
 

 


 
  

   (2) 

where h  is the height of the crane. Condition 1 is satisfied by 

(2) which means that ( )
0 ( , , ,..., )n

a a a y q U U Uɺ . According to 
Newton's laws, the crane's motion is described by: 

cos sin

sin

cos cos

l

l

l

mx T

m y T

m z T mg

 

 

 



  

ɺɺ

ɺɺ

ɺɺ

         (3) 

where T  is the tension in the string. Based on the calculations 
performed in (3), the swing angles can be determined from the 
flat output: 

2 2

arctan

arctan
( )

l

l

l

l l

x

z g

y

x g z





  
   

  
  
       

ɺɺ

ɺɺ

ɺɺ

ɺɺ ɺɺ

   (4) 

By replacing the expression from (4) with the load position 
(2), an equation for the cart's position and length can be 
derived: 

2 2

2 2 2

( , , , , , )

( , , , , , )

( ) 1 1
( ) ( )

l l l l l l

l l l l l l

l l
l

l l l

x y z x y z

x x x y z x y z

x y
l h z

g z x g z

 
 



    
   

ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ

ɺɺɺɺ ɺɺ

  (5) 

Similar to 3DTC, the study also demonstrates that 3DOC is 
a flat system. Therefore, the state signals and control input U  
of the 3DOC system is represented as a flat output 0y , with the 
swing angle of the payload described by (4) and the position of 
the cart and the cable described by (6): 

2 2 2
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ɺɺ ɺɺ ɺɺ

ɺɺɺɺ

ɺɺ ɺɺ

ɺɺ ɺɺ
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ɺɺ
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  (6) 

Equations (4)-(6), exhibit that q  satisfies the equation 

0 0 0( , , )qgq y y yɺ ɺɺ , so (3)
0 0 0( , , )qgq y y yɺ ɺ ɺɺ  and 
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(3) (4)
0 0 0( , , )qgq y y yɺɺ ɺɺ . Substituting the values of ,  q qɺ , and qɺɺ  

into (1), the forces affecting the industrial crane system can be 

described by (3) (4)
0 0 0 0 0( , , , , )fg y y y y yɺ ɺɺ . 

The desired trajectory ( )dq  and control input ( )flatU  for 

the crane can be determined based on the position and its 
derivatives of the payload. This is achieved by calculating 

 0 0 0( ), ( ), ( )d q d d dg t t tq y y yɺ ɺɺ  for the desired trajectory and 

 (3) (4)
0 0 0 0 0( ), ( ), ( ), ,flat f d d d d dg t t tU y y y y yɺ ɺɺ  for the control 

signal reference. These calculated values will be used as inputs 
for the following sections. 

IV. MODEL PREDICION CONTROL BASE FLATNESS  

In the 3DTC system, the controller input 
[ , , , 0,0]Tfx fyU  is always constrained due to the actuator 

being powered by a limited power. Therefore, during the 
controller design process, it is necessary to consider the 
limitations of the controller's capabilities. To solve this 
problem, the MPC is employed to control the crane systems. 

Let [ , ]Tz q qɺ . Then, the system becomes: 

 
 1 ,

( ) ( , ) ( )

 
  

    

q
z f z U

M q U C q q q G q D

ɺ

ɺ

ɺ ɺ
 (7) 

In the discrete domain, the system equation becomes: 

 ( 1) ( ), ( )k k k z f z U   

The MPC controller implements the initial portion of the 
finite-horizon optimal solution as the control input for the 
3DTC system. A time-invariant prediction horizon defined as 

p p sT N T , where pN  represents the number of future steps to 

be predicted and sT  is the discrete sampling time between each 
prediction step, was considered. Based on this horizon, the cost 
function was formulated: 

 

2

1

1
2 2

1 2
1 1

1

ˆ( ) ( | )

ˆ ˆ( | ) ( | )

p

p p

N

P
j
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Q R
j j

J k k j k

k j k k j k





 



 

     



 

e

U U

 (8) 

subject to: 

 

max

max

ˆ( | ) ( 1 | ), ( 1 | )

( 1, 2,... )

ˆ( | ) 1,2,... 1

ˆ ( | ) 1,2,...

| |
| |

p

p

p

k j k k j k k j k

j N

k j k j N

k j k j N

     

 

   

  

z f z U

z z

U U

�

�

 (9) 

where ˆ( | )k j kz , ˆ ( | )k j kU  are the predicted state and the 

predicted output at sampling k j , given by the current state 

( ), ( )k kz U , ˆ ˆ( | ) ( | ) ( | )rk j k k j k k j k    e z z  is the 
predictive error output and state, 

1 flat
ˆ ˆ ˆ( | ) ( | ) ( | )k j k k j k k j k     U U U  is the predicted 

input error between the predicted input and the calculated input 
from the flatness at time k j , 

2
ˆ ˆ ˆ( | ) ( | ) ( 1| )k j k k j k k j k      U U U  is the predicted 

input error between the predicted inputs at two consecutive 
times ( 1k j   and k j ), and P , Q , and R  are positive 
definite weighted matrices. The controller deployed sample 
time sT  for solving the loop. At each loop the controller 

minimizes the cost function ( )J k  to archive the control signals 

( )kU . After each cycle, the optimal solution is determined: 

*( ) argmin ( )k J kμ  

with: 

     ˆ ˆ ˆ( ), 1| ,..., 1 |pk k k k k N k     μ U U U . 

The first value *ˆ ( )kU  of *( )kμ  is taken as the control 
signal at period k . This process will be continued in the next 
computation cycles. 

The detailed steps of the closed-loop control are presented 
in Algorithm 1, while Figure 2 depicts the overall control 
scheme. 

Algorithm 1: Nonlinear Model Predictive Control base 
Flatness Algorithm  

1. Using flatness theory, the reference destination is inputted 
to determine the solution:  0 0 0( ), ( ), ( )d q d d dg t t tq y y yɺ ɺɺ  

and the reference control signal: 

 (3) (4)
0 0 0 0 0( ), ( ), ( ), ,d f d d d d dg t t tU y y y y yɺ ɺɺ    

2. Measure the current state ( ), ( )k kt tq qɺ . 

3. The current state ( )ktq  and ( )ktqɺ , the desired trajectory 

 0 0 0( ), ( ), ( )d q d d dg t t tq y y yɺ ɺɺ , and the reference control 

signal  (3) (4)
0 0 0 0 0( ), ( ), ( ), ,d f d d d d dg t t tU y y y y yɺ ɺɺ  are 

applied as inputs to the MPC to find the value of the cost 
function J  that satisfies the accompanying constraints. 

4. A solution to the MPC problem is presented in (8), 
considering the constraints of (9). This process results in a 
(sub-) optimal solution for the control input ( )ktU . 

5. Execute the 3DTC system under the influence of the 
control signal ( )ktU . 

6. After each sampling period sT , update k k st t T   and 
iterate from step 2. 
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Fig. 2.  Closed-loop control system diagram. 

V. SIMULATION RESULTS 

This section refers to the utilization of the 3DTC and 3DOC 
crane models with parameter values: 3.56 kgtM  , 

2.05 kgm  , 2
0 6.78 kgmJ  , 39 Nm/sb  , 89 Nm/sxb  , 

29 Nm/slb  , 29.81 m/sg  , and 12 kgxM  , 5 kgyM  , 

2 kglM  , 0.85 kgm  , 20 Nm/sxD  . 30 Nm/syD  , and 

50 Nm/szD  . The parameters of the MPC base flatness 
(FMPC) are as follows: The number of prediction horizon steps 
is 10pN  , the constraint of the input control force and the 

swing angles are max 100 NU  , max 0.1 rad  , and

max 0.1 rad  , respectively. The reference trajectories of the 
3DTC and 3DOC loads are chosen as:  

[ ; ; ] [0.3 0.02 ;3 0.04 ;0.7 0.3 (0.5 )]load load loadx y z t t sin t     

[ ; ; ]

       [0.1 0.01 ;0.3 0.03 ;0.3 0.5 (0.01 )]
load load loadx y z

t t sin t



  
 

accordingly. The simulation results are verified in the two 
cases, outlined below. 

A. Case 1 

In order to determine the best sampling time for the 
proposed controller, comparison results between 3 different 
cases of sampling time {0.05 s; 0.01 s; 0.005 s}  sT   are 
provided. 

In Figure 3, it can be observed that the tracking and 
antivibration control results of the proposed controller are very 
good for both model systems. The position coordinates of the 
loads (flat outputs) in Figure 4 prove the correctness of the 
selected flat output. These results also disclose that the smaller 
the sampling time is, the better the tracking and anti-vibration 
control results are. However, to ensure smooth operations in 
practice, the sT  value cannot be too small. In this paper, 

0.005 ssT   was considered. 

 

 

(a) 

 

(b) 

 
Fig. 3.  Output signals of the industrial crane model at three different 
values of Ts: (a) Gantry crane, (b) of tower crane. 

B. Case 2 

To show the effectiveness of the FMPC method, this 
section provides the results of the comparative study between 
FMPC and MPC at the same sampling time Ts = 0.005 s. 

Figures 5 and 6 portray the tracking trajectories of the 
systems designed to be time-varying, which proves that the 
trajectory of FMPC is better than that of MPC. This is also 
expressed similarly with load coordinates in Figures 7, 9, and 
10. This difference can be clearly noticed in 3DOC models. 
While the FMPC method gives results close to the reference 
trajectories of the flat outputs, the MPC results in the 
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coordinates of load oscillates around the desired values. The 
vibration angles are also displayed in Figures 5 and 6. Both 
control methods indicate that the swing angle decreases and 
converges to zero. Nevertheless, the FMPC method manifests a 
faster convergence. Figure 8 depicts the control input signals 
for the system. 

 

(a) 

 

(b) 

 
Fig. 4.  xload, yload, and zload at three different values of Ts: (a) Gantry crane, 
(b) of tower crane. 

 
Fig. 5.  Output signals of the gantry crane model for MPC and FMPC. 

 
Fig. 6.  Output signals of tower crane model for MPC and FMPC. 

(a) 

 

(b) 

 
Fig. 7.  xload, yload, and zload for MPC and FMPC: (a) Gantry crane, (b) of 
tower crane. 

VI. RESULT ANALYSIS 

In order to evaluate the effectiveness of the proposed 
control, not only the qualitative results, but also the quantitative 
comparisons of tracking performance and anti-vibration 
between controllers are implemented. The definitions of the 
considered performance indexes on the position and the angular 
errors follow. 
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(a) 

 

(b) 

 
Fig. 8.  Input signals of the industrial crane for MPC and FMPC: (a) gantry 
crane, (b) of tower crane. 

 
Fig. 9.  Load's trajectory of the gantry crane model for MPC and FMPC. 

Integral Squared Errors (ISE) of two types are denoted: 
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Two types of Integral Time-multiplied Absolute Errors are 
determined: 
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where � � �, �, �� and � � �, �  for the gantry crane or � � �, � 
and � � �, �,   for the tower crane, with t denoting the 
simulation time. Since the ISE index penalizes a larger error 
more than a smaller one, it can be observed that the designed 
control law with a lower ISE value provides fast convergence. 
The ITAE index is more focused on the steady-state error than 
the initial response. It should be noted that a lower value of 
these indices indicates a better control result. 

 

 
Fig. 10.  Load's trajectory of the tower crane model for MPC and FMPC. 

In Table I, we can see that the proposed control has the 
lowest errors compared to other methods. This proves that the 
flatness-based model predictive control is superior to its 
predecessors. 

TABLE I.  EVALUATION INDEX OF CONTROLLERS 

Errors States 
FMPC 

!. !# $ 

FMPC 

!. !% $ 

FMPC 

!. !!# $ 
MPC 

ISE 
3DOC 

�, �, �� 0.0075 0.0076 0.0040 0.0945 
�, � 0.273 0.1258 0.2369 0.6273 

ITAE 
3DOC 

�, �, �� 51.86 42.298 43.7664 48.37 
�, � 323.88 161.883 339.406 125.12 

ISE 
3DTC 

�, � 0.0314 0.0063 0.00178 0.0028 
 , �, � 0.0690 0.0290 0.0346 0.0378 

ITAE 
3DTC 

�, � 102.98 85.198 46.9923 49.683 
 , �, � 7.2059 12.196 18.3313 24.847 

 

VII. CONCLUSION 

This research presents an MPC based on flatness for the 
industrial crane. Thanks to the flatness theory, the reference 
trajectory of the state variables and input signals is designed 
based on the flat output of the payload. Besides, through the 
flat output, the calculation cost and the complication of the 
proposed control strategy are reduced. The MPC satisfies the 
limitations of the actuators due to its ability to restrict the state 
and input signals in authorized spaces. This controller also 
certifies the state trajectory converging to the desired trajectory. 
The effectiveness of the proposed controller was demonstrated 
through simulation results. All system state and input signals 
are restricted and closely follow the reference trajectory 
designing from the flat output of the payload, while the swing 

0 10 20
-10

0

10

20

U
x
 [

N
]

FLATNESS MPC FMPC

0 10 20

0

5

10

15

U
y
 [

N
]

0 10 20

t [s]

-20

-10

0

U
l [

N
]



Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15141-15148 15148  
 

www.etasr.com Khanh et al.: Flatness-based Motion Planning and Model Predictive Control of Industrial Cranes 

 

angles are quite small and converge to zero. Finally, 
comparison results with the traditional MPC proved the 
effectiveness and feasibility of the flatness-based MPC. 
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