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ABSTRACT 

This paper presents an innovative approach to the early detection of Android malware, focusing on a 

dynamic pre-exploitation phase identification system. Traditional methods often rely on static thresholding 

to delineate the pre-exploitation phase of malware attacks, which can be insufficient due to the diverse 

behaviors exhibited by various malware families. This study introduces the Dynamic Pre-exploitation 

Boundary Definition and Feature Extraction (DPED-FE) system to address these limitations, which utilizes 

entropy for change detection, thus enabling more accurate and timely identification of potential threats 

before they reach the exploitation phase. A comprehensive analysis of the system's methodology is 

provided, including the use of vector space models with Kullback-Leibler divergence for dynamic 

boundary detection and advanced feature extraction techniques such as Weighted Term Frequency-

Inverse Document Frequency (WF-IDF) to enhance its predictive capabilities. The experimental results 

demonstrate the superior performance of DPED-FE compared to traditional methods, highlighting its 

effectiveness in real-world scenarios. 

Keywords-malware; android; pre-exploitation; machine learning, TF-IDF 

I. INTRODUCTION  

The widespread adoption of mobile technologies and online 
services has led to numerous cybersecurity challenges that 
hinder their seamless integration into various aspects of users' 
lives and businesses. Malicious software, also known as 
malware, poses a significant threat to the confidentiality, 
integrity, and availability of data in mobile systems and 
applications [1]. Mobile malware can be classified into five 
main types: viruses, worms, trojans, spyware, and ransomware. 
These malware categories target various platforms, such as 
mobile devices [2-5]. The history of mobile malware originates 
from the widespread use of mobile devices, particularly with 
the rise of smartphones. Subsequently, mobile malware has 
emerged as a substantial threat to the availability of data and 
services, affecting both individuals and businesses [6, 7]. 
Mobile malware enables attackers to gain access to vast 
resources and personal data [8]. The widespread adoption of 

Android OS has increased the lure of Android malware, which 
explains its prevalence in the threat landscape [9-12]. 

Android malware attacks are specifically designed to 
compromise personal and business data [13]. By 2016, 
approximately 13 million instances of Android malware had 
been identified. The number of malware instances increased to 
26.6 million in 2018 as a result of new technologies that allow 
profitable exploits [14]. Furthermore, according to [15], the 
number of trojans specifically designed to attack mobile 
banking applications increased to 53,947. Moreover, the 
utilization of the dark web, a platform where pilfered data, 
weaknesses in systems, source code for malicious software, 
and tools for developing such software are exchanged, serves 
as an incentive for attackers to generate additional Android 
malware. While it is possible to use traditional PC solutions for 
Android devices, it is important to note that the fundamental 
principles of mobile security are different due to the unique 
computing systems and resource allocations of these devices. 
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Although mobile devices have made advances in terms of 
computing power and capabilities, their limited resources, such 
as battery life, restrict the ability to perform analysis on the 
device itself. 

Early detection of Android malware is crucial to protecting 
users' data. This implies that it is crucial to detect these threats 
during the pre-exploitation phase before any harm. During this 
phase, the malware is installed on the victim's device and starts 
searching for the specific files it aims to attack. Several studies 
have tackled this issue using data collected before an attack 
occurs to develop machine learning-based detection methods 
[16]. These studies define the pre-exploitation phase by using 
either a specific duration of time or a predetermined set of API 
calls. To successfully detect Android malware before it can 
compromise a system, it is crucial to accurately identify attacks 
promptly [6, 9, 17-19]. To accomplish this objective, the 
detection solution should prioritize the pre-compromise phase. 
However, identifying Android malware in the pre-compromise 
phase poses a significant challenge [20]. Challenges in early 
detection arise from the ambiguous definition of the boundary 
between the pre-compromise phase, the lack of sufficient early 
attack patterns, and the complexity of high-dimensional data 
[21-24]. For accurate early detection, it is crucial to have a 
sufficient amount of data containing various attack patterns to 
train the model [25]. 

Several studies have examined the effectiveness of using 
the initial data collected during the early stages of malware 
attacks [16, 17], using fixed thresholding to delineate the initial 
stage. Two forms of thresholding have been used, specifically 
time-based and API-based. The time-based approach 
establishes a predetermined duration for the pre-exploitation 
phase, where data are gathered from the active process. 
Similarly, the API-based approach establishes a collection of 
APIs as the demarcation point that distinguishes malware 
attacks in the pre-exploitation phase from the subsequent 
phases. However, the use of fixed thresholding assumes that all 
malware attacks exhibit identical attack behavior that can be 
easily detected. However, this assumption does not hold for 
many Android malware families. The onset of exploitation can 
vary even between members of the same family due to the 
polymorphism and metamorphism techniques employed by 
malware to avoid detection [22, 23, 26]. This makes it difficult 
to accurately determine the boundary between the pre-
exploitation phase and the data requirements for extracting 
relevant features and training accurate detection models.  

The dynamic identification of pre-exploitation phases in 
malware is a critical aspect of early detection systems. Previous 
studies, such as [27], introduced a pseudo feedback-based 
annotated Term Frequency-Inverse Document Frequency (TF-
IDF) technique for dynamic crypto-ransomware pre-encryption 
boundary delineation and feature extraction. Although this 
approach provides a solid foundation, it focuses primarily on 
ransomware and uses static thresholding for boundary 
detection. This study extends this approach by introducing the 
Dynamic Pre-exploitation Boundary Definition and Feature 
Extraction (DPED-FE) system, which uses entropy for change 
detection. This approach enables more accurate and timely 
identification of potential threats across various types of 

Android malware before they reach the exploitation phase. To 
this end, this is a novel entropy-based approach to dynamically 
determine the pre-exploitation boundary in ransomware 
detection. The contributions of this study are threefold: 

 Dynamic Entropy Integration: Integrate entropy into the 
calculation of feedback, dynamically adjusting to the 
unpredictability of observed features. This approach 
enhances the detection of pre-exploitation activities by 
accurately identifying transitions in behavior that precede 
ransomware attacks. 

 Enhanced Rocchio Feedback Mechanism: By incorporating 
entropy into the Rocchio Feedback equation, the traditional 
feedback mechanism is refined to account for the dynamic 
nature of malware behavior. This modification allows for 
more precise differentiation between relevant and irrelevant 
document vectors, improving the accuracy of the detection 
system. 

 Comprehensive Evaluation: Extensive experiments were 
conducted using real-world datasets to validate the 
effectiveness of the proposed method. The results 
demonstrate significant improvements in the early detection 
of ransomware activities, reducing false positives and 
enhancing overall system robustness. 

II. RELATED WORKS 

Detection during the early stages of a malware attack is 
crucial to preventing the full execution of malicious activities. 
In the context of ransomware, which is a type of malware that 
encrypts files and demands a ransom for decryption, studies 
have focused on developing techniques to detect it in the pre-
encryption stage, where the encryption process has not yet been 
completed [27-31]. Early detection is essential to stop the 
encryption process and prevent data loss or system compromise 
[28]. Various models and algorithms have been proposed to 
enhance the accuracy and performance of pre-encryption 
ransomware detection. For instance, eMIFS is a normalized 
hyperbolic ransomware deterrence model that utilizes the 
hyperbolic tangent function to individually evaluate features, 
improving the representation of feature relevance and 
redundancy [29]. Additionally, a pseudo feedback-based 
annotated TF-IDF technique has been introduced for dynamic 
crypto-ransomware pre-encryption boundary delineation and 
feature extraction, addressing the challenge of limited data 
availability in the early stages of attacks [27].  

Prevention mechanisms, such as pre-encryption detection 
algorithms, play a vital role in disrupting ransomware 
operations before they can fully encrypt files and demand 
ransom [30]. Advanced detection methods, such as those that 
focus on ransomware anti-analysis tactics, contribute to the 
early identification of evolving threats in the dynamic 
cybersecurity landscape [31]. Moreover, the integration of 
machine learning algorithms and cryptographic techniques has 
shown promise in improving pre-encryption ransomware 
detection. Models such as RAPPER (Ransomware Prevention 
via Performance Counters) leverage performance counters to 
detect ransomware threats early, particularly by identifying 
patterns associated with public-key cryptosystems used in 
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encryption processes [20]. By combining machine learning 
with cryptographic algorithms, researchers aim to analyze 
attack patterns and enhance detection capabilities [32]. 
Furthermore, some studies have explored the use of behavioral 
analysis, entropy estimation, and file entropy analysis to detect 
ransomware in the pre-encryption stage. Behavioral feature 
analysis provides insights into ransomware actions during the 
destruction phase, helping to develop robust detection systems 
[33]. File entropy analysis coupled with machine learning 
offers a high detection rate with low false positives and false 
negatives, improving the overall effectiveness of ransomware 
detection mechanisms [34]. 

In [27], a pseudo feedback-based annotated TF-IDF 
technique was proposed to delineate the pre-encryption 
boundaries of crypto-ransomware. This approach relies on 
static thresholding and focuses on ransomware-specific 
features. In contrast, the proposed DPED-FE system employs a 
dynamic boundary definition using entropy for change 
detection, which allows it to adapt to different malware 
behaviors. Additionally, the proposed feature extraction 
method incorporates advanced techniques such as Weighted 
Term Frequency-Inverse Document Frequency (WF-IDF), 
enhancing the model's predictive capabilities. 

III. METHODOLOGY 

Unlike the fixed thresholding used in previous studies, such 
as [27], the proposed DPED-FE scheme employs entropy for 
change detection to dynamically identify the transition from 
pre-exploitation to exploitation phases. This approach ensures 
the accurate collection of pre-exploitation data regardless of the 
varied time required for each sample to initiate actual sabotage. 
Furthermore, the improved data vectorization for feature 
extraction leverages the Rocchio Relevance Feedback (RRF) 
and WF-IDF techniques, providing a more robust framework 
for early detection. This allows for the detection of the phase 
change exhibited by malware during the transition from pre-
exploitation to exploitation. The fundamental justification is 
that the malware must undergo certain crucial procedures to 
prepare for actual harm [27, 28]. Therefore, this transition 
could indicate the imminent onset of an exploitation process. 
This enables the convenient and accurate gathering of pre-
exploitation data, irrespective of the differing time needed for 
each sample to carry out the actual sabotage. By utilizing these 
data, it is possible to extract representative pre-exploitation 
attack characteristics, which can then be used to develop more 
powerful and accurate early detection systems. The DPED-FE 
system consists of two essential elements: Dynamic Pre-
exploitation Boundary Definition (DPED) and Features 
Extraction (FE) techniques. The DPBD defines the limits of the 
initial phase of Android malware attacks, while FE extracts 
important features from this phase to train the early detection 
model. 

A. Raw Data Collection 

To obtain up-to-date information from the malware samples 
in the collection, each sample was transmitted to the sandbox 
device for dynamic analysis [29]. Upon submission of a 
sample, the guest machine sandbox agent attaches itself to the 
process initiated by that sample, capturing all runtime 

information, including API calls, network traffic, file 
operations, and cryptographic operations. The data are stored in 
a trace file specifically assigned to that sample. These files 
serve as the foundation for constructing the dataset from which 
attributes are extracted and chosen. After each run, the guest 
machine was reverted to its initial uninfected state to ensure 
that the subsequent samples were not tainted by previous ones. 
Only API calls and their corresponding file operations, 
encryption, and network activities were preserved in the 
runtime data collected from each trace file, while all other data 
were discarded. These data are used to establish the pre-
exploitation boundary and extract features. 

B. Dynamic Boundary Definition Technique for Pre-
Exploitation Data Extraction 

The DEBD technique was developed and utilized by 
coupling the vector space model with Kullback-Leibler 
divergence (relative entropy) to accurately define the boundary 
of the pre-exploitation phase. As a result, the pre-exploitation 
boundary vector was created, which includes all the data 
related to exploitation used by Android malware during their 
attacks. This vector defines the boundary of the malware's pre-
exploitation phase by identifying a behavioral change that 
occurs when transitioning from the pre-exploitation to the 
exploitation phase in the lifecycle of the malware. The 
fundamental concept at play here is that a significant alteration 
in malware behavior serves as an indication of an imminent act 
of sabotage. 

The utilization of DEBD deviates substantially from the 
static approach employed in previous studies. The system 
monitors the start of exploitation for each specific case, 
accurately determining the boundary of the pre-exploitation 
phase by analyzing the sudden shift in malware behavior. 
DEBD initiates the process of creating the boundary vector. 
Subsequently, the data for each occurrence are divided into 
multiple dynamic windows, and relative entropy is then 
computed for every window. The Euclidean distance is used to 
measure the distance between adjacent windows. If the distance 
exceeds a specific threshold, it is considered a transition point 
that may indicate a shift in behavior. The threshold is 
determined by calculating the average of the vector values. Any 
distance that exceeds this average is classified as a boundary 
point. Subsequently, the collection of important points is 
formed as a boundary vector. Using this vector as input, a 
model is trained and subsequently employed to detect 
behavioral changes. 

This approach integrates entropy to dynamically determine 
the pre-exploitation boundary in malware detection. Let 
� = {��, ��, … , �	} represent the set of monitored features over 
time, where ��  is the value of the ith feature at a given time. 
Entropy �(�) measures the uncertainty or randomness within 
the feature set �. For a discrete random variable, entropy is 
defined as: 

�(�) = − ∑  	
��� �(��)����(��)   (1) 

where �(��)  is the probability of occurrence of �� . To 
dynamically detect changes in feature behavior, entropy is 
calculated over a sliding window. Let �� be the window of size 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16252-16259 16255  
 

www.etasr.com Al Besher et al.: An Improved Pre-Exploitation Detection Model for Android Malware Attacks 

 

� at time �, containing the values {������, ������, . . . , ��}. The 
entropy of the window �� is given by: 

�(��)  =  ∑  �
�������  �(��) ��� �(��)  (2) 

To detect significant changes, the difference in entropy 
between consecutive windows is calculated: 

��� = �(��) − �(����)   (3) 

A threshold   is set to identify significant changes. If |���| 
exceeds  , it indicates a potential boundary that can be 
expressed as a boundary detected at � if |���| >  . The time � 
at which the boundary is detected marks the transition from the 
pre-exploitation to the exploitation phase. The pre-exploitation 
boundary �# is defined as: 

�# = {�  ∣ ∣ ��� ∣>  }    (4) 

For a given feature set � observed over time, entropy �(�) 
quantifies the uncertainty or randomness in the data. In the 
context of malware detection, higher entropy indicates greater 
unpredictability, which may signal the transition to exploitation 
behavior. 

To dynamically monitor changes, entropy is calculated over 
a sliding window of size � . By examining the difference in 
entropy ���  between consecutive windows, significant 
changes in the data behavior can be identified. A significant 
change in entropy, exceeding a predefined threshold  , 
suggests a transition from pre-exploitation to exploitation. By 
detecting significant changes in entropy, the pre-exploitation 
boundary �#  can be dynamically determined. This approach 
ensures that the detection system adapts to different malware 
behaviors and accurately identifies the transition point. This 
system uses entropy to dynamically define the pre-exploitation 
boundary by monitoring changes in the randomness of the 
observed features. By calculating entropy over sliding windows 
and identifying significant changes, the system can adapt to 
various malware behaviors, ensuring timely and accurate 
detection of the pre-exploitation phase. This method improves 
the robustness of the detection mechanism and addresses the 
limitations of static threshold-based approaches. 

In the beginning, a process of splitting the data into moving 
windows is initiated to create the boundary vector &# , in 
accordance with [35]. Then, &#  is employed to segregate the 
data in each trace file into various distinct sets: '�, '�, …, '	. 
The set whose boundary is higher than the threshold is 
considered a border set, and denoted as '# . The border set 
'# together with all preceding sets ('�, '�, … , '#�� ) are then 
fused into one set called pre-exploitation dataset, from which 
the features will be extracted. 

C. Improved Data Vectorization for Extracting Pre-
Exploitation Features 

The pre-exploitation boundary is the specific point at which 
Android malware initiates the actual harm by utilizing a series 
of system calls and libraries. These activities encompass not 
only the explicit APIs but also other tasks, such as file 
operations and encryption, that are present within the '# subset. 
This particular subset is the specific area where the elements of 
the pre-exploitation boundary vector can be found. However, 

not all data in '# are connected to the malicious intentions of 
the malware, thus it is not suitable to treat them all equally. 
Engaging in such behavior may result in their detection early 
on in the trace file, consequently excluding a significant portion 
of the pre-exploitation data and depriving the model of crucial 
attack patterns. The RRF technique is employed to calculate the 
weight of each feature in the subset and only retain those with 
weights surpassing a predetermined threshold, thereby 
eliminating unrelated data. This technique differs from the 
original RRF, which evaluates the relevance of query terms 
using:  

() =  �

	 
 ∑ *+, − �

-�	 
    (1) 

where () denotes the feedback vector, N represents the size of 
the '# , and .  signifies the number of relevant trace files. 
Additionally, ∑ *+,  is the set of relevant elements, while ∑ *+�,  
is the set of irrelevant elements. 

The RRF technique uses the TF-IDF approach to create two 
vectors, known as the relevant and irrelevant vectors. The 
pertinent vector is created by implementing the TF-IDF on the 
subset '# . This vector is considered relevant, as it is derived 
from the data within the pre-exploitation set, encompassing all 
the data collected from the beginning until the moment the 
actual sabotage commences. On the other hand, the irrelevant 
vector is created by applying TF-IDF to both the post-
exploitation data { '/  such that '/ = '� ∩ '# }, where '� 
represents the entire data collected from the beginning to the 
end of the attack, and combining the subsets. Following the 
creation of these vectors, the enhanced Rocchio technique is 
applied, formulated as:  

() =  (# + �

-
 (∑ *+, − ∑ *+�, )   (5) 

In this context, () represents the feedback vector, and (# is 
the original or initial vector. The relevant set ∑ *+,  corresponds 
to the '# subset in this particular case, while the irrelevant set 
∑ *+�, j corresponds to '/. 

D. A Weighted Term Frequency-Inverse Document Frequency 
Technique for Extracting Pre-Exploitation Features 

As previously mentioned, a difficulty arises when using the 
traditional TF-IDF method to calculate the IDF term for pre-
exploitation data. More precisely, a particular characteristic 
may have a low Document Frequency (DF) value when only 
considering the pre-exploitation data, but a high DF value when 
taking into account the entire dataset. In this situation, the TF-
IDF value of that particular feature will be increased in the pre-
exploitation data but decreased across the entire dataset. 
Consequently, the feature would be given excessive 
significance or emphasis solely based on the data before it is 
exploited, falsely implying that it is a feature specific to 
attacks. Actually, this feature may have broad application for 
all data and should thus be given a lower TF-IDF score. 

These versatile features provide only a small amount of 
predictive information and could be used by malicious software 
to make things more confusing. Therefore, it is appropriate to 
impose penalties on them, as emphasized in [36]. The TF-IDF 
technique addresses this issue by utilizing annotations to 
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highlight the APIs that are more relevant to the pre-exploitation 
phase, while excluding general-purpose features that are less 
applicable to this particular stage. Equation (6) presents the 
standard formula for calculating TF-IDF. 

234�5�
+6 = �734�5�

+ 6 ∙ log -

�<)(=/�>)
  (6) 

where 4�5� represents the kth feature and �7(4�5�
+) denotes the 

term frequency, which indicates how frequently the kth feature 
is observed by the malware instance ?+ within the subset. On 
the other hand, 5*7(4�5�)  represents the calculation of inverse 
document frequency. It determines the number of occurrences 
of malware instances ?+  within the subset known as the kth 
feature, at least once. Here, N represents the total number of 
malware instances within the subset. Before computing the 
value of 2(4�5�

+), each �7(4�5�
+ ) undergoes normalization to 

prevent TF-IDF from giving excessive preference to 
uninformative APIs in lengthy trace files compared to the more 
insightful ones found in shorter trace files. The normalization 
process is executed based on (7), where the term frequency of 
each instance was divided by the length of �734�5�

+6 (the trace 
file of malware instance ?+). Therefore, the normalized TF-IDF 
is calculated according to (8). 

�7@3��
+6 =

�)(A>
B )

CD	E�F(�,B)
    (7) 

2@3��
+6 = �7@3��

+6 ∙ ��� -

�<)(A>)
   (8) 

In contrast to the traditional TF-IDF approach, WF-IDF 
distinguishes the features that are involved in the pre-
exploitation phase from those that are activated during and 
after exploitation. WF-IDF can determine if a particular feature 
is commonly used, even if it has a high document frequency 
weight in the pre-encryption data. The WF-IDF process begins 
by assigning tags to each feature in the primary dataset, based 
on its position in the trace file in relation to the pre-exploitation 
boundary (#. Utilizing the boundary vector (#, every feature is 
examined in relation to (# to determine whether it's situated 
before or after the boundary. Specifically, the features in the 
original dataset are reviewed sequentially and labeled as b until 
any (#  entry is encountered. Following the discovery of an 
(# entry, the annotation switches to p for all subsequent 
features. 

ALGORITHM 1: WEIGHTED TF-IDF (WF-IDF) TECHNIQUE 

Input: G( = {�?�, �?�, … . . , �?H}; G( denotes a corpus of 
trace files of the of I programs (benign and 

malware); �?� is the trace file of the �th
 instance 

in the corpus G(. 
 

Output: J4�4/,D the pre-exploitation dataset. 

 

1: Begin 

2: For each �?� in G(:  
3:   For each KLM in �?�:   

4:     While 4.N(&#) is not encountered: 
5:       KLMOP,,D	� ← KLM 
6:       K..��4�R(KLMOP,,D	�  , �?R) 
7:       KLMOP,,D	� + + 

8: S ←  .�?4I(G() 
9: For each API-gram(4�5�) in �?�: 

10:  2(4�5�) = 4�7(4�5�) ∙ log -

�<)(=/�>)
  

11:J4�4/,D ←  4GS − MJS(S) 
12:End 

As shown in (4), WF-IDF penalizes the common APIs that 
are called by most or all instances. These APIs are considered 
general-purpose APIs that do not add information about the 
target type. Therefore, the denominator of the equation 
increases according to the number of instances that contain the 
feature 7�, decreasing the value of 2(7+

�
 
). The pre-encryption 

WF-IDF weights are stored in a vector that represents the pre-
encryption phase of the malware lifecycle. Algorithm 1 shows 
the pseudocode of the feature extraction using the WF-IDF 
technique. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Environment Setup 

The experiments were carried out in a controlled 
environment developed in Cuckoo Sandbox. Both malware and 
normal applications were included in the analysis. The malware 
applications were downloaded from virusshare.com, a popular 
and publicly accessible malware repository. Android malware 
and benign application files were executed separately. For each 
program, the data was stored in a trace file unique to that 
particular instance. Trace files contain the runtime utilization of 
the program being analyzed, including API, file operations, and 
network traffic. Following each execution, the guest machine 
was restored to its initial, unmodified state. The extracted data 
underwent several preprocessing steps to prepare for modeling. 
Those steps include noise removal, vectorization, 
normalization, and imputation. The proposed techniques were 
developed using a variety of Python libraries, including 
Sklearn, Pandas, and Numpy. 

B. Experimental Results of Dynamic Pre-Exploitation 
Boundary Definition Technique 

To assess the accuracy of the DPED technique in detecting 
the pre-encryption boundary, an event-based method, proposed 
in [9], was employed to identify cryptographic activities within 
the pre-exploitation data. The percentage of malware instances 
that started cryptography-related tasks before the identified 
limit was determined. The same method was applied to datasets 
generated using the time-based thresholding techniques 
proposed in [9, 17, 21]. To evaluate the efficiency of the DPED 
method, the findings of [9, 17, 21] were used, as shown in 
Figure 1. The x-axis depicts the different thresholding 
techniques, while the y-axis indicates the occurrences that 
exceeded the limit. Comparative analysis revealed that the 
DPED technique demonstrated superior accuracy in identifying 
the pre-exploitation boundaries compared to the other studies. 
It only failed to detect 8% of malware samples, while the 
alternative approaches missed 18%, 29%, and 35% of the 
samples, respectively. 

Figure 2 shows a comparative analysis of various studies 
utilizing logistic regression, including the proposed method and 
[9, 16, 21]. The proposed method demonstrated the highest 
accuracy of 0.88, closely followed by [16] with 0.85, while [9] 
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and [21] achieved 0.83. The proposed method achieved the 
highest F1 score (0.92), while [21] achieved the lowest F1 
score (0.87). The proposed method exhibits the highest level of 
precision (0.9), while the other methods were relatively close 
but lower. It should be noted that the proposed method and [16] 
exhibited the highest recall values, 0.94 and 0.93, respectively, 
indicating a better ability to identify all pertinent instances. The 
proposed method demonstrated the highest ROC_AUC (0.8), 
which is a measure of the model's capacity to distinguish 
between classes. In contrast, the other studies exhibited a lower 
level of robustness in this regard. In general, the proposed 
method consistently achieved better results than the others in 
terms of various metrics, indicating that it may be a more 
efficient approach for this specific problem. However, the other 
three studies demonstrated varying levels of effectiveness in 
different aspects of performance. 

 

 
Fig. 1.  Comparison of pre-exploitation boundary error between the 
proposed and related works. 

 
Fig. 2.  Classification accuracy comparison between the dataset extracted 
using proposed DPED and datasets of the related works using LR. 

Figure 3 presents a comparison by employing Support 
Vector Machines (SVM) in the proposed approach and [9, 16, 
21]. The proposed method achieved higher accuracy (0.93) and 
F1 score (0.948). The other studies also showed similar but 
slightly lower accuracy scores. The proposed method achieved 
the highest precision of 0.916 and an impressive recall of 0.99, 
indicating high sensitivity and excellent ability to retrieve all 
relevant instances. In [16] and [21], significant recall was 
achieved, although to a lesser extent. The proposed method 
scored the highest ROC_AUC (0.855), indicating its superior 
discriminatory ability. In general, the proposed method 
consistently demonstrated strong and reliable performance, 
surpassing the other studies in all measurements. 

Figure 4 shows a comparison using Deep Belief Networks 
(DBN). The proposed method demonstrated superior 
performance in all categories, surpassing [9], [16], and [21]. 
The F1 score of the proposed method was 0.959, indicating a 
balanced performance between false positives and negatives, 
and was closely followed by the other methods. It also 
demonstrated its strength in accurately identifying positive 
instances, as evidenced by its highest precision (0.942) and 
recall (0.974). Finally, the proposed method achieved the 
highest ROC_AUC score (0.893), indicating its superior ability 
to effectively distinguish between positive and negative classes. 
The proposed method consistently outperformed the other 
studies in all metrics, demonstrating its robustness and 
efficiency when using DBN. The other studies demonstrate 
comparable results but do not achieve the same level of 
effectiveness. 

 

 
Fig. 3.  Classification accuracy between the dataset extracted using the 
proposed DPED and datasets of the other studies using SVM. 

 
Fig. 4.  Classification accuracy comparison in the dataset extracted using 
the proposed DPED and datasets of related works using DBN. 

Figure 5 compares the same models using Convolutional 
Neural Networks (CNN). The proposed method achieved 0.931 
accuracy, surpassing that of [16] (0.901), [21] (0.889), and [9] 
(0.906). Once again, the proposed method outperformed the 
others in terms of F1 score, achieving 0.949 and demonstrating 
a well-balanced performance in both precision and recall. The 
model in [16] scored 0.917, the one in [21] scored 0.912, and 
the one in [9] scored 0.91. The proposed method achieved 
0.937 precision, while the other methods ranged from 0.874 to 
0.893. The proposed method demonstrated exceptional 
performance in identifying all relevant instances, with a recall 
value of 0.966. In contrast, the other studies exhibited results 
within the range of 0.91 to 0.93. It also achieved the highest 
ROC_AUC score of 0.87, indicating superior discriminative 
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ability between classes. The other methods had ROC_AUC 
scores ranging from 0.76 to 0.833. Hence, using CNN, the 
proposed method demonstrated superiority in all evaluated 
metrics, showcasing its effectiveness and resilience. 

 

 
Fig. 5.  Classification accuracy comparison between the dataset extracted 
using the proposed DPED and datasets of the related works using CNN. 

Figure 6 compares the performance of various models using 
a Multilayer Perceptron (MLP). Curiously, the proposed 
method did not excel in all categories, indicating a more 
intricate range of performance. It achieved the highest level of 
accuracy (0.916), followed by [16] (0.895), [21] (0.879), and 
[9] (0.853). The F1 score provides a more detailed and nuanced 
evaluation, where the model in [16] achieved the highest score 
of 0.938, surpassing the proposed method (0.932). The models 
in [21] and [9] scored 0.9 and 0.884, respectively. Therefore, 
the model in [16] demonstrated an improved equilibrium 
between precision and recall. The proposed method 
demonstrated the highest level of precision, scoring 0.9, closely 
followed by [16] (0.892). This metric highlights the capacity of 
the proposed method to accurately detect positive instances. 
Surprisingly, the method in [16] had the highest recall score 
(0.986), indicating that it was highly effective in capturing all 
relevant instances. The proposed method followed, achieving 
0.947, while the others fell behind. The ROC_AUC scores for 
the proposed method (0.842) and [16] (0.837) are closely 
matched, suggesting that they have a similar ability to 
distinguish between classes. Although the proposed method 
demonstrates strong accuracy, precision, and ROC_AUC, the 
performance analysis reveals a more nuanced landscape, with 
the method in [16] surpassing it in terms of F1 score and recall. 
This emphasizes the importance of thoroughly contemplating 
the particular assessment criteria that are most relevant to a 
given application or context. 

 

 
Fig. 6.  Classification accuracy comparison in the dataset extracted using 
the proposed DPED and the datasets of the related works using MLP. 

V. CONCLUSION 

This study introduced a novel entropy-based approach for 
dynamically determining the pre-exploitation boundary in 
ransomware detection on Android devices, addressing the 
limitations of traditional detection techniques. By incorporating 
entropy into the Rocchio feedback mechanism, a dynamic 
feedback process was developed, which adjusts based on the 
unpredictability of observed features, significantly improving 
the detection of pre-exploitation activities. The proposed 
method calculates entropy over sliding windows and monitors 
significant changes, ensuring timely and accurate detection of 
ransomware behaviors. A comprehensive evaluation using real-
world datasets demonstrated the effectiveness of the proposed 
approach, showing notable improvements in early detection 
and reduction of false positives. The integration of entropy 
provides a robust framework for dynamically refining 
feedback, enhancing the precision and adaptability of the 
detection system. This work lays the groundwork for future 
research and development in malware detection, with 
implications for protecting against evolving cyber threats. Its 
contributions highlight the potential for further refinement and 
application to other types of malware and the integration of 
machine-learning techniques to enhance the system's accuracy 
and adaptability. By advancing the field of Android malware 
detection, the proposed entropy-based approach offers a 
promising direction for improving cybersecurity in the rapidly 
evolving landscape of mobile threats. 
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