
Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16252-16259 16252

www.etasr.com Al Besher et al.: An Improved Pre-Exploitation Detection Model for Android Malware Attacks

An Improved Pre-Exploitation Detection Model
for Android Malware Attacks

Hamad Saleh A. Al Besher

Applied College, Najran University, Saudi Arabia | Faculty of Computing, Universiti Teknologi
Malaysia, Malaysia
hsalbeshir@nu.edu.sa (corresponding author)

Mohd Fo'ad Bin Rohani

Faculty of Computing, Universiti Teknologi Malaysia, Malaysia
foad@utm.my

Bander Ali Saleh Al-rimy

School of Computing, University of Portsmouth, Buckingham Building, Lion Terrace, Portsmouth PO1
3HE, United Kingdom
bander.al-rimy@port.ac.uk

Received: 27 April 2024 | Revised: 17 June 2024 | Accepted: 25 June 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7661

ABSTRACT

This paper presents an innovative approach to the early detection of Android malware, focusing on a

dynamic pre-exploitation phase identification system. Traditional methods often rely on static thresholding

to delineate the pre-exploitation phase of malware attacks, which can be insufficient due to the diverse

behaviors exhibited by various malware families. This study introduces the Dynamic Pre-exploitation

Boundary Definition and Feature Extraction (DPED-FE) system to address these limitations, which utilizes

entropy for change detection, thus enabling more accurate and timely identification of potential threats

before they reach the exploitation phase. A comprehensive analysis of the system's methodology is

provided, including the use of vector space models with Kullback-Leibler divergence for dynamic

boundary detection and advanced feature extraction techniques such as Weighted Term Frequency-

Inverse Document Frequency (WF-IDF) to enhance its predictive capabilities. The experimental results

demonstrate the superior performance of DPED-FE compared to traditional methods, highlighting its

effectiveness in real-world scenarios.

Keywords-malware; android; pre-exploitation; machine learning, TF-IDF

I. INTRODUCTION

The widespread adoption of mobile technologies and online
services has led to numerous cybersecurity challenges that
hinder their seamless integration into various aspects of users'
lives and businesses. Malicious software, also known as
malware, poses a significant threat to the confidentiality,
integrity, and availability of data in mobile systems and
applications [1]. Mobile malware can be classified into five
main types: viruses, worms, trojans, spyware, and ransomware.
These malware categories target various platforms, such as
mobile devices [2-5]. The history of mobile malware originates
from the widespread use of mobile devices, particularly with
the rise of smartphones. Subsequently, mobile malware has
emerged as a substantial threat to the availability of data and
services, affecting both individuals and businesses [6, 7].
Mobile malware enables attackers to gain access to vast
resources and personal data [8]. The widespread adoption of

Android OS has increased the lure of Android malware, which
explains its prevalence in the threat landscape [9-12].

Android malware attacks are specifically designed to
compromise personal and business data [13]. By 2016,
approximately 13 million instances of Android malware had
been identified. The number of malware instances increased to
26.6 million in 2018 as a result of new technologies that allow
profitable exploits [14]. Furthermore, according to [15], the
number of trojans specifically designed to attack mobile
banking applications increased to 53,947. Moreover, the
utilization of the dark web, a platform where pilfered data,
weaknesses in systems, source code for malicious software,
and tools for developing such software are exchanged, serves
as an incentive for attackers to generate additional Android
malware. While it is possible to use traditional PC solutions for
Android devices, it is important to note that the fundamental
principles of mobile security are different due to the unique
computing systems and resource allocations of these devices.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16252-16259 16253

www.etasr.com Al Besher et al.: An Improved Pre-Exploitation Detection Model for Android Malware Attacks

Although mobile devices have made advances in terms of
computing power and capabilities, their limited resources, such
as battery life, restrict the ability to perform analysis on the
device itself.

Early detection of Android malware is crucial to protecting
users' data. This implies that it is crucial to detect these threats
during the pre-exploitation phase before any harm. During this
phase, the malware is installed on the victim's device and starts
searching for the specific files it aims to attack. Several studies
have tackled this issue using data collected before an attack
occurs to develop machine learning-based detection methods
[16]. These studies define the pre-exploitation phase by using
either a specific duration of time or a predetermined set of API
calls. To successfully detect Android malware before it can
compromise a system, it is crucial to accurately identify attacks
promptly [6, 9, 17-19]. To accomplish this objective, the
detection solution should prioritize the pre-compromise phase.
However, identifying Android malware in the pre-compromise
phase poses a significant challenge [20]. Challenges in early
detection arise from the ambiguous definition of the boundary
between the pre-compromise phase, the lack of sufficient early
attack patterns, and the complexity of high-dimensional data
[21-24]. For accurate early detection, it is crucial to have a
sufficient amount of data containing various attack patterns to
train the model [25].

Several studies have examined the effectiveness of using
the initial data collected during the early stages of malware
attacks [16, 17], using fixed thresholding to delineate the initial
stage. Two forms of thresholding have been used, specifically
time-based and API-based. The time-based approach
establishes a predetermined duration for the pre-exploitation
phase, where data are gathered from the active process.
Similarly, the API-based approach establishes a collection of
APIs as the demarcation point that distinguishes malware
attacks in the pre-exploitation phase from the subsequent
phases. However, the use of fixed thresholding assumes that all
malware attacks exhibit identical attack behavior that can be
easily detected. However, this assumption does not hold for
many Android malware families. The onset of exploitation can
vary even between members of the same family due to the
polymorphism and metamorphism techniques employed by
malware to avoid detection [22, 23, 26]. This makes it difficult
to accurately determine the boundary between the pre-
exploitation phase and the data requirements for extracting
relevant features and training accurate detection models.

The dynamic identification of pre-exploitation phases in
malware is a critical aspect of early detection systems. Previous
studies, such as [27], introduced a pseudo feedback-based
annotated Term Frequency-Inverse Document Frequency (TF-
IDF) technique for dynamic crypto-ransomware pre-encryption
boundary delineation and feature extraction. Although this
approach provides a solid foundation, it focuses primarily on
ransomware and uses static thresholding for boundary
detection. This study extends this approach by introducing the
Dynamic Pre-exploitation Boundary Definition and Feature
Extraction (DPED-FE) system, which uses entropy for change
detection. This approach enables more accurate and timely
identification of potential threats across various types of

Android malware before they reach the exploitation phase. To
this end, this is a novel entropy-based approach to dynamically
determine the pre-exploitation boundary in ransomware
detection. The contributions of this study are threefold:

 Dynamic Entropy Integration: Integrate entropy into the
calculation of feedback, dynamically adjusting to the
unpredictability of observed features. This approach
enhances the detection of pre-exploitation activities by
accurately identifying transitions in behavior that precede
ransomware attacks.

 Enhanced Rocchio Feedback Mechanism: By incorporating
entropy into the Rocchio Feedback equation, the traditional
feedback mechanism is refined to account for the dynamic
nature of malware behavior. This modification allows for
more precise differentiation between relevant and irrelevant
document vectors, improving the accuracy of the detection
system.

 Comprehensive Evaluation: Extensive experiments were
conducted using real-world datasets to validate the
effectiveness of the proposed method. The results
demonstrate significant improvements in the early detection
of ransomware activities, reducing false positives and
enhancing overall system robustness.

II. RELATED WORKS

Detection during the early stages of a malware attack is
crucial to preventing the full execution of malicious activities.
In the context of ransomware, which is a type of malware that
encrypts files and demands a ransom for decryption, studies
have focused on developing techniques to detect it in the pre-
encryption stage, where the encryption process has not yet been
completed [27-31]. Early detection is essential to stop the
encryption process and prevent data loss or system compromise
[28]. Various models and algorithms have been proposed to
enhance the accuracy and performance of pre-encryption
ransomware detection. For instance, eMIFS is a normalized
hyperbolic ransomware deterrence model that utilizes the
hyperbolic tangent function to individually evaluate features,
improving the representation of feature relevance and
redundancy [29]. Additionally, a pseudo feedback-based
annotated TF-IDF technique has been introduced for dynamic
crypto-ransomware pre-encryption boundary delineation and
feature extraction, addressing the challenge of limited data
availability in the early stages of attacks [27].

Prevention mechanisms, such as pre-encryption detection
algorithms, play a vital role in disrupting ransomware
operations before they can fully encrypt files and demand
ransom [30]. Advanced detection methods, such as those that
focus on ransomware anti-analysis tactics, contribute to the
early identification of evolving threats in the dynamic
cybersecurity landscape [31]. Moreover, the integration of
machine learning algorithms and cryptographic techniques has
shown promise in improving pre-encryption ransomware
detection. Models such as RAPPER (Ransomware Prevention
via Performance Counters) leverage performance counters to
detect ransomware threats early, particularly by identifying
patterns associated with public-key cryptosystems used in

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16252-16259 16254

www.etasr.com Al Besher et al.: An Improved Pre-Exploitation Detection Model for Android Malware Attacks

encryption processes [20]. By combining machine learning
with cryptographic algorithms, researchers aim to analyze
attack patterns and enhance detection capabilities [32].
Furthermore, some studies have explored the use of behavioral
analysis, entropy estimation, and file entropy analysis to detect
ransomware in the pre-encryption stage. Behavioral feature
analysis provides insights into ransomware actions during the
destruction phase, helping to develop robust detection systems
[33]. File entropy analysis coupled with machine learning
offers a high detection rate with low false positives and false
negatives, improving the overall effectiveness of ransomware
detection mechanisms [34].

In [27], a pseudo feedback-based annotated TF-IDF
technique was proposed to delineate the pre-encryption
boundaries of crypto-ransomware. This approach relies on
static thresholding and focuses on ransomware-specific
features. In contrast, the proposed DPED-FE system employs a
dynamic boundary definition using entropy for change
detection, which allows it to adapt to different malware
behaviors. Additionally, the proposed feature extraction
method incorporates advanced techniques such as Weighted
Term Frequency-Inverse Document Frequency (WF-IDF),
enhancing the model's predictive capabilities.

III. METHODOLOGY

Unlike the fixed thresholding used in previous studies, such
as [27], the proposed DPED-FE scheme employs entropy for
change detection to dynamically identify the transition from
pre-exploitation to exploitation phases. This approach ensures
the accurate collection of pre-exploitation data regardless of the
varied time required for each sample to initiate actual sabotage.
Furthermore, the improved data vectorization for feature
extraction leverages the Rocchio Relevance Feedback (RRF)
and WF-IDF techniques, providing a more robust framework
for early detection. This allows for the detection of the phase
change exhibited by malware during the transition from pre-
exploitation to exploitation. The fundamental justification is
that the malware must undergo certain crucial procedures to
prepare for actual harm [27, 28]. Therefore, this transition
could indicate the imminent onset of an exploitation process.
This enables the convenient and accurate gathering of pre-
exploitation data, irrespective of the differing time needed for
each sample to carry out the actual sabotage. By utilizing these
data, it is possible to extract representative pre-exploitation
attack characteristics, which can then be used to develop more
powerful and accurate early detection systems. The DPED-FE
system consists of two essential elements: Dynamic Pre-
exploitation Boundary Definition (DPED) and Features
Extraction (FE) techniques. The DPBD defines the limits of the
initial phase of Android malware attacks, while FE extracts
important features from this phase to train the early detection
model.

A. Raw Data Collection

To obtain up-to-date information from the malware samples
in the collection, each sample was transmitted to the sandbox
device for dynamic analysis [29]. Upon submission of a
sample, the guest machine sandbox agent attaches itself to the
process initiated by that sample, capturing all runtime

information, including API calls, network traffic, file
operations, and cryptographic operations. The data are stored in
a trace file specifically assigned to that sample. These files
serve as the foundation for constructing the dataset from which
attributes are extracted and chosen. After each run, the guest
machine was reverted to its initial uninfected state to ensure
that the subsequent samples were not tainted by previous ones.
Only API calls and their corresponding file operations,
encryption, and network activities were preserved in the
runtime data collected from each trace file, while all other data
were discarded. These data are used to establish the pre-
exploitation boundary and extract features.

B. Dynamic Boundary Definition Technique for Pre-
Exploitation Data Extraction

The DEBD technique was developed and utilized by
coupling the vector space model with Kullback-Leibler
divergence (relative entropy) to accurately define the boundary
of the pre-exploitation phase. As a result, the pre-exploitation
boundary vector was created, which includes all the data
related to exploitation used by Android malware during their
attacks. This vector defines the boundary of the malware's pre-
exploitation phase by identifying a behavioral change that
occurs when transitioning from the pre-exploitation to the
exploitation phase in the lifecycle of the malware. The
fundamental concept at play here is that a significant alteration
in malware behavior serves as an indication of an imminent act
of sabotage.

The utilization of DEBD deviates substantially from the
static approach employed in previous studies. The system
monitors the start of exploitation for each specific case,
accurately determining the boundary of the pre-exploitation
phase by analyzing the sudden shift in malware behavior.
DEBD initiates the process of creating the boundary vector.
Subsequently, the data for each occurrence are divided into
multiple dynamic windows, and relative entropy is then
computed for every window. The Euclidean distance is used to
measure the distance between adjacent windows. If the distance
exceeds a specific threshold, it is considered a transition point
that may indicate a shift in behavior. The threshold is
determined by calculating the average of the vector values. Any
distance that exceeds this average is classified as a boundary
point. Subsequently, the collection of important points is
formed as a boundary vector. Using this vector as input, a
model is trained and subsequently employed to detect
behavioral changes.

This approach integrates entropy to dynamically determine
the pre-exploitation boundary in malware detection. Let
� = {��, ��, … , �	} represent the set of monitored features over
time, where �� is the value of the ith feature at a given time.
Entropy �(�) measures the uncertainty or randomness within
the feature set �. For a discrete random variable, entropy is
defined as:

�(�) = − ∑ 	
��� �(��)����(��) (1)

where �(��) is the probability of occurrence of �� . To
dynamically detect changes in feature behavior, entropy is
calculated over a sliding window. Let �� be the window of size

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16252-16259 16255

www.etasr.com Al Besher et al.: An Improved Pre-Exploitation Detection Model for Android Malware Attacks

� at time �, containing the values {������, ������, . . . , ��}. The
entropy of the window �� is given by:

�(��) = ∑ �
������� �(��) ��� �(��) (2)

To detect significant changes, the difference in entropy
between consecutive windows is calculated:

��� = �(��) − �(����) (3)

A threshold is set to identify significant changes. If |���|
exceeds , it indicates a potential boundary that can be
expressed as a boundary detected at � if |���| > . The time �
at which the boundary is detected marks the transition from the
pre-exploitation to the exploitation phase. The pre-exploitation
boundary �# is defined as:

�# = {�  ∣ ∣ ��� ∣> } (4)

For a given feature set � observed over time, entropy �(�)
quantifies the uncertainty or randomness in the data. In the
context of malware detection, higher entropy indicates greater
unpredictability, which may signal the transition to exploitation
behavior.

To dynamically monitor changes, entropy is calculated over
a sliding window of size � . By examining the difference in
entropy ��� between consecutive windows, significant
changes in the data behavior can be identified. A significant
change in entropy, exceeding a predefined threshold ,
suggests a transition from pre-exploitation to exploitation. By
detecting significant changes in entropy, the pre-exploitation
boundary �# can be dynamically determined. This approach
ensures that the detection system adapts to different malware
behaviors and accurately identifies the transition point. This
system uses entropy to dynamically define the pre-exploitation
boundary by monitoring changes in the randomness of the
observed features. By calculating entropy over sliding windows
and identifying significant changes, the system can adapt to
various malware behaviors, ensuring timely and accurate
detection of the pre-exploitation phase. This method improves
the robustness of the detection mechanism and addresses the
limitations of static threshold-based approaches.

In the beginning, a process of splitting the data into moving
windows is initiated to create the boundary vector &# , in
accordance with [35]. Then, &# is employed to segregate the
data in each trace file into various distinct sets: '�, '�, …, '	.
The set whose boundary is higher than the threshold is
considered a border set, and denoted as '# . The border set
'# together with all preceding sets ('�, '�, … , '#��) are then
fused into one set called pre-exploitation dataset, from which
the features will be extracted.

C. Improved Data Vectorization for Extracting Pre-
Exploitation Features

The pre-exploitation boundary is the specific point at which
Android malware initiates the actual harm by utilizing a series
of system calls and libraries. These activities encompass not
only the explicit APIs but also other tasks, such as file
operations and encryption, that are present within the '# subset.
This particular subset is the specific area where the elements of
the pre-exploitation boundary vector can be found. However,

not all data in '# are connected to the malicious intentions of
the malware, thus it is not suitable to treat them all equally.
Engaging in such behavior may result in their detection early
on in the trace file, consequently excluding a significant portion
of the pre-exploitation data and depriving the model of crucial
attack patterns. The RRF technique is employed to calculate the
weight of each feature in the subset and only retain those with
weights surpassing a predetermined threshold, thereby
eliminating unrelated data. This technique differs from the
original RRF, which evaluates the relevance of query terms
using:

() = �

	
 ∑ *+, − �

-�	
 (1)

where () denotes the feedback vector, N represents the size of
the '# , and . signifies the number of relevant trace files.
Additionally, ∑ *+, is the set of relevant elements, while ∑ *+�,
is the set of irrelevant elements.

The RRF technique uses the TF-IDF approach to create two
vectors, known as the relevant and irrelevant vectors. The
pertinent vector is created by implementing the TF-IDF on the
subset '# . This vector is considered relevant, as it is derived
from the data within the pre-exploitation set, encompassing all
the data collected from the beginning until the moment the
actual sabotage commences. On the other hand, the irrelevant
vector is created by applying TF-IDF to both the post-
exploitation data { '/ such that '/ = '� ∩ '# }, where '�
represents the entire data collected from the beginning to the
end of the attack, and combining the subsets. Following the
creation of these vectors, the enhanced Rocchio technique is
applied, formulated as:

() = (# + �

-
 (∑ *+, − ∑ *+�,) (5)

In this context, () represents the feedback vector, and (# is
the original or initial vector. The relevant set ∑ *+, corresponds
to the '# subset in this particular case, while the irrelevant set
∑ *+�, j corresponds to '/.

D. A Weighted Term Frequency-Inverse Document Frequency
Technique for Extracting Pre-Exploitation Features

As previously mentioned, a difficulty arises when using the
traditional TF-IDF method to calculate the IDF term for pre-
exploitation data. More precisely, a particular characteristic
may have a low Document Frequency (DF) value when only
considering the pre-exploitation data, but a high DF value when
taking into account the entire dataset. In this situation, the TF-
IDF value of that particular feature will be increased in the pre-
exploitation data but decreased across the entire dataset.
Consequently, the feature would be given excessive
significance or emphasis solely based on the data before it is
exploited, falsely implying that it is a feature specific to
attacks. Actually, this feature may have broad application for
all data and should thus be given a lower TF-IDF score.

These versatile features provide only a small amount of
predictive information and could be used by malicious software
to make things more confusing. Therefore, it is appropriate to
impose penalties on them, as emphasized in [36]. The TF-IDF
technique addresses this issue by utilizing annotations to

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16252-16259 16256

www.etasr.com Al Besher et al.: An Improved Pre-Exploitation Detection Model for Android Malware Attacks

highlight the APIs that are more relevant to the pre-exploitation
phase, while excluding general-purpose features that are less
applicable to this particular stage. Equation (6) presents the
standard formula for calculating TF-IDF.

234�5�
+6 = �734�5�

+ 6 ∙ log -

�<)(=/�>)
 (6)

where 4�5� represents the kth feature and �7(4�5�
+) denotes the

term frequency, which indicates how frequently the kth feature
is observed by the malware instance ?+ within the subset. On
the other hand, 5*7(4�5�) represents the calculation of inverse
document frequency. It determines the number of occurrences
of malware instances ?+ within the subset known as the kth
feature, at least once. Here, N represents the total number of
malware instances within the subset. Before computing the
value of 2(4�5�

+), each �7(4�5�
+) undergoes normalization to

prevent TF-IDF from giving excessive preference to
uninformative APIs in lengthy trace files compared to the more
insightful ones found in shorter trace files. The normalization
process is executed based on (7), where the term frequency of
each instance was divided by the length of �734�5�

+6 (the trace
file of malware instance ?+). Therefore, the normalized TF-IDF
is calculated according to (8).

�7@3��
+6 =

�)(A>
B)

CD	E�F(�,B)
 (7)

2@3��
+6 = �7@3��

+6 ∙ ��� -

�<)(A>)
 (8)

In contrast to the traditional TF-IDF approach, WF-IDF
distinguishes the features that are involved in the pre-
exploitation phase from those that are activated during and
after exploitation. WF-IDF can determine if a particular feature
is commonly used, even if it has a high document frequency
weight in the pre-encryption data. The WF-IDF process begins
by assigning tags to each feature in the primary dataset, based
on its position in the trace file in relation to the pre-exploitation
boundary (#. Utilizing the boundary vector (#, every feature is
examined in relation to (# to determine whether it's situated
before or after the boundary. Specifically, the features in the
original dataset are reviewed sequentially and labeled as b until
any (# entry is encountered. Following the discovery of an
(# entry, the annotation switches to p for all subsequent
features.

ALGORITHM 1: WEIGHTED TF-IDF (WF-IDF) TECHNIQUE

Input: G(= {�?�, �?�, … . . , �?H}; G(denotes a corpus of
trace files of the of I programs (benign and

malware); �?� is the trace file of the �th
 instance

in the corpus G(.

Output: J4�4/,D the pre-exploitation dataset.

1: Begin

2: For each �?� in G(:
3: For each KLM in �?�:

4: While 4.N(&#) is not encountered:
5: KLMOP,,D	� ← KLM
6: K..��4�R(KLMOP,,D	� , �?R)
7: KLMOP,,D	� + +

8: S ← .�?4I(G()
9: For each API-gram(4�5�) in �?�:

10: 2(4�5�) = 4�7(4�5�) ∙ log -

�<)(=/�>)

11:J4�4/,D ← 4GS − MJS(S)
12:End

As shown in (4), WF-IDF penalizes the common APIs that
are called by most or all instances. These APIs are considered
general-purpose APIs that do not add information about the
target type. Therefore, the denominator of the equation
increases according to the number of instances that contain the
feature 7�, decreasing the value of 2(7+

�

). The pre-encryption

WF-IDF weights are stored in a vector that represents the pre-
encryption phase of the malware lifecycle. Algorithm 1 shows
the pseudocode of the feature extraction using the WF-IDF
technique.

IV. EXPERIMENTAL RESULTS

A. Experimental Environment Setup

The experiments were carried out in a controlled
environment developed in Cuckoo Sandbox. Both malware and
normal applications were included in the analysis. The malware
applications were downloaded from virusshare.com, a popular
and publicly accessible malware repository. Android malware
and benign application files were executed separately. For each
program, the data was stored in a trace file unique to that
particular instance. Trace files contain the runtime utilization of
the program being analyzed, including API, file operations, and
network traffic. Following each execution, the guest machine
was restored to its initial, unmodified state. The extracted data
underwent several preprocessing steps to prepare for modeling.
Those steps include noise removal, vectorization,
normalization, and imputation. The proposed techniques were
developed using a variety of Python libraries, including
Sklearn, Pandas, and Numpy.

B. Experimental Results of Dynamic Pre-Exploitation
Boundary Definition Technique

To assess the accuracy of the DPED technique in detecting
the pre-encryption boundary, an event-based method, proposed
in [9], was employed to identify cryptographic activities within
the pre-exploitation data. The percentage of malware instances
that started cryptography-related tasks before the identified
limit was determined. The same method was applied to datasets
generated using the time-based thresholding techniques
proposed in [9, 17, 21]. To evaluate the efficiency of the DPED
method, the findings of [9, 17, 21] were used, as shown in
Figure 1. The x-axis depicts the different thresholding
techniques, while the y-axis indicates the occurrences that
exceeded the limit. Comparative analysis revealed that the
DPED technique demonstrated superior accuracy in identifying
the pre-exploitation boundaries compared to the other studies.
It only failed to detect 8% of malware samples, while the
alternative approaches missed 18%, 29%, and 35% of the
samples, respectively.

Figure 2 shows a comparative analysis of various studies
utilizing logistic regression, including the proposed method and
[9, 16, 21]. The proposed method demonstrated the highest
accuracy of 0.88, closely followed by [16] with 0.85, while [9]

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16252-16259 16257

www.etasr.com Al Besher et al.: An Improved Pre-Exploitation Detection Model for Android Malware Attacks

and [21] achieved 0.83. The proposed method achieved the
highest F1 score (0.92), while [21] achieved the lowest F1
score (0.87). The proposed method exhibits the highest level of
precision (0.9), while the other methods were relatively close
but lower. It should be noted that the proposed method and [16]
exhibited the highest recall values, 0.94 and 0.93, respectively,
indicating a better ability to identify all pertinent instances. The
proposed method demonstrated the highest ROC_AUC (0.8),
which is a measure of the model's capacity to distinguish
between classes. In contrast, the other studies exhibited a lower
level of robustness in this regard. In general, the proposed
method consistently achieved better results than the others in
terms of various metrics, indicating that it may be a more
efficient approach for this specific problem. However, the other
three studies demonstrated varying levels of effectiveness in
different aspects of performance.

Fig. 1. Comparison of pre-exploitation boundary error between the
proposed and related works.

Fig. 2. Classification accuracy comparison between the dataset extracted
using proposed DPED and datasets of the related works using LR.

Figure 3 presents a comparison by employing Support
Vector Machines (SVM) in the proposed approach and [9, 16,
21]. The proposed method achieved higher accuracy (0.93) and
F1 score (0.948). The other studies also showed similar but
slightly lower accuracy scores. The proposed method achieved
the highest precision of 0.916 and an impressive recall of 0.99,
indicating high sensitivity and excellent ability to retrieve all
relevant instances. In [16] and [21], significant recall was
achieved, although to a lesser extent. The proposed method
scored the highest ROC_AUC (0.855), indicating its superior
discriminatory ability. In general, the proposed method
consistently demonstrated strong and reliable performance,
surpassing the other studies in all measurements.

Figure 4 shows a comparison using Deep Belief Networks
(DBN). The proposed method demonstrated superior
performance in all categories, surpassing [9], [16], and [21].
The F1 score of the proposed method was 0.959, indicating a
balanced performance between false positives and negatives,
and was closely followed by the other methods. It also
demonstrated its strength in accurately identifying positive
instances, as evidenced by its highest precision (0.942) and
recall (0.974). Finally, the proposed method achieved the
highest ROC_AUC score (0.893), indicating its superior ability
to effectively distinguish between positive and negative classes.
The proposed method consistently outperformed the other
studies in all metrics, demonstrating its robustness and
efficiency when using DBN. The other studies demonstrate
comparable results but do not achieve the same level of
effectiveness.

Fig. 3. Classification accuracy between the dataset extracted using the
proposed DPED and datasets of the other studies using SVM.

Fig. 4. Classification accuracy comparison in the dataset extracted using
the proposed DPED and datasets of related works using DBN.

Figure 5 compares the same models using Convolutional
Neural Networks (CNN). The proposed method achieved 0.931
accuracy, surpassing that of [16] (0.901), [21] (0.889), and [9]
(0.906). Once again, the proposed method outperformed the
others in terms of F1 score, achieving 0.949 and demonstrating
a well-balanced performance in both precision and recall. The
model in [16] scored 0.917, the one in [21] scored 0.912, and
the one in [9] scored 0.91. The proposed method achieved
0.937 precision, while the other methods ranged from 0.874 to
0.893. The proposed method demonstrated exceptional
performance in identifying all relevant instances, with a recall
value of 0.966. In contrast, the other studies exhibited results
within the range of 0.91 to 0.93. It also achieved the highest
ROC_AUC score of 0.87, indicating superior discriminative

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16252-16259 16258

www.etasr.com Al Besher et al.: An Improved Pre-Exploitation Detection Model for Android Malware Attacks

ability between classes. The other methods had ROC_AUC
scores ranging from 0.76 to 0.833. Hence, using CNN, the
proposed method demonstrated superiority in all evaluated
metrics, showcasing its effectiveness and resilience.

Fig. 5. Classification accuracy comparison between the dataset extracted
using the proposed DPED and datasets of the related works using CNN.

Figure 6 compares the performance of various models using
a Multilayer Perceptron (MLP). Curiously, the proposed
method did not excel in all categories, indicating a more
intricate range of performance. It achieved the highest level of
accuracy (0.916), followed by [16] (0.895), [21] (0.879), and
[9] (0.853). The F1 score provides a more detailed and nuanced
evaluation, where the model in [16] achieved the highest score
of 0.938, surpassing the proposed method (0.932). The models
in [21] and [9] scored 0.9 and 0.884, respectively. Therefore,
the model in [16] demonstrated an improved equilibrium
between precision and recall. The proposed method
demonstrated the highest level of precision, scoring 0.9, closely
followed by [16] (0.892). This metric highlights the capacity of
the proposed method to accurately detect positive instances.
Surprisingly, the method in [16] had the highest recall score
(0.986), indicating that it was highly effective in capturing all
relevant instances. The proposed method followed, achieving
0.947, while the others fell behind. The ROC_AUC scores for
the proposed method (0.842) and [16] (0.837) are closely
matched, suggesting that they have a similar ability to
distinguish between classes. Although the proposed method
demonstrates strong accuracy, precision, and ROC_AUC, the
performance analysis reveals a more nuanced landscape, with
the method in [16] surpassing it in terms of F1 score and recall.
This emphasizes the importance of thoroughly contemplating
the particular assessment criteria that are most relevant to a
given application or context.

Fig. 6. Classification accuracy comparison in the dataset extracted using
the proposed DPED and the datasets of the related works using MLP.

V. CONCLUSION

This study introduced a novel entropy-based approach for
dynamically determining the pre-exploitation boundary in
ransomware detection on Android devices, addressing the
limitations of traditional detection techniques. By incorporating
entropy into the Rocchio feedback mechanism, a dynamic
feedback process was developed, which adjusts based on the
unpredictability of observed features, significantly improving
the detection of pre-exploitation activities. The proposed
method calculates entropy over sliding windows and monitors
significant changes, ensuring timely and accurate detection of
ransomware behaviors. A comprehensive evaluation using real-
world datasets demonstrated the effectiveness of the proposed
approach, showing notable improvements in early detection
and reduction of false positives. The integration of entropy
provides a robust framework for dynamically refining
feedback, enhancing the precision and adaptability of the
detection system. This work lays the groundwork for future
research and development in malware detection, with
implications for protecting against evolving cyber threats. Its
contributions highlight the potential for further refinement and
application to other types of malware and the integration of
machine-learning techniques to enhance the system's accuracy
and adaptability. By advancing the field of Android malware
detection, the proposed entropy-based approach offers a
promising direction for improving cybersecurity in the rapidly
evolving landscape of mobile threats.

REFERENCES
[1] N. Ye, Y. Zhang, and C. M. Borror, "Robustness of the Markov-chain

model for cyber-attack detection," IEEE Transactions on Reliability, vol.
53, no. 1, pp. 116–123, Mar. 2004, https://doi.org/10.1109/TR.2004.
823851.

[2] I. Yaqoob et al., "The rise of ransomware and emerging security
challenges in the Internet of Things," Computer Networks, vol. 129, pp.
444–458, Dec. 2017, https://doi.org/10.1016/j.comnet.2017.09.003.

[3] J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G. J. Ahn, "Uncovering
the Face of Android Ransomware: Characterization and Real-Time
Detection," IEEE Transactions on Information Forensics and Security,
vol. 13, no. 5, pp. 1286–1300, Feb. 2018, https://doi.org/10.1109/
TIFS.2017.2787905.

[4] A. Azmoodeh, A. Dehghantanha, M. Conti, and K. K. R. Choo,
"Detecting crypto-ransomware in IoT networks based on energy
consumption footprint," Journal of Ambient Intelligence and Humanized
Computing, vol. 9, no. 4, pp. 1141–1152, Aug. 2018,
https://doi.org/10.1007/s12652-017-0558-5.

[5] S. Demesie Yalew, G. Q. Maguire, S. Haridi, and M. Correia, "Hail to
the Thief: Protecting data from mobile ransomware with
ransomsafedroid," in 2017 IEEE 16th International Symposium on
Network Computing and Applications (NCA), Cambridge, MA, USA,
Oct. 2017, pp. 1–8, https://doi.org/10.1109/NCA.2017.8171377.

[6] J. A. Gómez-Hernández, L. Álvarez-González, and P. García-Teodoro,
"R-Locker: Thwarting ransomware action through a honeyfile-based
approach," Computers & Security, vol. 73, pp. 389–398, Mar. 2018,
https://doi.org/10.1016/j.cose.2017.11.019.

[7] M. A. Azad, F. Riaz, A. Aftab, S. K. J. Rizvi, J. Arshad, and H. F.
Atlam, "DEEPSEL: A novel feature selection for early identification of
malware in mobile applications," Future Generation Computer Systems,
vol. 129, pp. 54–63, Apr. 2022, https://doi.org/10.1016/j.future.2021.
10.029.

[8] N. Caporusso, S. Chea, and R. Abukhaled, "A Game-Theoretical Model
of Ransomware," in Advances in Human Factors in Cybersecurity,
Orlando, FL, USA, 2019, pp. 69–78, https://doi.org/10.1007/978-3-319-
94782-2_7.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16252-16259 16259

www.etasr.com Al Besher et al.: An Improved Pre-Exploitation Detection Model for Android Malware Attacks

[9] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, and R.
Khayami, "Know Abnormal, Find Evil: Frequent Pattern Mining for
Ransomware Threat Hunting and Intelligence," IEEE Transactions on
Emerging Topics in Computing, vol. 8, no. 2, pp. 341–351, Apr. 2020,
https://doi.org/10.1109/TETC.2017.2756908.

[10] G. Cusack, O. Michel, and E. Keller, "Machine Learning-Based
Detection of Ransomware Using SDN," in Proceedings of the 2018
ACM International Workshop on Security in Software Defined Networks
& Network Function Virtualization, Temple, AZ, USA, Nov. 2018,
https://doi.org/10.1145/3180465.3180467.

[11] D. Y. Kao and S.-C. Hsiao, "The dynamic analysis of WannaCry
ransomware," in 2018 20th International Conference on Advanced
Communication Technology (ICACT), Chuncheon, Korea (South), Feb.
2018, pp. 159–166, https://doi.org/10.23919/ICACT.2018.8323682.

[12] N. Hampton, Z. Baig, and S. Zeadally, "Ransomware behavioural
analysis on windows platforms," Journal of Information Security and
Applications, vol. 40, pp. 44–51, Jun. 2018, https://doi.org/10.1016/
j.jisa.2018.02.008.

[13] A. Cohen and N. Nissim, "Trusted detection of ransomware in a private
cloud using machine learning methods leveraging meta-features from
volatile memory," Expert Systems with Applications, vol. 102, pp. 158–
178, Jul. 2018, https://doi.org/10.1016/j.eswa.2018.02.039.

[14] "Development of new Android malware worldwide from June 2016 to
March 2020," Statista. https://www.statista.com/statistics/680705/
global-android-malware-volume/.

[15] T. Shishkova, "IT threat evolution in Q1 2022. Mobile statistics," May
27, 2022. https://securelist.com/it-threat-evolution-in-q1-2022-mobile-
statistics/106589/.

[16] B. A. S. Al-Rimy et al., "A Pseudo Feedback-Based Annotated TF-IDF
Technique for Dynamic Crypto-Ransomware Pre-Encryption Boundary
Delineation and Features Extraction," IEEE Access, vol. 8, pp. 140586–
140598, 2020, https://doi.org/10.1109/ACCESS.2020.3012674.

[17] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu,
"Automated Dynamic Analysis of Ransomware: Benefits, Limitations
and use for Detection." arXiv, Sep. 10, 2016, https://doi.org/
10.48550/arXiv.1609.03020.

[18] S. Homayoun et al., "Deep dive into ransomware threat hunting and
intelligence at fog layer," Future Generation Computer Systems, vol. 90,
no. Jan 19, Jul. 2018, https://doi.org/10.1016/j.future.2018.07.045.

[19] X. Zhang et al., "An Early Detection of Android Malware Using System
Calls based Machine Learning Model," in Proceedings of the 17th
International Conference on Availability, Reliability and Security,
Vienna, Austria, Aug. 2022, https://doi.org/10.1145/3538969.3544413.

[20] M. Alam, S. Sinha, S. Bhattacharya, S. Dutta, D. Mukhopadhyay, and A.
Chattopadhyay, "RAPPER: Ransomware Prevention via Performance
Counters." arXiv, Apr. 03, 2020, https://doi.org/10.48550/arXiv.2004.
01712.

[21] M. Rhode, P. Burnap, and K. Jones, "Early-stage malware prediction
using recurrent neural networks," Computers & Security, vol. 77, pp.
578–594, Aug. 2018, https://doi.org/10.1016/j.cose.2018.05.010.

[22] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, "Semantics-Based
Online Malware Detection: Towards Efficient Real-Time Protection
Against Malware," IEEE Transactions on Information Forensics and
Security, vol. 11, no. 2, pp. 289–302, Oct. 2016, https://doi.org/10.1109/
TIFS.2015.2491300.

[23] N. Nissim, Y. Lapidot, A. Cohen, and Y. Elovici, "Trusted system-calls
analysis methodology aimed at detection of compromised virtual
machines using sequential mining," Knowledge-Based Systems, vol. 153,
pp. 147–175, Aug. 2018, https://doi.org/10.1016/j.knosys.2018.04.033.

[24] D. Morato, E. Berrueta, E. Magaña, and M. Izal, "Ransomware early
detection by the analysis of file sharing traffic," Journal of Network and
Computer Applications, vol. 124, pp. 14–32, Dec. 2018,
https://doi.org/10.1016/j.jnca.2018.09.013.

[25] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, "Crypto-
ransomware early detection model using novel incremental bagging with
enhanced semi-random subspace selection," Future Generation
Computer Systems, vol. 101, pp. 476–491, Dec. 2019,
https://doi.org/10.1016/j.future.2019.06.005.

[26] B. A. S. Al-rimy et al., "Redundancy Coefficient Gradual Up-weighting-
based Mutual Information Feature Selection technique for Crypto-
ransomware early detection," Future Generation Computer Systems, vol.
115, pp. 641–658, Feb. 2021, https://doi.org/10.1016/j.future.2020.10.
002.

[27] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,
"UNVEIL: A Large-Scale, Automated Approach to Detecting
Ransomware," presented at the 25th USENIX Security Symposium
(USENIX Security 16), Austin, TX, USA, 2016, pp. 757–772.

[28] W. Z. A. Zakaria, N. M. K. M. Alta, M. F. Abdollah, O. Abdollah, and
S. M. M. Yassin, "Early Detection of Windows Cryptographic
Ransomware Based on Pre-Attack API Calls Features and Machine
Learning," Journal of Advanced Research in Applied Sciences and
Engineering Technology, vol. 39, no. 2, pp. 110–131, Feb. 2024,
https://doi.org/10.37934/araset.39.2.110131.

[29] A. Alqahtani and F. T. Sheldon, "eMIFS: A Normalized Hyperbolic
Ransomware Deterrence Model Yielding Greater Accuracy and Overall
Performance," Sensors, vol. 24, no. 6, Jan. 2024, Art. no. 1728,
https://doi.org/10.3390/s24061728.

[30] S. H. Kok, A. Abdullah, N. Z. Jhanjhi, and M. Supramaniam,
"Prevention of Crypto-Ransomware Using a Pre-Encryption Detection
Algorithm," Computers, vol. 8, no. 4, Dec. 2019, Art. no. 79,
https://doi.org/10.3390/computers8040079.

[31] M. A. Aftab and D. Q. Shafi, "Advanced Ransomware Detection:
Unveiling Anti-Analysis Tactics through Enhanced Temporal Data
Correlation." Research Square, Mar. 07, 2024, https://doi.org/
10.21203/rs.3.rs-4019125/v1.

[32] N. Niture, "Machine Learning and Cryptographic Algorithms -- Analysis
and Design in Ransomware and Vulnerabilities Detection." TechRxiv,
Oct. 29, 2020, https://doi.org/10.36227/techrxiv.13146866.v1.

[33] C. C. Moreira, J. Claudomiro de Souza de Sales, and D. C. Moreira,
"Understanding Ransomware Actions Through Behavioral Feature
Analysis," Journal of Communication and Information Systems, vol. 37,
no. 1, pp. 61–76, Mar. 2022, https://doi.org/10.14209/jcis.2022.7.

[34] K. Lee, S. Y. Lee, and K. Yim, "Machine Learning Based File Entropy
Analysis for Ransomware Detection in Backup Systems," IEEE Access,
vol. 7, pp. 110205–110215, 2019, https://doi.org/10.1109/ACCESS.
2019.2931136.

[35] N. Suditu and F. Fleuret, "Iterative relevance feedback with adaptive
exploration/exploitation trade-off," in Proceedings of the 21st ACM
international conference on Information and knowledge management,
Maui, HI, USA, Jul. 2012, pp. 1323–1331, https://doi.org/
10.1145/2396761.2398435.

[36] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and A. K.
Sangaiah, "Classification of ransomware families with machine learning
based on N-gram of opcodes," Future Generation Computer Systems,
vol. 90, pp. 211–221, Jan. 2019, https://doi.org/10.1016/j.future.2018.
07.052.

