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ABSTRACT 

In this study, the domain of Android malware detection was explored with a specific focus on leveraging 
the potential of Machine Learning (ML). At the time of this study, Android had firmly established its 

dominance in the mobile landscape and IoT devices, necessitating a concerted effort to fortify its security 

against emerging malware threats. Static analysis methods were scrutinized as vital sources of feature 

extraction for ML, while dynamic analysis methods were employed to analyze the behavior of applications 

in real or simulated environments. Additionally, a hybrid method, combining both static and dynamic 

analyses, was investigated. The study evaluated four ML models: XGBoost, Random Forest (RF), Support 

Vector Machine (SVM), and Decision Tree (DT), revealing compelling insights into their performance 

metrics. Notably, RF achieved the highest accuracy of 0.99, closely followed by SVM with an accuracy of 

0.96. These results underscore the potential effectiveness of ML techniques in bolstering Android malware 

detection and mitigating security risks. As the research progressed, it underscored the latent power of 

integrating ML into the framework of Android malware analysis. With an eye towards the future, the 

overarching goal was to empower enhanced security measures and foster a resilient mobile ecosystem 
through the insights gleaned from this investigation. 
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I. INTRODUCTION  

Defending computer systems from digital threats is vital in 
today's Internet-driven world [1-4]. Traditional methods 
struggle against evolving attacks, making robust defense 
crucial. Intrusion detection, including firewalls and anti-virus 
software, is a key strategy. To enhance network protection, 
Μachine Λearning (ML) plays a significant role. In this study, 
the focus is placed on using ML techniques, namely, XGBoost, 
RF, SVM, and DT, for malware detection. The novelty lies in 
applying cross-validation and rigorous hyperparameter tuning 
to these classifiers. This approach aims to improve their 
performance in identifying and preventing different types of 
malware, addressing the challenges posed by advanced cyber 
threats. Android, a widely employed mobile operating system, 
is an interesting target for malware due to its open-source 
nature and ability to install third-party applications without 
centralized control. The latest reports on malicious behaviors 
and vulnerabilities concentrate on the need for ongoing 

development to enhance Android's security. Due to the speed 
of technological developments, identifying malware application 
types has become even more important. Android malware has 
attracted grater attention during the last decade. Android OS is 
an extremely popular operating system, which dominates the 
market [5] with over 2.8 million available apps as of 2020 [6], 
most of them being available in Google Store. The increased 
number of users and application developers has made Android 
an attractive target for cyber-attacks [7]. This occurs because 
malicious programs easily execute their functions and are 
helped by some key elements, including the level of 
permissions, since some malware apps have over 50 variables, 
which makes detection difficult. On the contrary, the 
development of malware techniques has as its main goal to 
continue avoiding detection [9]. 

An experienced hacker also acting as constant attacker 
applies a tactic to remain alive by hiding from users as long as 
possible. Figure 1 describes how sophisticated malware 
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attackers use an attack and exploitation plan. In the primary 
phase, which is reconnaissance and weaponization, the hackers 
look for weaknesses and vulnerabilities in the system, either on 
the hardware side, for example CPU, storage memory, chips, 
etc., or on the software side, e.g. zero-day vulnerabilities, not 
updating the system, weak encryption, etc. The next step entails 
preparing the threat and payload after finding the target to 
deliver the malware. Malware can be delivered either directly 
(e-mail, SMS, or links), or indirectly (encrypted links, directory 
attack, gains privilege access, adware, etc.). After the malware 
transfer, the next phase is exploitation, which leads to the 
activities applied by the malware. The following phase will 
possibly be shared between the active or passive strike. 
Access/bypass, hijacking/reply attack, DoS/DDoS are 
examples of active attacks. Monitoring network traffic, 
scanning (open ports/vulnerabilities), and spying are examples 
of passive attacks. After the second phase, usually, the attacker 
chooses between quitting or continuing. Even if the attacker 
quits, the threat continues to exist. The attacker tries to gain 
access to further information by installing malicious software 
and creating a backdoor. By stealing the credentials the 
attackers can be active as long as possible. The afterward phase 
is C&C (Command and Control), which allows the attacker to 
gain continual connection, this could infect other connected 
systems, which makes it act like/resemble Data Exfiltration, 
and spread laterally. Data exfiltration involves unauthorized 
transfer of data from a system, often to external servers or 
devices. It is a crucial step where sensitive information, such as 
personal or financial data, is stolen. Lateral spreading refers to 
the malware's ability to move within a network, infecting 
multiple devices or systems. These processes allow the 
malware to expand its reach, maximize damage, and achieve its 
objectives, posing significant threats to data security and 
system integrity. Therefore, in the continuous Android malware 
development, it is necessary to work on ways that deal with it 
[5-7]. 

 

 
Fig. 1. Malware operation phase. 

Three techniques have been developed for Android 
malware detection, which are static, dynamic, and hybrid. 
Static analysis can determine harmful applications by their 
behavior. The problem here is code obfuscation that helps the 
malware avoid the static technique. The dynamic technique 
helps identify the conduct of malware applications from 
runtime. Hybrid technique uses features of both static and 
dynamic techniques, including analyzing the application's 
source files and monitoring runtime behavior [9].  

A recently utilized technology is ML. Extracting and 
selecting features are important procedures in identifying the 

malware process steps in the Android operating system. The 
adequacy in feature extraction increases system performance. 
So, paying more attention to the procedures for determining 
and digging out the features that are needed from the hotspot in 
the malicious detecting process is required [10-12]. In the 
feature selection process, some challenges could be faced: The 
former may take a long time because the Android data file has 
a lot of features and therfore a huge size of data, which could 
lead to multiple problems during the extracting features 
process. Because of this, there is a possibility that the detecting 
malware process will not be effective since the accuracy of the 
latter could be affected by the selection of some features. 
Extracting and selecting features is still a developing field. 
Most of the time, a feature can be determined to allow the 
algorithm to ignore executing program paths that are not 
important, thereby compromising accuracy performance. 
Hence, the primary objective of this research is to identify the 
most accurate feature for detecting malware using static, 
dynamic, and hybrid analysis. The article discusses proper 
classification by optimally selecting features.  

To face malware attacks, security solutions using ML 
approaches, static analysis, and dynamic analysis, is widely 
considered. Data science is presented as a promising domain in 
cybersecurity, by leveraging analytical models to discover 
potential malicious activities. The model introduced in [13] 
engages permission features from the Android system for 
malware detection. A static malware analysis method was 
introduced in [14] for classification training to reveal whether 
the app is virus or friendly. The authors extracted the API call 
feature by adopting correlative analysis with utilizing three 
different ML models (SVM, RF, and KNN), with the RF 
exhibiting the best accuracy result. In [15], another approach 
for static analysis was introduced, which follows three steps to 
determine features. The authors found that RF had the best 
accuracy result among the considered classifiers. Authors in 
[16] leveraged the RF, which resulted in 96% accuracy in 
malware detection by operating static testing. Authors in [17] 
leveraged ML categorization to investigate the problem of 
defense techniques against malware. Authors in [18] achieved a 
precision of 96.9% with KNN and SVM. At the same time, 
other works have found distinct methodologies to categorize 
malware attacks using dynamic examination.  

The present study delves into the domain of Android 
malware detection, emphasizing the growing importance of 
strengthening security measures against emerging threats. With 
Android's dominant presence in the mobile landscape and IoT 
devices, there is a pressing need to address vulnerabilities and 
fortify defenses. The investigation explores the potential of ML 
techniques in enhancing malware detection. By examining both 
static and dynamic analysis methods, the research aims to 
extract valuable insights into feature extraction and behavior 
analysis, crucial aspects of effective malware detection. 
Through this exploration, the study seeks to contribute to the 
advancement of security measures in the Android ecosystem, 
laying the groundwork for resilient defenses against evolving 
malware threats. 
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II. METHODOLOGY 

A variety of Python libraries were incorporated into the 
research work for an effective ML analysis. The scikit-learn 
library provided essential tools for implementing various 
classifiers, such as XGBoost, RF, SVM, and DT. These 
classifiers helped build, train, and evaluate models for specific 
needs, involving malware prediction. Additionally, Pandas was 
used for data manipulation and analysis, while Pumpy 
supported numerical operations. The Seaborn Library 
facilitated the creation of visually appealing plots and charts for 
better data representation. Other libraries, like Joblib and Pickle 
aided in saving and loading models, ensuring efficient model 
management. The code utilizes functionalities like label 
encoding, robust scaling, train-test split, and metrics for model 
evaluation. It employs GridSearchCV for hyperparameter 
tuning, confusion matrix visualization, and Receiver Operating 
Characteristic (ROC) curve plotting. The overall manuscript 
flow is depicted in Figure 2. 

 

 
Fig. 2. Overall workflow of the present investigation for malware 

detection. 

A. Dataset Pre-Processing and Exploratory Data Analysis 

The present investigation utilized a genuine malware 
dataset [20]. Originating from studies in Android security 
employing ML, this dataset underwent thorough data 
preprocessing. The process involved generating binary vectors 
to signify permissions deployed in each analyzed application (1 
for used, 0 for not used). Additionally, models were 
categorized by type, distinguishing between malicious (1) and 
non-malicious (0) applications. The dataset encompasses 398 
records across 331 columns [20]. To identify crucial features 
for malware detection, the analysis prioritized extracting the 
top 10 permissions commonly utilized by both malicious and 
non-malicious entities, highlighting the importance of 
preprocessing in preparing the data for effective analysis. 

B. ML Models 

The present inevstigation used 4 ML models to analyze and 
enhance malware detection.  

1) XGBoost 

GBoost, a specialized Decision Tree (DT), was employed 
to achieve fast and superior performance. This tree follows 
techniques such as gradient boosting and multiple regression 
trees. The concept of boosting involves training new models 
based on older ones, and progressively refining them until 
further improvements are minimal. The well-known AdaBoost 

method within XGBoost assigns weights to data points, 
proving valuable for predictions. 

2) RF 

Random Forest (RF) extends the concept of DTs by 
creating a group of DTs based on samples selected from a 
larger dataset. Unlike a single DT, RF introduces feature 
randomness by considering only a subset of features, 
preventing them from being too similar. The final prediction in 
RF is determined by the majority vote from all DTs. This 
approach enhances accuracy and reliability compared to relying 
on a single DT. 

 

 
Fig. 3. Permissions for friendly (green) and malicious (red). 

3) Support Vector Machine 

Support Vector Machine (SVM) emerged as a robust 
method for improving model accuracy while avoiding 
overfitting. SVM can classify data points even if they are not 
linearly distinct. The SVM transforms data into a hyperplane 
representation after identifying a partition between classes. 

4) Decision Tree 

Decision Tree (DT) is a learning method used for 
categorization and regression. It is a hierarchical tree that 
includes a basis node, subdivisions, inner nodes, and leaves. 
DT learning utilizes a rapacious search method to find the best-
divided points, employing a divide-and-conquer strategy. The 
procedure is repeated recursively until most records are 
assigned to specific class labels.  

C. Hyperparameter Tuning 

Hyperparameter tuning is essential because it optimizes the 
performance of ML models by fine-tuning the parameters that 
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are not directly learned from the data. This process helps to 
find the best combination of hyperparameters, leading to 
improved model accuracy and generalization to unseen data. 
To ensure the optimal performance of the models without 
overfitting the training data, a method called Gridsearchcv was 
employed. Gridsearchcv was chosen over other methods for its 
ability to ensure the robustness of the models and avoid an 
excessive focus on the training data. This facilitated the 
adjustment of crucial settings within the models, such as the 
regularization parameter (C), kernel type, and kernel coefficient 
(gamma) for SVM. Similar adjustments were made for 
parameters like the number of estimators, learning rate, and 
maximum depth for XGBoost.  

TABLE I. FINE-TUNED HYPERPARAMETERS OF ALL 
MODELS 

Model Hyperparameter Tuned value 

XGBoost 

learning rate: [0.01, 0.1, 0.2] 0.01 

N estimators: [50, 100, 200] 100 

Max depth: [3, 5, 7] 3 

Min child weight: [1, 3, 5]  

RF 

N estimators: [50, 100, 200] 100 

Max depth: [None, 5, 10] 10 

Min samples split: [2, 5, 10] 5 

Min samples leaf: [1, 2, 4] 4 

SVM 

C: [0.1, 1, 10] 1 

kernel: [linear, rbf, poly, ] linear 

gamma: [scale, auto, 0.1, 1] auto 

DT 

Max depth: [None, 5, 10] 5 

Min samples split: [2, 5, 10] 5 

Min samples leaf: [1, 2, 4] 2 

criterion: [gini, entropy] gini 

 

D. Cross Validation 

To ensure robustness and reliability in assessing the models' 
performance, the 5-fold cross-validation approach was adopted. 
Cross-validation is a crucial technique for training and 
evaluating models using multiple subsets of the dataset. In the 
case of this investigation, the dataset was divided into five 
folds, and the modeling process was iteratively performed 5 
times. Through every repetition, one fold was implemented for 
the validation set, whereas the residual folds were utilized for 
exercising the simulation. This procedure was repeated five 
times, through every fold selecting a turn as the validation set. 
The benefits of using 5-fold cross-validation are manifold. It 
reduces the risk of overfitting, granting an additional tough 
estimate of the simulation's functioning. Additionally, it 

contributes to a greater accurate understanding of how the 
model is possible to generalize to hidden data. 

E. Evaluation Measures 

The ML models' performance was assessed with four 
measures: recall, F1-score, precision, and accuracy. Accuracy 
reflects the proportion of correctly recognized spam emails 
among all regular emails. Recall is the proportion of correctly 
recognized spam messages to the total real spam samples, 
whereas accuracy is the percentage of correctly recognized 
spam messages to the entire messages identified as spam. F1-
score is deployed to assess the effectiveness of the approach.  

TP+TN
Accuracy=

TP+FP+TN+FN
   (1) 

TP
Precision=

TP+FP
    (2) 

TP
Accuracy=

TP+FN
    (3) 

Precision+Recall
F1-score=

Precision Recall

   (4) 

where TN = true negative, TP = true positive, FP = false 
positive, and FN = false negative.  

Two metrics, the Receiver runs the Characteristic (ROC) 
curve and Area Under the Curve (AUC), were examined. The 
ROC curve illustrates the model's ability to distinguish between 
attack and non-attack by plotting the comparison between TP 
and FP rates. A greater AUC indicates better overall 
performance, measuring the field below the ROC curve. These 
metrics afford a clear vision keen on the model's effectiveness 
in classifying security attacks. 

III. RESULTS AND DISCUSSIONS 

Android malware detection was assessed with four ML 
models. RF exhibited the highest accuracy of 99%, with perfect 
precision and recall for detecting malicious apps (Class 1). 
XGBoost closely followed with an accuracy of 94%, 
maintaining balanced precision and recall for both classes. 
SVM also performed well, achieving an accuracy of 96% with 
consistent precision and recall scores. DT showed a slightly 
lower accuracy of 95%, with slightly imbalanced precision and 
recall for both classes (Table II). 

TABLE II. PERFORMANCE EVALUATION 

Model Accuracy 
Class 0 Class 1 

Precision Recall F1-Score Precision Recall F1-Score 

XGBoost 0.94 0.94 0.93 0.94 0.94 0.94 0.94 

RF 0.99 0.99 1.00 0.99 1.00 0.98 0.99 

SVM 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

DT 0.95 0.92 0.98 0.95 0.98 0.91 0.95 

 

The confusion matrix (Figure 4) helps analyze the ML 
models for malware finding by applying four measures to 
demonstrate the results of (F1-score, recall, precision, and 
accuracy). In Figure 4, 1 means positive, and 0 is negative. The 
ROC curve illustrates a binary classifier's performance, 

showcasing the trade-off between true positive and false 
positive rates (Figure 5). The AUC summarizes this 
performance, with higher values indicating better classifier 
performance. 
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Fig. 4. Confusion matrix of all 4 ML malware detection models. 

   
Fig. 5. ROC curves with AUC values for all 4 ML models. 

IV. COMPARISON WITH OTHER WORKS 

Various studies have explored Android malware detection 
using different features and classification algorithms. Authors 
in [19] utilized permissions and API calls, achieving a 
classification performance of 98% employing RF. Authors in 
[21] focused on permissions alone, attaining 92% accuracy 
deploying RF.  

TABLE III. COMPARISON WITH OTHER STUDIES 

Ref Feature used 
Classification 

algorithm 

Classification 

performance 

[19] Permissions, API call RF 0.98 (f-measure) 

[21] Permissions RF 92 (accuracy%) 

[9] Permissions SVM 90 (accuracy%) 

This 

work 

Permissions XGBoost 94 (accuracy%) 

Permissions RF 99 (accuracy%) 

Permissions SVM 96 (accuracy%) 

Permissions DT 95 (accuracy%) 

 

Similarly, authors in [9] reached 90% accuracy by 
employing permissions with SVM. In comparison, the present 

study concentrated on permissions and engaged XGBoost, RF, 
SVM, and DT. RF demonstrated the highest accuracy at 99%, 
followed by SVM at 96%, XGBoost at 94%, and DT at 95%. 

V. STRENGTHS AND LIMITATIONS OF THE 
CURRENT INVESTIGATION 

The study's strength lies in its focused exploration of 
extracting the top 10 permissions using diverse ML techniques, 
aiming to identify malicious findings for optimal results. 
However, it is essential to acknowledge potential limitations, 
such as data availability, model complexity, and the evolving 
nature of malware, which may impact the comprehensiveness 
and generalizability of the findings. 

VI. CONCLUSION 

This study highlighted the importance of employing Machine 
Learning (ML) algorithms for Android malware detection. 
Features such as permissions play a crucial role in classification 
accuracy. RF emerged as a particularly effective algorithm, 
consistently achieving high accuracy in the current study and in 
similar works. Additionally, the discussion performed 
emphasized the significance of meticulous data preprocessing 
in enhancing the performance of ML models. These findings 
underscore the potential of ML in bolstering Android security 
measures and mitigating the risks posed by malicious 
applications.The future scope of the present investigation is to 
utilize advanced malware detection models [22-24] and 
validate them for various applications [25-28]. 
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