
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15027-15032 15027

www.etasr.com Haq & Khuthaylah: Leveraging Machine Learning for Android Malware Analysis: Insights from Static …

Leveraging Machine Learning for Android

Malware Analysis: Insights from Static and

Dynamic Techniques

Mohd Anul Haq

Department of Computer Science, College of Computer Sciences and Information Sciences, Majmaah

University; Al Majmaah, 11952; Saudi Arabia

m.anul@mu.edu.sa (corresponding author)

Majed Khuthaylah

Department of Information Technology, College of Computer Sciences and Information Sciences,

Majmaah University, Al Majmaah; 11952; Saudi Arabia

441104924@s.mu.edu.sa

Received: 25 April 2024 | Revised: 4 May 2024 | Accepted: 17 May 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7632

ABSTRACT

In this study, the domain of Android malware detection was explored with a specific focus on leveraging
the potential of Machine Learning (ML). At the time of this study, Android had firmly established its

dominance in the mobile landscape and IoT devices, necessitating a concerted effort to fortify its security

against emerging malware threats. Static analysis methods were scrutinized as vital sources of feature

extraction for ML, while dynamic analysis methods were employed to analyze the behavior of applications

in real or simulated environments. Additionally, a hybrid method, combining both static and dynamic

analyses, was investigated. The study evaluated four ML models: XGBoost, Random Forest (RF), Support

Vector Machine (SVM), and Decision Tree (DT), revealing compelling insights into their performance

metrics. Notably, RF achieved the highest accuracy of 0.99, closely followed by SVM with an accuracy of

0.96. These results underscore the potential effectiveness of ML techniques in bolstering Android malware

detection and mitigating security risks. As the research progressed, it underscored the latent power of

integrating ML into the framework of Android malware analysis. With an eye towards the future, the

overarching goal was to empower enhanced security measures and foster a resilient mobile ecosystem
through the insights gleaned from this investigation.

Keywords-malware; ML; static and dynamic modeling; hyperparameter tuning; cross-validation; IoT

I. INTRODUCTION

Defending computer systems from digital threats is vital in
today's Internet-driven world [1-4]. Traditional methods
struggle against evolving attacks, making robust defense
crucial. Intrusion detection, including firewalls and anti-virus
software, is a key strategy. To enhance network protection,
Μachine Λearning (ML) plays a significant role. In this study,
the focus is placed on using ML techniques, namely, XGBoost,
RF, SVM, and DT, for malware detection. The novelty lies in
applying cross-validation and rigorous hyperparameter tuning
to these classifiers. This approach aims to improve their
performance in identifying and preventing different types of
malware, addressing the challenges posed by advanced cyber
threats. Android, a widely employed mobile operating system,
is an interesting target for malware due to its open-source
nature and ability to install third-party applications without
centralized control. The latest reports on malicious behaviors
and vulnerabilities concentrate on the need for ongoing

development to enhance Android's security. Due to the speed
of technological developments, identifying malware application
types has become even more important. Android malware has
attracted grater attention during the last decade. Android OS is
an extremely popular operating system, which dominates the
market [5] with over 2.8 million available apps as of 2020 [6],
most of them being available in Google Store. The increased
number of users and application developers has made Android
an attractive target for cyber-attacks [7]. This occurs because
malicious programs easily execute their functions and are
helped by some key elements, including the level of
permissions, since some malware apps have over 50 variables,
which makes detection difficult. On the contrary, the
development of malware techniques has as its main goal to
continue avoiding detection [9].

An experienced hacker also acting as constant attacker
applies a tactic to remain alive by hiding from users as long as
possible. Figure 1 describes how sophisticated malware

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15027-15032 15028

www.etasr.com Haq & Khuthaylah: Leveraging Machine Learning for Android Malware Analysis: Insights from Static …

attackers use an attack and exploitation plan. In the primary
phase, which is reconnaissance and weaponization, the hackers
look for weaknesses and vulnerabilities in the system, either on
the hardware side, for example CPU, storage memory, chips,
etc., or on the software side, e.g. zero-day vulnerabilities, not
updating the system, weak encryption, etc. The next step entails
preparing the threat and payload after finding the target to
deliver the malware. Malware can be delivered either directly
(e-mail, SMS, or links), or indirectly (encrypted links, directory
attack, gains privilege access, adware, etc.). After the malware
transfer, the next phase is exploitation, which leads to the
activities applied by the malware. The following phase will
possibly be shared between the active or passive strike.
Access/bypass, hijacking/reply attack, DoS/DDoS are
examples of active attacks. Monitoring network traffic,
scanning (open ports/vulnerabilities), and spying are examples
of passive attacks. After the second phase, usually, the attacker
chooses between quitting or continuing. Even if the attacker
quits, the threat continues to exist. The attacker tries to gain
access to further information by installing malicious software
and creating a backdoor. By stealing the credentials the
attackers can be active as long as possible. The afterward phase
is C&C (Command and Control), which allows the attacker to
gain continual connection, this could infect other connected
systems, which makes it act like/resemble Data Exfiltration,
and spread laterally. Data exfiltration involves unauthorized
transfer of data from a system, often to external servers or
devices. It is a crucial step where sensitive information, such as
personal or financial data, is stolen. Lateral spreading refers to
the malware's ability to move within a network, infecting
multiple devices or systems. These processes allow the
malware to expand its reach, maximize damage, and achieve its
objectives, posing significant threats to data security and
system integrity. Therefore, in the continuous Android malware
development, it is necessary to work on ways that deal with it
[5-7].

Fig. 1. Malware operation phase.

Three techniques have been developed for Android
malware detection, which are static, dynamic, and hybrid.
Static analysis can determine harmful applications by their
behavior. The problem here is code obfuscation that helps the
malware avoid the static technique. The dynamic technique
helps identify the conduct of malware applications from
runtime. Hybrid technique uses features of both static and
dynamic techniques, including analyzing the application's
source files and monitoring runtime behavior [9].

A recently utilized technology is ML. Extracting and
selecting features are important procedures in identifying the

malware process steps in the Android operating system. The
adequacy in feature extraction increases system performance.
So, paying more attention to the procedures for determining
and digging out the features that are needed from the hotspot in
the malicious detecting process is required [10-12]. In the
feature selection process, some challenges could be faced: The
former may take a long time because the Android data file has
a lot of features and therfore a huge size of data, which could
lead to multiple problems during the extracting features
process. Because of this, there is a possibility that the detecting
malware process will not be effective since the accuracy of the
latter could be affected by the selection of some features.
Extracting and selecting features is still a developing field.
Most of the time, a feature can be determined to allow the
algorithm to ignore executing program paths that are not
important, thereby compromising accuracy performance.
Hence, the primary objective of this research is to identify the
most accurate feature for detecting malware using static,
dynamic, and hybrid analysis. The article discusses proper
classification by optimally selecting features.

To face malware attacks, security solutions using ML
approaches, static analysis, and dynamic analysis, is widely
considered. Data science is presented as a promising domain in
cybersecurity, by leveraging analytical models to discover
potential malicious activities. The model introduced in [13]
engages permission features from the Android system for
malware detection. A static malware analysis method was
introduced in [14] for classification training to reveal whether
the app is virus or friendly. The authors extracted the API call
feature by adopting correlative analysis with utilizing three
different ML models (SVM, RF, and KNN), with the RF
exhibiting the best accuracy result. In [15], another approach
for static analysis was introduced, which follows three steps to
determine features. The authors found that RF had the best
accuracy result among the considered classifiers. Authors in
[16] leveraged the RF, which resulted in 96% accuracy in
malware detection by operating static testing. Authors in [17]
leveraged ML categorization to investigate the problem of
defense techniques against malware. Authors in [18] achieved a
precision of 96.9% with KNN and SVM. At the same time,
other works have found distinct methodologies to categorize
malware attacks using dynamic examination.

The present study delves into the domain of Android
malware detection, emphasizing the growing importance of
strengthening security measures against emerging threats. With
Android's dominant presence in the mobile landscape and IoT
devices, there is a pressing need to address vulnerabilities and
fortify defenses. The investigation explores the potential of ML
techniques in enhancing malware detection. By examining both
static and dynamic analysis methods, the research aims to
extract valuable insights into feature extraction and behavior
analysis, crucial aspects of effective malware detection.
Through this exploration, the study seeks to contribute to the
advancement of security measures in the Android ecosystem,
laying the groundwork for resilient defenses against evolving
malware threats.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15027-15032 15029

www.etasr.com Haq & Khuthaylah: Leveraging Machine Learning for Android Malware Analysis: Insights from Static …

II. METHODOLOGY

A variety of Python libraries were incorporated into the
research work for an effective ML analysis. The scikit-learn
library provided essential tools for implementing various
classifiers, such as XGBoost, RF, SVM, and DT. These
classifiers helped build, train, and evaluate models for specific
needs, involving malware prediction. Additionally, Pandas was
used for data manipulation and analysis, while Pumpy
supported numerical operations. The Seaborn Library
facilitated the creation of visually appealing plots and charts for
better data representation. Other libraries, like Joblib and Pickle
aided in saving and loading models, ensuring efficient model
management. The code utilizes functionalities like label
encoding, robust scaling, train-test split, and metrics for model
evaluation. It employs GridSearchCV for hyperparameter
tuning, confusion matrix visualization, and Receiver Operating
Characteristic (ROC) curve plotting. The overall manuscript
flow is depicted in Figure 2.

Fig. 2. Overall workflow of the present investigation for malware

detection.

A. Dataset Pre-Processing and Exploratory Data Analysis

The present investigation utilized a genuine malware
dataset [20]. Originating from studies in Android security
employing ML, this dataset underwent thorough data
preprocessing. The process involved generating binary vectors
to signify permissions deployed in each analyzed application (1
for used, 0 for not used). Additionally, models were
categorized by type, distinguishing between malicious (1) and
non-malicious (0) applications. The dataset encompasses 398
records across 331 columns [20]. To identify crucial features
for malware detection, the analysis prioritized extracting the
top 10 permissions commonly utilized by both malicious and
non-malicious entities, highlighting the importance of
preprocessing in preparing the data for effective analysis.

B. ML Models

The present inevstigation used 4 ML models to analyze and
enhance malware detection.

1) XGBoost

GBoost, a specialized Decision Tree (DT), was employed
to achieve fast and superior performance. This tree follows
techniques such as gradient boosting and multiple regression
trees. The concept of boosting involves training new models
based on older ones, and progressively refining them until
further improvements are minimal. The well-known AdaBoost

method within XGBoost assigns weights to data points,
proving valuable for predictions.

2) RF

Random Forest (RF) extends the concept of DTs by
creating a group of DTs based on samples selected from a
larger dataset. Unlike a single DT, RF introduces feature
randomness by considering only a subset of features,
preventing them from being too similar. The final prediction in
RF is determined by the majority vote from all DTs. This
approach enhances accuracy and reliability compared to relying
on a single DT.

Fig. 3. Permissions for friendly (green) and malicious (red).

3) Support Vector Machine

Support Vector Machine (SVM) emerged as a robust
method for improving model accuracy while avoiding
overfitting. SVM can classify data points even if they are not
linearly distinct. The SVM transforms data into a hyperplane
representation after identifying a partition between classes.

4) Decision Tree

Decision Tree (DT) is a learning method used for
categorization and regression. It is a hierarchical tree that
includes a basis node, subdivisions, inner nodes, and leaves.
DT learning utilizes a rapacious search method to find the best-
divided points, employing a divide-and-conquer strategy. The
procedure is repeated recursively until most records are
assigned to specific class labels.

C. Hyperparameter Tuning

Hyperparameter tuning is essential because it optimizes the
performance of ML models by fine-tuning the parameters that

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15027-15032 15030

www.etasr.com Haq & Khuthaylah: Leveraging Machine Learning for Android Malware Analysis: Insights from Static …

are not directly learned from the data. This process helps to
find the best combination of hyperparameters, leading to
improved model accuracy and generalization to unseen data.
To ensure the optimal performance of the models without
overfitting the training data, a method called Gridsearchcv was
employed. Gridsearchcv was chosen over other methods for its
ability to ensure the robustness of the models and avoid an
excessive focus on the training data. This facilitated the
adjustment of crucial settings within the models, such as the
regularization parameter (C), kernel type, and kernel coefficient
(gamma) for SVM. Similar adjustments were made for
parameters like the number of estimators, learning rate, and
maximum depth for XGBoost.

TABLE I. FINE-TUNED HYPERPARAMETERS OF ALL
MODELS

Model Hyperparameter Tuned value

XGBoost

learning rate: [0.01, 0.1, 0.2] 0.01

N estimators: [50, 100, 200] 100

Max depth: [3, 5, 7] 3

Min child weight: [1, 3, 5]

RF

N estimators: [50, 100, 200] 100

Max depth: [None, 5, 10] 10

Min samples split: [2, 5, 10] 5

Min samples leaf: [1, 2, 4] 4

SVM

C: [0.1, 1, 10] 1

kernel: [linear, rbf, poly,] linear

gamma: [scale, auto, 0.1, 1] auto

DT

Max depth: [None, 5, 10] 5

Min samples split: [2, 5, 10] 5

Min samples leaf: [1, 2, 4] 2

criterion: [gini, entropy] gini

D. Cross Validation

To ensure robustness and reliability in assessing the models'
performance, the 5-fold cross-validation approach was adopted.
Cross-validation is a crucial technique for training and
evaluating models using multiple subsets of the dataset. In the
case of this investigation, the dataset was divided into five
folds, and the modeling process was iteratively performed 5
times. Through every repetition, one fold was implemented for
the validation set, whereas the residual folds were utilized for
exercising the simulation. This procedure was repeated five
times, through every fold selecting a turn as the validation set.
The benefits of using 5-fold cross-validation are manifold. It
reduces the risk of overfitting, granting an additional tough
estimate of the simulation's functioning. Additionally, it

contributes to a greater accurate understanding of how the
model is possible to generalize to hidden data.

E. Evaluation Measures

The ML models' performance was assessed with four
measures: recall, F1-score, precision, and accuracy. Accuracy
reflects the proportion of correctly recognized spam emails
among all regular emails. Recall is the proportion of correctly
recognized spam messages to the total real spam samples,
whereas accuracy is the percentage of correctly recognized
spam messages to the entire messages identified as spam. F1-
score is deployed to assess the effectiveness of the approach.

TP+TN
Accuracy=

TP+FP+TN+FN
 (1)

TP
Precision=

TP+FP
 (2)

TP
Accuracy=

TP+FN
 (3)

Precision+Recall
F1-score=

Precision Recall

 (4)

where TN = true negative, TP = true positive, FP = false
positive, and FN = false negative.

Two metrics, the Receiver runs the Characteristic (ROC)
curve and Area Under the Curve (AUC), were examined. The
ROC curve illustrates the model's ability to distinguish between
attack and non-attack by plotting the comparison between TP
and FP rates. A greater AUC indicates better overall
performance, measuring the field below the ROC curve. These
metrics afford a clear vision keen on the model's effectiveness
in classifying security attacks.

III. RESULTS AND DISCUSSIONS

Android malware detection was assessed with four ML
models. RF exhibited the highest accuracy of 99%, with perfect
precision and recall for detecting malicious apps (Class 1).
XGBoost closely followed with an accuracy of 94%,
maintaining balanced precision and recall for both classes.
SVM also performed well, achieving an accuracy of 96% with
consistent precision and recall scores. DT showed a slightly
lower accuracy of 95%, with slightly imbalanced precision and
recall for both classes (Table II).

TABLE II. PERFORMANCE EVALUATION

Model Accuracy
Class 0 Class 1

Precision Recall F1-Score Precision Recall F1-Score

XGBoost 0.94 0.94 0.93 0.94 0.94 0.94 0.94

RF 0.99 0.99 1.00 0.99 1.00 0.98 0.99

SVM 0.96 0.96 0.96 0.96 0.96 0.96 0.96

DT 0.95 0.92 0.98 0.95 0.98 0.91 0.95

The confusion matrix (Figure 4) helps analyze the ML
models for malware finding by applying four measures to
demonstrate the results of (F1-score, recall, precision, and
accuracy). In Figure 4, 1 means positive, and 0 is negative. The
ROC curve illustrates a binary classifier's performance,

showcasing the trade-off between true positive and false
positive rates (Figure 5). The AUC summarizes this
performance, with higher values indicating better classifier
performance.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15027-15032 15031

www.etasr.com Haq & Khuthaylah: Leveraging Machine Learning for Android Malware Analysis: Insights from Static …

Fig. 4. Confusion matrix of all 4 ML malware detection models.

Fig. 5. ROC curves with AUC values for all 4 ML models.

IV. COMPARISON WITH OTHER WORKS

Various studies have explored Android malware detection
using different features and classification algorithms. Authors
in [19] utilized permissions and API calls, achieving a
classification performance of 98% employing RF. Authors in
[21] focused on permissions alone, attaining 92% accuracy
deploying RF.

TABLE III. COMPARISON WITH OTHER STUDIES

Ref Feature used
Classification

algorithm

Classification

performance

[19] Permissions, API call RF 0.98 (f-measure)

[21] Permissions RF 92 (accuracy%)

[9] Permissions SVM 90 (accuracy%)

This

work

Permissions XGBoost 94 (accuracy%)

Permissions RF 99 (accuracy%)

Permissions SVM 96 (accuracy%)

Permissions DT 95 (accuracy%)

Similarly, authors in [9] reached 90% accuracy by
employing permissions with SVM. In comparison, the present

study concentrated on permissions and engaged XGBoost, RF,
SVM, and DT. RF demonstrated the highest accuracy at 99%,
followed by SVM at 96%, XGBoost at 94%, and DT at 95%.

V. STRENGTHS AND LIMITATIONS OF THE
CURRENT INVESTIGATION

The study's strength lies in its focused exploration of
extracting the top 10 permissions using diverse ML techniques,
aiming to identify malicious findings for optimal results.
However, it is essential to acknowledge potential limitations,
such as data availability, model complexity, and the evolving
nature of malware, which may impact the comprehensiveness
and generalizability of the findings.

VI. CONCLUSION

This study highlighted the importance of employing Machine
Learning (ML) algorithms for Android malware detection.
Features such as permissions play a crucial role in classification
accuracy. RF emerged as a particularly effective algorithm,
consistently achieving high accuracy in the current study and in
similar works. Additionally, the discussion performed
emphasized the significance of meticulous data preprocessing
in enhancing the performance of ML models. These findings
underscore the potential of ML in bolstering Android security
measures and mitigating the risks posed by malicious
applications.The future scope of the present investigation is to
utilize advanced malware detection models [22-24] and
validate them for various applications [25-28].

ACKNOWLEDGMENT

Mohd Anul Haq would like to thank the Deanship of
Postgraduate Studies and Scientific Research at Majmaah
University for supporting this work under Project No. R-2024-
1120.

REFERENCES

[1] M. A. Haq, "DBoTPM: A Deep Neural Network-Based Botnet

Prediction Model," Electronics, vol. 12, no. 5, Jan. 2023, Art. no. 1159,
https://doi.org/10.3390/electronics12051159.

[2] M. A. Haq and M. A. R. Khan, "Dnnbot: Deep neural network-based

botnet detection and classification," Computers, Materials and Continua,
vol. 71, no. 1, pp. 1729–1750, 2022, https://doi.org/10.32604/

cmc.2022.020938.

[3] M. A. Haq, M. A. R. Khan, and T. AL-Harbi, "Development of pccnn-
based network intrusion detection system for edge computing,"

Computers, Materials and Continua, vol. 71, no. 1, pp. 1769–1788,
2022, https://doi.org/10.32604/cmc.2022.018708.

[4] C. S. Yadav et al., "Malware Analysis in IoT & Android Systems with
Defensive Mechanism," Electronics, vol. 11, no. 15, Jan. 2022, Art. no.

2354, https://doi.org/10.3390/electronics11152354.

[5] H. Cai, X. Fu, and A. Hamou-Lhadj, "A study of run-time behavioral
evolution of benign versus malicious apps in android," Information and

Software Technology, vol. 122, Jun. 2020, Art. no. 106291,
https://doi.org/10.1016/j.infsof.2020.106291.

[6] H. Cai and B. Ryder, "A Longitudinal Study of Application Structure

and Behaviors in Android," IEEE Transactions on Software

Engineering, vol. 47, no. 12, pp. 2934–2955, Sep. 2021, https://doi.org/

10.1109/TSE.2020.2975176.

[7] M. Noman and M. Iqbal, "A Survey on Detection and Prevention of Web
Vulnerabilities," International Journal of Advanced Computer Science

and Applications, vol. 11, no. 6, pp. 521–540, Jul. 2020, https://doi.org/
10.14569/IJACSA.2020.0110665.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 15027-15032 15032

www.etasr.com Haq & Khuthaylah: Leveraging Machine Learning for Android Malware Analysis: Insights from Static …

[8] A. S. Shatnawi, A. Jaradat, T. B. Yaseen, E. Taqieddin, M. Al-Ayyoub,
and D. Mustafa, "An Android Malware Detection Leveraging Machine

Learning," Wireless Communications and Mobile Computing, vol. 2022,
May 2022, Art. no. e1830201, https://doi.org/10.1155/2022/1830201.

[9] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, "A Review of

Android Malware Detection Approaches Based on Machine Learning,"
IEEE Access, vol. 8, pp. 124579–124607, 2020, https://doi.org/

10.1109/ACCESS.2020.3006143.

[10] W. Zhang, H. Wang, H. He, and P. Liu, "DAMBA: Detecting Android
Malware by ORGB Analysis," IEEE Transactions on Reliability, vol. 69,

no. 1, pp. 55–69, Mar. 2020, https://doi.org/10.1109/TR.2019.2924677.

[11] S. Alam, S. A. Alharbi, and S. Yildirim, "Mining nested flow of

dominant APIs for detecting android malware," Computer Networks, vol.
167, Feb. 2020, Art. no. 107026, https://doi.org/10.1016/j.comnet.

2019.107026.

[12] O. Olukoya, L. Mackenzie, and I. Omoronyia, "Towards using
unstructured user input request for malware detection," Computers &

Security, vol. 93, Jun. 2020, Art. no. 101783, https://doi.org/
10.1016/j.cose.2020.101783.

[13] N. J. Ratyal, M. Khadam, and M. Aleem, "On the Evaluation of the

Machine Learning Based Hybrid Approach for Android Malware
Detection," in 22nd International Multitopic Conference, Islamabad,

Pakistan, Nov. 2019, pp. 1–8, https://doi.org/10.1109/INMIC48123.
2019.9022790.

[14] H. Zhang, S. Luo, Y. Zhang, and L. Pan, "An Efficient Android Malware

Detection System Based on Method-Level Behavioral Semantic
Analysis," IEEE Access, vol. 7, pp. 69246–69256, Jan. 2019,

https://doi.org/10.1109/ACCESS.2019.2919796.

[15] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, "DroidMiner:
Automated Mining and Characterization of Fine-grained Malicious

Behaviors in Android Applications," in 19th European Symposium on

Research in Computer Security, Wroclaw, Poland, Sep. 2014, vol. 8712,

pp. 163–182, https://doi.org/10.1007/978-3-319-11203-9_10.

[16] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti, "ANASTASIA:
ANdroid mAlware detection using STatic analySIs of Applications," in

8th IFIP International Conference on New Technologies, Mobility and

Security, Larnaca, Cyprus, Nov. 2016, pp. 1–5,

https://doi.org/10.1109/NTMS.2016.7792435.

[17] X. Fu and H. Cai, "On the Deterioration of Learning-Based Malware

Detectors for Android," in 41st International Conference on Software

Engineering: Companion Proceedings, Montreal, QC, Canada, Dec.

2019, pp. 272–273, https://doi.org/10.1109/ICSE-Companion.2019.
00110.

[18] L. Cai, Y. Li, and Z. Xiong, "JOWMDroid: Android malware detection

based on feature weighting with joint optimization of weight-mapping
and classifier parameters," Computers & Security, vol. 100, Jan. 2021,

Art. no. 102086, https://doi.org/10.1016/j.cose.2020.102086.

[19] R. S. Arslan, I. A. Dogru, and N. Barisci, "Permission-Based Malware
Detection System for Android Using Machine Learning Techniques,"

International Journal of Software Engineering and Knowledge

Engineering, vol. 29, no. 01, pp. 43–61, Jan. 2019, https://doi.org/

10.1142/S0218194019500037.

[20] C. Urcuqui, "Dataset malware/beningn permissions Android." 2016,
[Online]. Available: https://www.kaggle.com/datasets/xwolf12/

datasetandroidpermissions.

[21] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, "MalPat: Mining Patterns of
Malicious and Benign Android Apps via Permission-Related APIs,"

IEEE Transactions on Reliability, vol. 67, no. 1, pp. 355–369, Mar.
2018, https://doi.org/10.1109/TR.2017.2778147.

[22] A. Al-Marghilani, "Comprehensive Analysis of IoT Malware Evasion

Techniques," Engineering, Technology & Applied Science Research, vol.
11, no. 4, pp. 7495–7500, Aug. 2021, https://doi.org/10.48084/

etasr.4296.

[23] K. Aldriwish, "A Deep Learning Approach for Malware and Software

Piracy Threat Detection," Engineering, Technology & Applied Science

Research, vol. 11, no. 6, pp. 7757–7762, Dec. 2021, https://doi.org/

10.48084/etasr.4412.

[24] A. Bathula, S. Muhuri, S. Gupta, and S. Merugu, "Secure certificate
sharing based on Blockchain framework for online education,"

Multimedia Tools and Applications, vol. 82, no. 11, pp. 16479–16500,
May 2023, https://doi.org/10.1007/s11042-022-14126-x.

[25] A. Bathula, S. Gupta, S. Merugu, and S. S. Skandha, "Academic Projects

on Certification Management Using Blockchain- A Review," in
International Conference on Recent Trends in Microelectronics,

Automation, Computing and Communications Systems, Hyderabad,
India, Dec. 2022, pp. 1–6, https://doi.org/10.1109/ICMACC54824.

2022.10093679.

[26] S. Merugu, K. Jain, A. Mittal, and B. Raman, "Sub-scene Target
Detection and Recognition Using Deep Learning Convolution Neural

Networks," in ICDSMLA 2019, Singapore, 2020, pp. 1082–1101,
https://doi.org/10.1007/978-981-15-1420-3_119.

[27] M. Suresh, A. S. Shaik, B. Premalatha, V. A. Narayana, and G. Ghinea,
"Intelligent & Smart Navigation System for Visually Impaired Friends,"

in 12th International Advanced Computing Conference, Hyderabad,
India, Dec. 2022, pp. 374–383, https://doi.org/10.1007/978-3-031-

35641-4_30.

[28] S. Merugu, M. C. S. Reddy, E. Goyal, and L. Piplani, "Text Message
Classification Using Supervised Machine Learning Algorithms," in

International Conference on Communications and Cyber Physical

Engineering, Hyderabad, India, Jan. 2018, pp. 141–150,

https://doi.org/10.1007/978-981-13-0212-1_15.

