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ABSTRACT 

The influence of imperfections in element length and loading on the dynamic buckling of plane trusses 

is investigated in the present study. Finite element formulation and the Euler formula are employed to 

tackle the problem of large displacements. Equivalently, the Newmark integration method and the 

Newton–Raphson iteration algorithm are deployed to solve the nonlinear dynamic equilibrium 

equations. The dynamic applied load considered in this study is a step-imperfect load with an 

imperfection in the element length. The relationship between the load and maximum displacement is 

determined, and the simultaneous influence of the imperfect parameters on the dynamic limit load is 

discussed. The imperfect element length and loading significantly affect the dynamic limit load, 

demonstrating the need to consider both imperfections when studying the dynamic buckling of truss 

systems. 

Keywords-dynamic buckling; dynamic stability; dynamic limit load; dynamic response; length 

imperfection; loading imperfection; nonlinear analysis  

I. INTRODUCTION  

The vibration and buckling of beams, frames, plates, and 
trusses have been topics of significant interest for several years 
[1-8]. Authors in [8] proposed an approach to the problem of 
dynamic buckling in trusses based on the hybrid Finite Element 
Method (FEM). This method considers the influence of 
imperfections by setting the imperfect length as a parameter in 
the stiffness matrix. The results demonstrated that 
imperfections significantly affect the dynamic response and 
dynamic limit load of the truss. However, the imperfections in 
the element length and loading were considered independently, 
which is an issue that needs to be addressed. 

The current study suggests a modification to the nonlinear 
dynamic equilibrium equations used in [8] to simultaneously 
account for both the imperfect load and element length 
parameters. The buckling of trusses under static loading has 
been extensively studied [9-19], nevertheless, the number of 
reports on dynamic buckling of trusses is relatively limited, 

while the imperfection factor has not been considered [19-25]. 
Authors in [22] investigated the buckling of truss systems 
under different dynamic loads. The analysis procedure was 
based on the FEM, considering the large displacements of the 
truss nodes and assuming linear elastic material behavior. All 
elements were alleged to be geometrically perfect, neglecting 
the local buckling effects of the truss elements and damping 
reduction. Authors in [23] examined the dynamic buckling of 
trusses under the same three types of loads discussed in [22]. In 
addition, to account for large displacements, as in [22], 
nonlinear material behavior was considered and the truss 
elements were presumed to be geometrically perfect. The 
results disclosed that in the case of the truss under step loading, 
the value of the limit load is lower than that obtained from the 
static analysis.  

Based on the vector form the intrinsic FEM, authors in [24] 
proposed a method for nonlinear analysis of dynamic loading 
in trusses. This method can simulate significant geometric 
changes during the motion of a truss without utilizing 
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geometric stiffness matrices or iterations. The truss in [24] is 
also considered to be composed of geometrically perfect linear 
elastic elements, neglecting the local buckling effects of truss 
elements and damping reduction. The results were consistent 
with those in [22, 23], but were obtained following a simpler 
computational process. In [26], the Newmark Integration 
Method and the Newton–Raphson iteration algorithm were 
applied to solve nonlinear dynamic equilibrium equations. The 
limit load was determined according to the criteria of 
Budiansky–Roth. The load-maximum displacement 
relationship was presented for two truss types: the von Mises 
truss and the 01-layer roof truss. Specifically, step loading was 
investigated, while considering the imperfect factor. The curve 
of the load-maximum displacement was identified, and the 
simultaneous influence of the two imperfection factors on the 
value of the dynamic limit load was analyzed. The findings 
indicated that the concurrent influence of the two imperfection 
factors essentially affected the dynamic limit load. This 
underscores the necessity of synchronously considering the 
imperfect length and load factors when studying the dynamic 
buckling of trusses. 

II. DYNAMIC EQUILIBRIUM OF TRUSS 
ELEMENTS AND SYSTEMS 

A. Dynamic Equilibrium of Truss Elements 

The structural elements of the truss, as illustrated in Figure 
1, consist of perfect and imperfect member lengths. The 
symbols described as: {X1, Y1}, {X2, Y2} are nodal coordinates 
of the {ith, jth} elements before deformation, Le is the initial 
length imperfection in length parameter Δe, while L0 and L 
represent the distances between two nodes before and after 
deformation, respectively. E is the elastic modulus, A is the 
cross-sectional area, f1,2,3,4 denote the nodal forces, u1,2,3,4 
denote the nodal displacements, m is the nodal mass, fI is the 
inertial force, fD is the damping force, P(t) is the applied load, 
N is the axial force, and u5 = fe = N represents the unknown 
axial force. The Euler coordinate system (x, y) is attached to the 
elements throughout the motion. The element length after 
deformation is a function of displacement [8]: 
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The nodal external force equals to the sum of the inertial 
force, the damping force, and the applied load [8]: 
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From (3) and (4), the dynamic equilibrium equation and 
incremental equilibrium equation of the truss element can be 
obtained [8]: 
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 is the tangent stiffness matrix 

of the truss element. Specific details regarding the stiffness 
matrix can be detected in [8]. 

 

 
Fig. 1.  Perfect (eI) and imperfect (eII) truss element models. 

To simultaneously consider the case of imperfect loads with 
imperfect element lengths, this study proposes a modification 
of (5), which becomes (6) by adding an imperfect load vector 
to its right side: 
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In (6), the left-hand side contains the parameter of 
imperfect length Δe, whereas the right side contains the 
parameter of imperfect load ΔPimperfect. 

B. Dynamic Equilibrium of the Truss System 

The equilibrium equation and incremental equilibrium 
equation of the truss system are acquired from (6), using a 
finite element formulation to assemble components according 
to the nodal displacement indices. 
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The dynamic differential equation is solved by applying the 
Newmark integration [8, 29]: 
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The incremental equilibrium of the truss system displayed 
in (7) is represented in short form: 
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The Newton–Raphson iterative method is applied to solve 
the short-form incremental equilibrium equation (14).  

III. NUMERICAL EXAMPLE AND 
DISCUSSION 

   The investigated planar arch truss, subjected to a step 
load, consists of 35 elements, as observed in Figure 2. All 
elements have an elastic modulus of E = 68.964×106 kN/m2 [8]. 
The nodal coordinates of the truss and the cross-sectional areas 
of the elements are presented in Tables I and II [8, 27, 28]. The 
nodal mass is m = 50 kg, and the imperfection loading factor is 
e = 0.01, assuming that only the 1st to the 10th elements have an 
imperfect length (Δe

(1)÷(10) = 0.381 cm), neglecting damping 
forces. 

This truss has been previously studied in [8] in two separate 
imperfect cases: (i) a truss subjected to imperfect step loading 
but with perfect lengths and (ii) a truss with imperfect lengths 
but subjected to perfect step loading. In the present study, both 
imperfection factors were considered simultaneously, as 
displayed in Figure 3. The dynamic equilibrium expressed in 
(7) contains two types of imperfect parameters, Δe, and Pimperfect, 
which are solved using the Newton–Raphson algorithm and the 
Newmark integration method. 

 

 
Fig. 2.  Arch-truss structure. 
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Fig. 3.  The arch-truss structure accounting for imperfect length and loading. 

TABLE I.  COORDINATES OF EACH NODE IN THE ARCH 
TRUSS  

Nodal number X (cm) Y (cm) 

19, 1 ± 3429.0 0 
18, 2 ± 3048.0 50.65 
17, 3 ± 2667.0 34.75 
16, 4 ± 2286.0 83.82 
15, 5 ± 1905.0 65.3 
14, 6 ± 1524.0 110.85 
13, 7 ± 1143.0 87.99 
12, 8 ± 762.0 128.5 
11, 9 ± 381.0 100.65 
10 0 134.62 

TABLE II.  CROSS-SECTIONAL AREAS OF EACH MEMBER 
IN THE ARCH TRUSS  

Member number Cross-sectional area (cm2) 

1–10, 35 51.61 
11, 12 64.52 
13–16 83.87 
17, 18 96.77 
19–22 103.23 
23, 24 161.29 
25, 26 193.55 
27, 28 258.06 
29–32 290.32 
33, 34 309.68 

 
The calculation results are manifested in Figures 4-6. In 

Figure 4, the values of the dynamic limit load are provided for 
the following cases: (i) Perfect System with Pcr = 21.68 kN, (ii) 
Imperfect Loading with Pcr = 21.67 kN, (iii) Imperfect Length 
with Pcr = 13.30 kN, and (iv) Imperfect Length and Loading 
with Pcr = 12.72 kN. The dynamic limit load in the case of 
Imperfect Loading changes insignificantly compared with the 
Perfect System, suggesting that the influence of imperfect 
loading is small. 

The dynamic limit load in the case of Imperfect Length is 
61.3% of the value obtained in the Perfect System. Therefore, 
the influence of the imperfect length is crucial. When 
considering both imperfection factors at the same time, the 
value of the dynamic limit load was 58.6% of that obtained for 
the Perfect System and 95.6% of that acquired for the 
Imperfect Length case. Thus, the simultaneous effects of both 
imperfection factors substantially reduced the dynamic limit 
load. 

Next, the dynamic responses over time were investigated, 
deploying different load values. The results portrayed in 

Figures 5 and 6 indicate that the displacement increases rapidly 
when the load exceeds the dynamic limit load. Specifically, in 
the Perfect System, when the load P > Pcr = 21.68 kN, the 
displacement increases up to 300 cm. Similarly, in the 
Imperfect Length and Imperfect Length and Loading cases, the 
displacement increases rapidly when P > Pcr = 13.30 kN and 
P > Pcr = 12.72 kN, respectively. 

 
Fig. 4.  Maximum vertical displacements at node 10 under step loading. 

 
Fig. 5.  The vertical displacement of node 10 over time for the perfect 
system and the case of imperfect length and loading. 
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Fig. 6.  The vertical displacement of node 10 over time for the imperfect 
length and the case of imperfect length and loading. 

Next, the dynamic responses over time were investigated, 
deploying different load values. The results portrayed in 
Figures 5 and 6 indicate that the displacement increases rapidly 
when the load exceeds the dynamic limit load. Specifically, in 
the Perfect System, when the load P > Pcr = 21.68 kN, the 
displacement increases up to 300 cm. Similarly, in the 
Imperfect Length and Imperfect Length and Loading cases, the 
displacement increases rapidly when P > Pcr = 13.30 kN and  
P > Pcr = 12.72 kN, respectively. 

IV. CONCLUSIONS 

The influence of both the imperfect element length and 
loading on the dynamic buckling of a planar arch truss was 
investigated in this paper using a modified hybrid Finite 
Element Method (FEM). In particular, step loading was 
considered while accounting for the imperfection factors. The 
load-maximum displacement relationship, the value of the 
dynamic limit load, and the transient dynamic responses of the 
truss corresponding to different cases were established. 

The simultaneous influence of the imperfect length and load 
significantly reduced the value of the limit load although the 
influence of the imperfect load alone was not crucial. When 
considering both imperfection factors concurrently, the value of 
the dynamic limit load decreased to 58.6% of that obtained for 
the Perfect System. This elucidates the need to simultaneously 
contemplate both the imperfect element length and load factors 
when studying the dynamic buckling of truss systems. 
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