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ABSTRACT 

This study proposes a new approach to construct predictive formulas for the permeability of Pervious 

Concrete (PC), which depends on PC mixture and porosity. To achieve this, a dataset of 195 samples 

collected from different sources was used. In the dataset the permeability is dependent on porosity, 

aggregate-to-cement ratio (AC), maximum nominal sizes (MS) of coarse aggregate, and water-to-cement or 

binder ratios (WC). From the dataset and through applying simple regression techniques, several 
analytical functions based on the Kozeny-Carman model were constructed and evaluated for their 

effectiveness in implementing independent datasets and similar analytical functions. Furthermore, for the 

first time, the Genetic Programming-based Symbolic Regression method was adopted to construct hybrid 

models combined with the Kozeny-Carman analytical model. The equation of the hybrid model ensures 
both basic physical conditions and efficiency while being simple enough for engineering-level applications. 

Keywords-symbolic regression; genetic programming; permeability; machine learning; pervious concrete   

I. INTRODUCTION  

Sustainable Urban Drainage Systems (SUDS) have been 
widely studied in the past few decades to address urban 
drainage issues caused by urbanization (owning to the increase 
in the  impervious surface area, such as concrete roads, parking 
lots, and buildings) and the growing threat of global warming 
(higher intensity rainfall). Based on the concept of natural 
drainage systems, SUDS directly and quickly drain the surface 
water from a rainfall to the subbase layer. They either move 
part of the surface water or all of it into the groundwater 
through the infiltration process. Various SUDS have been 
designed for different geographical areas around the world, 
depending on the type of permeable pavement (porous 

concrete, self-locking bricks, etc.) and the characteristics of the 
surface flow [1]. 

Pervious Concrete (PC) plays an important role in SUDS, 
serving the dual purpose of being a tool for managing rainfall 
and a load bearing surface for light/medium exploitation 
(internal roads, pedestrian and bicycle paths, parking lots, 
sidewalks, etc.). PC is a special type of concrete characterized 
by a connected porous structure and high porosity, usually 
ranging from 15 - 35% by volume, corresponding to an 
effective permeability of up to 6 mm/s. The surface layers 
made from PC have many advantages over the conventional 
concrete such as: reducing the risk of flooding, less traffic 
noise, lower surface temperature, improving groundwater level, 
low cost, etc. However, some studies have discussed the main 
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difficulties of using PC in practice, including clogging, long-
term durability, and optimal mix design [2]. 

In order to determine the mix proportion of PC, it is usually 
necessary to rely on the target value of the desired porosity. 
Then, the two basic properties of PC, namely strength and 
permeability, are either determined through experimental work 
or estimated based on some predictive models. Generally, due 
to the influence of the random spatial structure of the PC, the 
prediction of the physical and hydraulic properties of the PC is 
quite challenging, and it is still a topic of great interest in recent 
publications. The simplest approach to predict the permeability 
of PC is based on empirical functions. Due to the natural 
relationship between permeability and porosity (the higher the 
porosity is, the higher the permeability is, and vice versa), the 
empirical functions usually have the form of an exponential, of 
a power, or of a polynomial function of porosity combined with 
some other influencing parameters. A list of 34 empirical 
models is provided in [3]. These empirical analytical functions 
only represent the available experimental dataset and have little 
predictive value. 

Thus, the PC permeability prediction model remains an 
unresolved challenge in both cases of the detailed experimental 
models and general formulas suitable for engineering 
applications. Inspired by the success of some recent studies in 
constructing character-based regression models, employing 
artificial intelligence algorithms and databases, this paper aims 
to establish a formula for predicting the PC permeability 
coefficient based on material characteristics. These formulas 
must ensure physical significance, accuracy, and applicability. 
To accomplish this task, the research strategy is: first, a suitable 
dataset is constructed (Section II); then, the basic analytical 
functions are reconstructed and simple regression functions are 
proposed (Section III); and finally, the effectiveness of the 
solutions is enhanced based on modern artificial intelligence 
algorithms. The outcome is a simple analytical formula to 
determine permeability based on fundamental material 
characteristics, providing a basis for constructing more 
sophisticated models in the future. 

II. DATASET 

The experimental database was constructed from 195 PC 
samples with different mix ratios, adopted from reliable open 
international sources [4-11]. Previous studies have widely 
recognized that the permeability of PC mainly depends on the 
characteristics of the voids, such as porosity value, void size, 
connectivity - continuity of the voids, and the flow features in 
this void system. Thus, the permeability of PC depends largely 
on the design mix composition of the material. In this study, a 
PC dataset was obtained from various sources of different PC 
samples, which were produced with various aggregates to 
cement or binder ratios (AC), maximum nominal sizes (MS) of 
coarse aggregate, water to cement or binder ratios (WC) and 
two important parameters of this type of material, namely 
effective porosity (ϕ) and hydraulic permeability coefficient 
(K). The permeability characteristics of PC are usually 
investigated in the laboratory by the Falling head method [4], 
[6] and/or with the constant head method [7-11]. The 
permeability measured utilizing the constant water column 
height usually gives higher values than the method employing 

the variable water column height. Within the scope of this 
database, the influence of the measurement method was not 
considered. 

The obtained database contains information including AC, 
WC, MS, ϕ and K of the PC. It should be noted that the 
permeability K and porosity ϕ of PC in this dataset vary from 
0.1 to 32.7 mm/s, and 10 to 40%, respectively, while the typical 
permeability of the PC can range from 1.4 to 12.2 mm/s when 
the porosity is between 15 and 35 % [12]. The statistical 
parameters of the database are displayed in detail in Table I. In 
Figure 1, the correlations between the variables of the dataset 
are presented through the Pearson coefficient, ranging from -1 
to 1. 

TABLE I.  STATISTICAL PARAMETERS OF THE DATASET. 

Index Unit Mean Min. Max. 
Recommendations 

according to [12] 

AC - 4.66 3.03 12.00 4.0-4.5 

WC - 0.3 0.22 0.40 0.27-0.34 

MS mm 11.0 4.5 19.0 9.5-19.0 

� % 28.6 10.0 40.0 15-35 

� mm/s 13.1 0.1 32.7 1.4-12.2 

 

 
Fig. 1.  Correlation heatmap of the dataset. 

III. THE THEORY-BASED EVALUATION APPROACH 

A. Kozeny-Carman Equation 

In geotechnical engineering, the hydraulic conductivity 
an/or the intrinsic permeability can be predicted based on 
empirical relationships, probabilistic models, or theoretical 
models of flow. Unlike industrial materials (e.g. composites) 
that have fairly homogeneous material structures, geotechnical 
materials (soil, rock, and cement-based materials) often have 
complex spatial structures, so the theoretical models for 
predicting the mechanical properties are usually developed 
from simple theoretical approaches, then improved based on 
empirical approximations to better reflect the actual results. 
The Kozeny-Carman equation for predicting the permeability 
coefficient is also built in this way. Several different forms of 
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the Kozeny-Carman equation have been proposed to determine 
the hydraulic conductivity/intrinsic permeability of 
geotechnical materials. For the convenience of the readers, the 
Kozeny-Carman equation, which has been introduced in 
previous studies [13], is re-established here. Then, this equation 
is combined with the current database to propose some new 
equations suitable for the characteristics of pervious concrete. 
To establish the theoretical formulas in an attempt to determine 
the permeability coefficient, two experimental and theoretical 
equations related to the Darcy flow and the Poiseuille one-
dimensional flow are simultaneously considered as illustrated 
in Figure 2. 

 

 
Fig. 2.  Theoretical illustration: (a) Darcy permeability experiment, (b) 

Poiseuille one-dimensional flow. 

The basic Darcy equation is expressed as follows: 

� � �

�
� � ∆�

	
     (1) 


 is the flow rate, in m3/s, created by a water pressure ∆� 
and flowing through the material block of a height 
 (m) and 
cross-section S (m

2
). As observed in Figure 2(b) and 

considering the flow through a circular cylindrical channel of 
radius  , the flow velocity will depend on the material viscosity 
coefficient μ and the hydraulic gradient according to the 
Poiseuille solution: 
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�
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Balancing the two theoretical and experimental equations of 
one-dimensional static flow, the formula to determine the 
hydraulic permeability coefficient � (m/s) is obtained: 

� � ��

�

���

 �
     (3) 

In the general case, if the tortuosity coefficient, ! is defined 
as the ratio between the actual length of the flow and the length 
of the material sample, and "#   is denoted as the surface-to-
volume ratio, then: 

� � ��$%

�
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�	
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�
   (4) 

Several semi-empirical expressions have been developed 
for different types of materials. For PC, it is first assumed that 
the granular material consists of spheres of diameter (, then the 
surface-to-volume ratio can be calculated by: 

"# � )��*'�

�
     (5) 

Substituting (4) and (5) into the basic equation (3), a semi-
empirical equation is obtained to determine the hydraulic 
permeability coefficient K of PC: 

� � ��

�

'+�$

,���*'�$%$ �
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+
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$ 1  (6) 

 �2 is the value of porosity at which permeability begins to 

occur. The coefficient 1 is characteristic of the fluid properties 
as well as the spatial structure of the porous material. 

B. Application to Pervious Concrete 

The task of this section is to evaluate the applicability of the 
theoretical equation developed above and propose some 
specific applications. To ensure the practicality of the research 
solution, this study sets hydraulic conductivity in units of 
mm/s, and the particle size of the aggregate, d, in mm. It is 
obvious that, in terms of physical dimension, equation (6) is 
consistent with the intrinsic permeability of the material when 
1  is a dimensionless parameter. In the case of hydraulic 
conductivity, A can have units of 1/mm.s, owing to the ρg/μ 
coefficient. However, this conversion does not affect the 
process of estimating the coefficient of the equation. Based on 
the data constructed in Section II, two equations using simple 
regression analysis are proposed in Table II, along with the 
corresponding R

2
 coefficients. 

TABLE II.  THE THEORY-BASED AND EMPIRICAL 
PREDICTING EQUATIONS 

 Ref. Equation 

R
2
 coefficient 

Dataset 

in [3] 

This 

work 

dataset 

Dataset 

in [14] 

(1) This work � �
���3

�100 � ��� 1.92 - 0.73 0.89 

(2) This work 

�

�
���3

�100 � ���
��0.3:;

< 0.093=> < 2.4;1
< 43.5;1� � 126.18;13� 

- 0.86 0.89 

(3) [3] � � 0.008� �.�)�� 0.7 0.75 0.85 

(4) [3] 

�
� 0.603� < 0.14981;
< 2.051:; � 6.545 

0.66 0.85 0.8 

(note: CA=1/AC) 

 

In Figure 3, the correlations between the experimental and 
the predicted values of the proposed equations are presented. It 
should be emphasized that these two models are selected from 
many different options through the least squares rule. The 
results exhibit that parameter A depends on the input 
parameters WC, AC, MS based on a polynomial function, 
corresponding to (2), which provides better results than the 
complex nonlinear power functions that are often used. 
Equation (1), on the other hand, represents the simplest form 
possible, but still achieves an impressive R2 of 0.73. 

Next, the effectiveness of the constructed predicting 
equations is examined. Authors in [3] conducted a rather 
detailed study on creating a simple analytical function to 
predict the permeability coefficient of PC. In this study, 34 
equations determining the permeability coefficient of the 
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porous material in the form of linear trend, two-degree 
polynomial, exponential, power, and Carman–Kozeny 
relationships were synthesized from various sources. 
Subsequently, the authors built a database consisting of 695 
samples for evaluation. From there, they selected and 
constructed the 2 best equations ((3) and (4) in Table II), where 
(3) is a power function only dependent on porosity and (4) is a 
polynomial function taking into account both AC and WC 
indices. The results for the dataset of [3] are not exceptional, 
exhibiting R2 = 0.7, and 0.66 for (3) and (4), respectively. This 
indicates that the dataset is quite scattered. Unfortunately, the 
dataset is not available, making it difficult to be assessed in 
detail. 

 

 
Fig. 3.  Compare the predictions results and experimental results of the 
proposed theory-based equations. 

 
Fig. 4.  Comparison between the prediction results of the analytical 

equations. 

Returning to the evaluation of the effectiveness of the 
constructed models, first, 2 models proposed from [3] are 
applied in the proposed dataset. The results of (3), and (4) 
exhibit correlation coefficients R2 of 0.75 and 0.85, 
respectively, indicating that this dataset considers the role of 
other material parameters, such as WC and AC, and is more 
suitable. The corresponding results for (1) and (2) are also 
exhibited in Table II. To provide an objective evaluation, this 
study uses independent data proposed by [14] to assess the 
effectiveness of the 4 predicting formulas mentioned above. 
The results are depicted in Table II. The models proposed in 
this study perform better with a correlation coefficient that 
reaches R2 = 0.89 for the simple and complex equations with 

the independent test dataset. From Figure 4, it is evident that 
predicting the permeability coefficient solely based on porosity 
(1) does not offer any advantage. Conversely, to account for the 
influence of other material parameters such as WC and AC, 
more complex nonlinear equations need to be constructed. This 
topic will be discussed in the following section. 

IV. HYBRID MODEL 

In recent years, several analytical models [15] and artificial 
intelligence approaches [16] have been developed to predict the 
fundamental properties of porous concrete. In [17] a symbolic 
regression approach based on the genetic programming 
framework was utilized to assess the compressive strength of 
the porous concrete, achieving favorable results compared to 
purely analytical solutions or black-box machine learning 
models such as ANN and XGB [16]. However, symbolic 
regression models often suffer from drawbacks such as lack of 
physical significance and violations of fundamental physical 
laws. To enhance efficiency and ensure accuracy and 
applicability, a hybrid equation will be developed based on 
both analytical development and the dataset from the previous 
section, along with artificial intelligence tools focusing on 
symbolic regression. 

A. Genetic Programming-based Symbolic Regression Method 

Within the field of artificial intelligence, Genetic 
Programming (GP) is an automated methodology that emulates 
natural selection to seek an optimal outcome, initially 
pioneered in 1992 [18]. However, one of the major drawbacks 
of the GP method compared to other machine learning 
approaches is the computation time. To accelerate the speed of 
computation, this study applies a new algorithm proposed in 
[19], called Operon, a modern C++/Python framework for 
symbolic regression based on the genetic programming method 
to explore mathematical expressions and to find the best fit 
model for a given problem. Unlike other standard tree-based 
GP methods, Operon utilizes parallelism in the evolutionary 
process, generating each new individual independently in its 
own logic stream. The main algorithm and the C++/Python 
script are introduced in [19]. 

Once the computational framework is established to search 
for solutions, selecting the best function remains a critical 
question to address. For each function that is the result of 
symbolic regression, there are two most important criteria for 
evaluating the accuracy and complexity of the function. A 
function with high accuracy sometimes has too high 
complexity, leading to difficulties in explicit representation and 
practical application. Conversely, with concise functions, it is 
often difficult to achieve high efficiency compared to other 
functions. Choosing the best solution that balances the 
efficiency and accuracy of the model in the obtained result set 
is not a simple task. To solve this problem, this study 
performed many GP calculations and saved the resulting 
functions along with their parameters, such as statistical 
measures, complexity, and running time. Then, the Pareto front 
was constructed as the optimal result in terms of accuracy and 
complexity. Finally, the optimal option from the Pareto front 
was chosen. 
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B. Application to Pervious Concrete 

According to [17], there are four main parameters that 
affect the accuracy of the model: initial population depth, 
tournament size, population size, and number of generations. In 
this study, simulations were conducted using the following 
parameter values: initial population depth ranging from 2 to 6, 
tournament sizes of 5, 10, 15, 20, 25, and 30, population sizes 
varying from 1000 to 2000, and number of generations set at 
20, 40, 60, 80, and 100. Each parameter set for the model was 
calculated 10 times, totaling 15,000 calculations. In each 
calculation, the functions were randomly generated; then the 
function with the highest accuracy was saved and evaluated 
with the validation dataset. Then, two scenarios were 
examined. The first scenario, denoted as the GP formula, 
corresponds to applying the model to the entire constructed 
dataset. The second scenario, based on the database, only 
predicts the A coefficient in the Kozeny-Carman equation, 
whereas the first coefficient related to porosity remains 
unchanged. This case is denoted as the hybrid formula, 
representing the combination of an analytical equation and a 
character regression algorithm. Figure 5 introduces the trade-
off between accuracy and complexity of the proposed formulas. 
It should be noted that the definition of a reasonable 
complexity of a mathematical expression is a topic of debate. 
Here, a simple definition that complexity is the number of 
mathematical operators, features, and constants in the model, 
also known as the node length in GP, is accepted. Next, the 
corresponding Pareto fronts are constructed (the blue line 
shown in Figure 5). It is worth mentioning again that the Pareto 
front consists of optimal points that are not dominated by any 
other solution in both accuracy and complexity. 

 

  
Fig. 5.  The trade-off accuracy complexity of the formulas. 

Table III introduces the two best-fitting equations obtained 
on the corresponding Pareto fronts, and the correlation 
coefficients with the two constructed datasets, and the 
independent validation dataset in [16]. It is apparent that the GP 
formula is slightly better than the hybrid model on the 
constructed dataset and displays no difference on the 
independent dataset. However, the GP formula violates 
physical laws in some instances, leading to some permeability 
coefficients lower than 0, and has higher complexity (Figure 6). 
In fact, the hybrid model has several advantages for practical 
application. Figure 7 illustrates the comparison of the hybrid 
formula with the purely analytical formulas constructed above. 

 

TABLE III.  THE GP AND HYBRID PREDICTING FORMULAS 

Formula Equation 

R
2
 coefficient 

This 

work 

dataset 

Dataset

in [16] 

GP 

� � 0.83 ∗ ϕ �  13.36 ∗ �0.48 �  0.06 ∗ MS�

∗ �0.71 �  0.04 ∗ ϕ�

∗ �4.91 �  13.15 ∗ WC�

∗ ��0.33 ∗ MS �  0.25

∗ ϕ <  9.21 <  33.92

∗ e*K., ∗LM� �  12.41 

0.91 0.9 

Hybrid 

� �
ϕ3

�100 �  ϕ��
�3.74

∗ exp��18875500

∗ �0.23 �  WC��

∗ �0.31 �  WC��

∗ �1 �  0.056 ∗ MS��

�  275.94

∗ �0.254 �  CA���

<  1.96� 

0.89 0.9 

 

 
Fig. 6.  Comparison of the prediction and the experimental results of the 

proposed formulas. 

 

 
Fig. 7.  Comparison of the prediction results of the proposed formulas with 

the experimental data.  

V. CONCLUSIONS 

The pursuit of developing straightforward analytical 
formulas to predict the permeability coefficient of pervious 
concrete material is a compelling subject; however, it has not 
produced significantly successful outcomes to date. This study 
introduces a novel approach for exploring mathematical 
formulas to predict the permeability coefficient of pervious 
concrete. Following this approach, a dataset consisting of 195 
samples from 12 independently published sources is initially 
constructed. Subsequently, this study redefines the Kozeny-
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Carman equation in which the permeability coefficient depends 
on porosity and the coefficient A, which characterizes the 
spatial structure of the material. Utilizing simple regression 
techniques, simplified equation forms are established and 
demonstrated to be effective through comparison with 
independent datasets and recently proposed analytical 
equations. Furthermore, to enhance the effectiveness of the 
method, for the first time, the Genetic Programming-based 
Symbolic Regression method is applied to compute the 
permeability coefficient of the pervious concrete material. 
When this method is combined with the original analytical 
equation and symbolic regression technique, a hybrid equation 
is formulated. This equation ensures both basic physical 
conditions and efficiency while being simple enough for 
engineering-level application. This is the main and noteworthy 
result of the current work. However, it is necessary to validate 
the proposed results through experimental testing. The 
computational process developed in this paper can also be 
applied to other types of non-conventional concrete materials. 
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