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ABSTRACT 

This paper introduces the TQU-SLAM benchmark dataset, which includes 160,631 RGB-D frame pairs 

with the goal to be used in Dell Learning (DL) training of Visual SLAM and Visual Odometry (VO) 

construction models. It was collected from the corridors of three interconnected buildings with a length of 
about 230 m. The ground-truth data of the TQU-SLAM benchmark dataset, including the 6-DOF camera 

pose, 3D point cloud data, intrinsic parameters, and the transformation matrix between the camera 

coordinate system and the real world, were prepared manually. The TQU-SLAM benchmark dataset was 

tested based on the PySLAM framework with traditional features, such as SHI_TOMASI, SIFT, SURF, 

ORB, ORB2, AKAZE, KAZE, and BRISK and features extracted from DL LIKE VGG. Experiments were 

also conducted on DPVO for VO estimation. The camera pose estimation results were evaluated and 
presented in detail, while the challenges of the TQU-SLAM benchmark dataset were analyzed. 

Keywords-TQU-SLAM benchmark dataset; Visual Odometry; RGB-D images; 3D trajectory; feature-based 

extraction 

I. INTRODUCTION  

Visual Odometry (VO) is applied in many fields, namely 
Autonomous Vehicles, Unmanned Aerial Vehicles (UAV), 
Underwater Robots, Space Explore Robots, Agriculture 
Robots, Medical Robots, and AR/VR [1]. The problem of 
estimating VO using a vision-based approach with monocular 
camera data is solved through the deployment of two 
approaches: geometry-based methods/knowledge-based and 
learning-based methods [2-4]. Learning-based methods are 
based on traditional Machine Learning (ML) and DL. In 
particular, DL has been applied to solve many ML problems, 
such as modeling groundwater storage change [4], predicting 
climate change [5], air pollution prediction [6], classification of 
nanosatellite images [7], automatic weed detection system 
using UAV images [8], forest area classification using UAV 
images [9], etc. The knowledge-based methods include 

appearance-based methods, feature-based methods, and hybrid 
methods. The framework to build a VO system entails five 
steps, with input data images: feature detection, feature 
tracking, motion estimation, triangulation, and trajectory 
estimation [2], as shown in Figure 1. The output of the VO 
framework is 6-DOF, involving the 3D pose, which is the 
position of the camera in the scene, while the remaining 3D is 
the direction of camera's movement. 

Established on the feature-based methods, the feature 
detection step is the process of feature extraction (SIFT [10], 
SURF [11], ORB [12], BRISK [13] features, etc.). To find 
corresponding points on frames employing techniques such as 
optical flow [14]. This is followed by a motion estimation step 
that typically utilizes Epipolar geometry constraints to 
incorporate feature-to-feature matching (2D to 2D). From 
there, motion parameters are calculated and projection from 3D 
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to 2D is performed to minimize the 3D tracked landmarks 
against the current image frame and 3D to 3D to increase the 
accuracy of the estimated pose. To perform camera pose 
optimization, research often applies algorithms, such as Bundle 
adjustment, Kalman Filter, and EKF Graph optimization [1]. 
For DL-based approaches, the steps of feature detection, 
feature matching, and pose estimation are performed with DL 
algorithms [1]. 

 

 
Fig. 1.  Building a VO framework from input images. 

Currently, most VO estimation methods are evaluated on 
the KITTI [15-17], TUM RGB-D SLAM [18], NYUDepth 
[19], and ICL-NUIM [20] datasets. KITTI 2012 [16] dataset is 
collected from two high-resolution camera systems, a 
Velodyne HDL64E laser scanner (grayscale and color), and a 
state-of-the-art OXTS RT 3003 localization system (a 
combination of devices, such as GPS, GLONASS, security 
IMU, and RTK correction signals). This dataset is divided into 
sub sets serving different problems. The dataset deployed to 
evaluate the optical flow estimation model includes 194 image 
pairs for training and 195 image pairs for testing, with a 
resolution of 1240×376 pixels. The dataset utilized to evaluate 
the 3D VO/SLAM model consists of 22 stereo sequences 
collected from a length of 39.2 km of driving. This data set 
provides benchmarks and evaluation measures for VO and 
Visual SLAM, such as motion trajectory and driving speed. In 
the dataset used to evaluate object detection and 3D orientation 
estimation, the original data include accurate 3D bounding 
boxes for object classes, such as cars, vans, trucks, pedestrians, 
cyclists, and trams. Original data of 3D objects in point cloud 
data were manually labeled to evaluate algorithms for 3D 
orientation estimation and 3D tracking. TUM RGB-D SLAM 
dataset was collected employing the MS Xbox Kinect sensor 
[18]. The collected data consist of RGB-D frame sequences. 
The environment for data collection includes two different 
indoor scenes, the first is a typical office environment called 
"fr1" with a size of 6×6 m

2
, and the second is a large industrial 

hall called "fr2" with a size of 10×12 m
2
. The ground truth 

trajectory from the motion capture system is provided by eight 
high-speed tracking cameras. This dataset entails 39 frame 
sequences and is divided into four groups. Color and depth 
image data are 640×480 pixels in size and captured at a rate of 
30 Hz. NYUDepth dataset [19] consists of 1449 RGB-D 
images collected from MS Kinect from multiple buildings in 
three US cities with 464 different indoor scenes belonging to 
26 scene classes. The dataset contains 35,064 distinct objects, 
spread across 894 different classes. For each of the 1449 
images, supporting captions were added manually. ICL-NUIM 
dataset [20] is a dataset consisting of RGB-D sequences used to 
evaluate VO, 3D reconstruction, and SLAM algorithms that 
were collected from a living room and an office room. For each 
scene the authors collected four frame sequences with different 
number of frames in each sequence. Original camera 
trajectories (POVRay) and synthetic trajectory data were 
obtained from ground truth depth maps and color images. In 
this dataset, there are two main types of noise: noise from color 

images and noise from depth images when collecting data with 
MS Kinect. 

However, DL methods always need a very large amount of 
data to train a VO estimation model. With this approach, the 
more the data and data contexts are, the more accurate the VO 
estimation results are. In this paper, a standard dataset named 
the TQU-SLAM benchmark dataset is proposed to evaluate VO 
estimation methods. The employed database is collected with 
the use of the Intel RealSense D435 in an environment that is 
the 2nd floor of three interconnected buildings. The dataset 
includes 160,631 RGB-D frame pairs. 

To see the challenges of the TQU-SLAM benchmark 
dataset, the proposed dataset was tested by the PySLAM [21] 
with the features extracted in the feature extraction step as 
ORB [22], ORB2 [23], SIFT [10], SURF [11], BRISK [12], 
AKAZE [24], KAZE[24], or features extracted from VGG DL 
model [25]. The current paper has the following main 
contributions: 

 The TQU-SLAM benchmark dataset is introduced for 
evaluating VO models, algorithms, and methods. The 
ground truth of the TQU-SLAM benchmark dataset is 
constructed by hand including the camera coordinates in the 
real-world coordinate system, 3D point cloud data, intrinsic 
parameters, and the transformation matrix between the 
camera coordinate system and the real world. 

 Experiments were carried out on the TQU-SLAM 
benchmark dataset for estimating VO based on PySLAM 
[21, 26] with extracted features, such as ORB [22], ORB2 
[23], SIFT [10], SURF [11], BRISK [13], AKAZE [24], 
KAZE[24] , or features extracted from a DL model such as 
VGG [25]. 

 The results are analyzed and compared with the ones of the 
TQU- SLAM benchmark dataset. 

II. TQU-SLAM BENCHMARK DATASET 

A. Data Collection 

The experiment is set up in the second-floor hallway of 
Building A, Building B, and Building C of Tan Trao University 
(TQU), Vietnam (Figure 2-3). The data were collected from the 
environment using an Intel RealSense D435 camera. The 
camera was mounted on a vehicle (Figure 4). The angle 
between the camera’s view and the ground is about 45o. The 
total distance traveled by the vehicle at one time is FO-D = 
230.63 m, OP-D = 228.13 m and the width is 2 m. For every 
0.5 m, a numbered marker with dimensions of 10 × 10 cm was 
assigned for one marked corner. The total number of markers 
used was 332. 

The moving speed when collecting data was about 0.2 m/s. 
The data collected are color and depth images with a resolution 
of 640 × 480 pixels. The car was always driven in the middle 
of the hallway. The data acquisition speed is 15 fps. Data 
collection was performed four times. On the first day, data 
were collected twice (1st, 2nd), and on the second day, data were 
collected the remaining two times (3rd, 4th). Data were collected 
in the afternoon at 2:00 p.m. and 3:00 p.m. Each time, the 
direction of movement according to the blue arrow is in the 
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forward direction (FO-D), and the direction of movement 
according to the red arrow is in the opposite direction (OP-D). 
All data of the TQU-SLAM benchmark dataset can be seen in 
[26]. Table I provides a summary of the collected data. 

 
 

 
Fig. 2.  Marker application and marker results collected on a color image. 

 
Fig. 3.  Illustration of the hallway environment of Building A, Building B, 

and Building C of Tan Trao University, Vietnam for data collection. In the 

environment, 15 key points are highlighted. The direction of movement 

according to the blue arrow is in the forward direction, and the direction of 

movement according to the red arrow is in the opposite direction. 

 
Fig. 4.  Illustration of a vehicle equipped with a camera and computer 

when collecting data. 

B. Preparing Ground-Truth Trajectory for Visual Odometry 

To prepare the ground-truth data for evaluating the results 
of VO, the ground-truth data of the motion trajectory was built 
as follows. A coordinate system was pre-defined in real-world 
space as portrayed in Figure 3, where the X axis is red, the Y 
axis is green, and the Z axis is blue. 

A self-developed tool was used in the Python programming 
language to mark four points on the color image, as depicted in 
Figure 5. Then the corresponding four marker points on the 
depth image were taken because each frame was obtained as a 
pair of RGB images and depth images. To convert the four 
marked points of the marker on the RGB image and the four 
corresponding points on the depth image to 3D point cloud 
data, the camera’s intrinsic parameters shown in (1) were 
employed: 

��� 0 ��0 �� ��0 0 1 � 	 �525.0 0 319.50 525.0 239.50 0 1 � (1) 

where ��, ��, ��, and �� are the intrinsic parameters of the 
camera. For each marker point with coordinates xd, yd, and 
depth value da on the depth image, the result will be converted 
to point M with coordinates xm, ym, and zm: �� 	 ������������   

�� 	 ������������     (2) �� 	 da  

TABLE I.  NUMBER OF FRAMES 

Data acquisition time Direction 
Number of RGB-D 

frames 

1
st
 

FO-D 21,333 

OP-D 22,984 

2nd 
FO-D 19,992 

OP-D 21,116 

3rd 
FO-D 17,995 

OP-D 20,814 

4th 
FO-D 17,885 

OP-D 18,548 
 

As observed in Figure 5, the four points of the marker point 
cloud data are according to the camera coordinate system, with 
the original coordinate system being the center of the camera. 
Therefore, to find these four points in the real-world coordinate 
system, it is necessary to find the rotation and translation 
matrix (transformation matrix), to transform the four points 
from the camera coordinate system to the real-world coordinate 
system. This study assumes calling point M (x, y, z) in the 
camera coordinate system, and (x', y', z') in the real world 
coordinate system after performing the transformation 
according to (3): 

�������1 � 	  !"## !"#$ !"#% &'#!"$# !"$$ !"$% &'$!"%# !"%$ !"%% &'%0 0 0 1 ( ∗ ����1� (3)  

where Roij are the components of the rotation matrix from the 
camera coordinate system to the real-world coordinate system 
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and &'# , &'$ , and &'%  are the components of the translation 
matrix from the camera coordinate system to the real-world 
coordinate system. The transformation result oX is evidenced 
in (4): 

*�� 	 !"##� + !"#$� + !"#%� + &'#�� 	 !"$#� + !"$$� + !"$%� + &'$�� 	 !"%#� + !"%$� + !"%%� + &'%,  (4) 

From the coordinates of the four points of point cloud data 
in the camera’s coordinate system, their coordinates in the 
matrix are defined as: 

 1 �# �# �#1 �$ �$ �$1 �% �% �%1 �- �- �-
(    (5) 

The transformation matrix according to the x, y, z axes is 
presented by: 

.# 	  &'#!"#%!"#$!"##
( ;  .$ 	  &'$!"$%!"$$!"$#

(  ; .$ 	  &'%!"%%!"%$!"%#
( (6) 

The results of the transformation are: 

1� 	 ⎣⎢⎢
⎡�#��$��%��-� ⎦⎥⎥

⎤ ;  8� 	 ⎣⎢⎢
⎡�#��$��%��-� ⎦⎥⎥

⎤ ; 9� 	 ⎣⎢⎢
⎡�#��$��%��-� ⎦⎥⎥

⎤
  (7) 

where �#� , �$� , �%� , �-� , �#� , �$� , �%� , �-� , �#� , �$� , �%� , �-�   are the 
ordinates of four points of the point cloud data in the real-world 
coordinate system. From this, a linear equation presented as 
formula in (8) is derived: 1� 	 ; � .#  8 � 	 ;�.$     (8) 9� 	 ; � .%  

To estimate .# , .$, .%, the Least Squares method is used 
[21]: 

 .# 	 ;<;�#;<1�  .$ 	 ;<;�#;<8�    (9) .% 	 ;<;�#;<9�  

Finally, the conversion matrix between the camera 
coordinate system and the real-world coordinate system is of 
the form �.#; .$; .%�. The coordinates of the center in the real-
world coordinate system are calculated by: 

�= 	 >?@ A>B@ A>C@ A>D@-   

�= 	 E?@ AEB@ AEC@AED@-     (10) 

�= 	 F?@AFB@ AFC@AFD@-   

The ground-truth data results of the motion trajectory in the 
real-world coordinate system are exhibited in Figure  5. 

When collecting data and preparing the ground-truth data of 
the TQU-SLAM benchmark dataset, the following difficulties 
were encountered: (a) When collecting color and depth image 
data, many color image frames were blurred due to shaking 
during movement. Therefore, when the first recording was 
completed, the blurred frames on the color image were 
removed and were correspondingly removed on the depth 
image. (b) There is a gap between the two types of cameras on 
the Intel RealSense D435 (color camera, depth camera). To 
bring these two types of data to the same center, it is necessary 
to perform the calibration process (find image displacement 
matrix). However, due to the lack of facilities, matrix search 
was performed and it was tested on the collected data. Finally, 
the matrix noticed in (1) was acquired. (c) In the process of 
building 3D point cloud data of four points as in (2), the 
problem that on the depth image there are many areas with 
missing data due to absorption of infrared rays from the sensor 
was encountered. To fill in the data of missing regions, one can 
perform the fill-holing process (was not performed in this 
study). With four points marked on the marker, if any point had 
a depth value of 0, the average depth value of its 99 
neighboring points was taken as the depth value of that point. 

 

 
Fig. 5.  ORB feature matching of two consecutive frames from the TQU-

SLAM benchmark dataset. 

III. COMPARATIVE STUDY OF BUILDING VISUAL 
ODOMETRY BASED ON KNOWLEDGE-BASED 

METHODS 

As shown in Figure 1, the framework for constructing VO 
based on the knowledge-based methods from the collected 
images of the monocular camera includes five steps. Some 
recently published VO estimation techniques are presented. 

A. PySLAM 

PySLAM framework [21, 27], just like the knowledge-
based methods, performs 6-DOF VO estimation with several 
steps. The feature extraction step, or keypoint detection, is the 
process of detecting features/keypoints between two 
consecutive frames, the features can be edges, corners, or 
blobs. Typically, the features are detected and extracted 
according to a feature descriptor, such as SHI_TOMASI, SIFT, 
SURF, ORB, AKAZE, KAZE [22], and BRISK. At the same 
time, feature extraction through DL networks such as VGG 
[25] and D2-Net [28] is also performed. Figure 6 portrays the 
match between the corresponding ORB features in two 
consecutive frames of the TQU-SLAM benchmark dataset. 
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In the motion estimation step, features are extracted from 
the monitored frame sequence from which the camera motion 
is estimated through the transformation matrix in (11): 

&G,H�# I!"G,H�# JG,H�#0 1 K    (11) 

where !"G,G�#  is the rotation matrix between two consecutive 

frames L and L –  1  and JG,G�# is the translation vector between 

two consecutive frames L and L N  1. 

The spatial correlation matrix between frames L and L N  1 
is calculated based on (12) and the motion trajectory in 3D 
space is also calculated. A scale factor α is the shift factor 
between two consecutive frames. 

O 	 α ∗ � 0 NJF JEJF 0 NJ>NJE NJ> 0 � ∗ !"  (12) 

where t is a translation matrix in the x, y, z direction. The 
calculation of the essential matrix is done in the epipolar plane 
system and by using epipolar constraints. This problem can be 
solved with the five-point algorithm or 5-point RANSAC [30, 
31]. The RANSAC algorithm deployed here estimates the 
correspondence between two sets of keypoints. The points 
converted from the input set within a certain limit are called 
inliers. The algorithm will iterate about K times (K is calculated 
with (13)) [31] and output the largest number of inliers. Q 	 RST # � URST #�VW     (13) 

where p is the probability of finding a descriptor key-point, s=2 
is the minimal number of samples needed to estimate a line 
model, and w is the likelihood ratio being inliers.  This issue is 
summarized as follows. 

In the local optimization step, camera pose estimation and 
motion trajectory errors are accumulated from camera pose 
estimation and transformation. Currently, there are two 
methods commonly applied to optimize the camera’s 
movement trajectory in the environment. Firstly, the entire 
motion trajectory and camera pose are rechecked to minimize 
errors. The second is to use the Kalman algorithm or a particle 
filter to calibrate the map during data collection and edit the 
estimated camera pose when detecting new keypoints. 

This framework works mainly depending on the feature 
extractor. The feature extractor's task is to calculate the input 
image according to the feature descriptor on two consecutive 
frames. Then, it performs feature matching and finds 
corresponding features on the two frames. From there, the state 
of motion can be estimated. At the same time, based on the 
displacement matrix between two feature sets, it estimates the 
motion trajectory. In PySLAM, no optimization is utilized to 
obtain the best motion trajectory and it is not suitable for real-
time VO construction to meet the requirements of a real 
system. In particular, it does not use loop closure in VO 
construction. PySLAM provides a flexible architecture that 
allows the interchange ability of detectors and feature 
descriptors (SHI_TOMASI, SIFT, SURF, ORB, AKAZE, 
KAZE [22], and BRISK). Various feature matching techniques 
such as FLANN or BRUTE can be deployed for tracking as 

well as optical flow methods. For example, SHI_TOMASI is a 
detector similar to Harris, but more efficiently computes a 
corner by only accepting it if the R value is greater than the 
specified threshold value. This function allows setting the 
quality level and minimum detection distance. The quality level 
ranges from 0 to 1 and specifies an upper limit to remove 
corners. The default quality level is usually 0.01 in which, 
optical flow and Shi-Tomasi corner detection are used to 
identify features and track them between pairs of frames in 
what is called Lucas-Kanade-Tomasi tracking. Motion is 
obtained from spatial and temporal variations in image 
brightness, i.e. image gradients. 

B. DPVO (Deep Patch Visual Odometry) 

DPVO [32] is a DL framework that combines a 
Convolutional Neural Network (CNN) and a Recurrent Neural 
Network (RNN). With the input image data being an RGB 
image, DPVO performs per pixel feature extraction employing 
ResNet and uses it to calculate similarities between images in 
the frame sequence. Next, two residual networks are utilized, 
the first network is used to extract matching features, and the 
second is deployed to extract contextual features. The first 
layer of each network performs convolution with a size of 7×7, 
the next two residual blocks have a size of 32×32, and the next 
two residual blocks have a size of 64×64, as illustrated in 
Figure 6. Finally, the output of the feature vector is the ¼ of the 
size of the input image. Next, a two-level feature pyramid is 
constructed with sizes 1/4 and 1/8, respectively, with the 
resolution of the input image based on a 4×4 filter with average 
pooling to the matching features to estimate the amount of 
optical flow. Then, p×p patches are obtained from the feature 
map with random positions in image space (pixel space) 
following the bilinear sampling technique. The patches map is 
created by linking patches and it has the same size as the 
feature map on pixels. DPVO used a patch graph to represent 
the relationship between patches and video frames. The 
projections of patches on the frames are the patches’ movement 
trajectories. At the same time, DPVO also proposed an update 
operator that is a RNN that iteratively fine-tunes the depth of 
each patch and the camera pose of each frame in the video.  

 

 
Fig. 6.  Illustration of the DPVO architecture. 
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IV. EXPERIMENTAL RESULTS 

A. Evaluation Measure 

To evaluate the results of the VO algorithm based on the 
feature-based methods, the trajectory error (Errd) was 
calculated, being the distance error between the ground truth 
ATi and the estimated motion ATi trajectory. Errd is calculated 
according to: O''X 	 #Y Z‖;&G N ;&G‖$   (14) 

B. Evaluation Parameters 

The PySLAM framework [20], with all features integrated 
was used. PySLAM development source code is Python v3.9 
language and programmed on Ubuntu 20.04. At the same time, 
there is support from several open-source libraries, such as 
Numpy (1.18.2), OpenCV (4.5.1), PyTorch (>= 1.4.0), and 
Tensorflow-gpu (1.14.0). PySLAM framework was 
implemented on a computer with the following configuration: 
CPU i5 12400f, 16G DDr4, GPU RTX 3060 12GB. 

C. Results and Discussion 

The results of estimating VO/camera pose/camera 
trajectory on the TQU-SLAM benchmark dataset when using 
SHI_TOMASI, SIFT, SURF, ORB, ORB2, AKAZE, KAZE 
[18], BRISK, and VGG to extract features are portrayed in 
Table II. The average distance error of the SHI_TOMASI 
feature is the lowest (Errd= 7.29 mm). The ratio of detected 
and extracted frames characterized for 6-DOF camera pose 

estimation is observed in Table III. The average ratio of the 
detected frames with the SHI_TOMASI feature is the highest 
(rd = 98.97%). 

Figure 8 presents the results of estimating VO of FO-D of 
the TQU-SLAM benchmark dataset when using the 
SHI_TOMASI features extracted from RGB images. Figure 8 
also demonstrates that SHI_TOMASI features are extracted 
better, more in 1st - FO-D compared to other times.  

 

 
Fig. 7.  Illustration of the results of estimating VO of TQU-SLAM 

benchmark dataset when using the SHI_TOMASI features. The results are 

presented on FO-D data. The black points belong to the ground truth 
trajectory, the red points are the estimated camera position. 

 

TABLE II.  RESULTS OF ESTIMATING VO ON THE TQU-SLAM BENCHMARK DATASET WHEN USING THE EXTRACTED FEATURES 
SHI_TOMASI, SIFT, SURF, ORB, ORB2, AKAZE, KAZE, BRISK, AND VGG 

Dataset/Methods Features 

Distance Error (Errd (mm)) of the TQU-SLAM benchmark dataset 

1st 2nd 3rd 4th 

FO-D OP-D FO-D OP-D FO-D OP-D FO-D OP-D 

PySLAM 

SHI-TOMASI 6,019 2.903 5.938 6.836 14.42 10.978 8.224 3.050 

SIFT 38.93 13.02 37.63 13.58 23.55 1.63 32.02 2.11 

SURF 39.26 13.59 38.07 13.57 27.73 38.81 38.98 14.29 

ORB 1.42 14.67 32.48 12.19 25.93 13.29 0.75 2.07 

ORB2 8.97 9.14 8.19 2.88 20.33 12.78 10.54 4.32 

AKAZE 40.34 6.72 37.75 12.67 30.60 6.78 37.15 2.11 

KAZE 38.32 15.55 31.30 12.45 15.89 30.87 41.66 17.22 

BRISK 1.62 14.38 28.87 13.56 12.43 1.67 9.54 2.16 

VGG16 11.67 11.66 11.66 11.67 0.65 11.66 0.75 2.11 

TABLE III.  RATIO OF FRAMES WITH DETECTED FEATURES/KEYPOINTS ON THE TQU-SLAM BENCHMARK DATASET WHEN USING 
SHI_TOMASI, SIFT, SURF, ORB, ORB2, AKAZE, KAZE, BRISK, AND VGG 

Dataset/Methods Features 

Aspect ratio fails to detect keypoints of TQU-SLAM benchmark dataset (rd (%)) 

1
st
 2

nd
 3

rd
 4

th
 

FO-D OP-D FO-D OP-D FO-D OP-D FO-D OP-D 

PySLAM 

SHI_TOMASI 99.17 99.02 99.72 99.85 98.97 98.97 97.96 98.09 

SIFT 99.69 79.57 97.18 76.65 44.50 42.58 86.63 51.80 

SURF 99.67 97.84 95.51 94.66 95.76 98.95 96.76 97.66 

ORB 2.84 34.84 45.39 49.78 7.02 38.48 1.53 3.04 

ORB2 98.97 99.23 98.48 99.28 95.64 97.95 94.87 97.02 

AKAZE 88.66 9.71 76.42 34.20 67.65 8.94 54.61 3.08 

KAZE 90.36 25.51 75.83 46.15 89.29 9.04 76.36 19.20 

BRISK 1.82 16.26 6.25 9.32 39.81 28.98 12.18 3.10 

VGG 6.88 45.02 36.90 40.26 45.92 39.39 1.35 17.86 
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TABLE IV.  RATIO OF FRAMES WITH DETECTED FEATURES/KEYPOINTS ON THE TQU-SLAM BENCHMARK DATASET WHEN USING 
DPVO TO EXTRACT FEATURES 

Dataset/Methods Experimental 

Aspect ratio fails to detect keypoints of TQU-SLAM benchmark dataset (rd (%)) 

1
st
 2

nd
 3

rd
 4

th
 

FO-D OP-D FO-D OP-D FO-D OP-D FO-D OP-D 

DPVO Average 49.85 49.44 50.00 50.00 50.00 50.00 50.90 47.23 

 

Figure 9 exhibits the results of estimating points on the 
moving trajectory on 1st-FO-D of the TQU-SLAM benchmark 
dataset when utilizing the features extracted from VGG. The 
ratio of the number of detected and extracted frames 
characterized to estimate the VO of the DPVO is shown in 
Table IV. The rate is low, only 49.68%. The results in Figure 9 
also indicate that the features extracted are limited when 
employing VGG. There are many frames whose features 
cannot be extracted. Therefore, the camera’s position cannot be 
estimated. 

Figure 10 showcases the difficult feature extraction on 
frame pairs when using VGG.  

 
Fig. 8.  Illustration of the results of estimating VO of 1

st
-FO-D of TQU-

SLAM benchmark dataset when using the features extracted by VGG. The 

black points belong to the ground truth trajectory, the red points are the 

estimated camera position. 

 
Fig. 9.  Illustration of the feature matching extracted from the VGG of 

frame pair of 1
st
-FO-D of the TQU-SLAM benchmark dataset. 

V. CHALLENGES  

As shown in Figures 7-10 and Tables III and IV, the TQU- 
SLAM benchmark dataset contains some challenges for VO 

construction. Firstly, regarding lighting conditions, the 
obtained RGB images have very weak lighting conditions, and 
the light intensity is uneven. There are road sections with 
adequate lighting, but there are road sections where additional 
light from a mobile phone has to be used to assist. Therefore, 
the keypoints between two consecutive frames are not detected. 
Second, the collected environment is highly homogeneous. The 
image data obtained by the Intel RealSense D435 are mainly 
floor data with a small part of wall and railing data. Therefore, 
the data do not have great discrimination between frames, in 
the scene there are few objects in the environment. Although 
markers have been posted on the floor, the number of keypoints 
detected on the two frames is not large. This leads to failure to 
estimate the 6-DOF camera pose across multiple frames. 

VI. CONCLUSIONS 

VO systems are widely applied in pathfinding robots, 
autonomous vehicles operating in industry, etc., and DL has 
had impressive results in building Visual SLAM and VO 
systems. However, DL requires a large amount of data to train 
the model. This paper introduces the TQU-SLAM benchmark 
dataset, collected from an RGB- D image sensor (Intel 
RealSense D435) moving in the corridors of three buildings 
with FO-D = 230.63 m and OP-D = 228.13 m. The ground-
truth data of the TQU-SLAM benchmark dataset include 6-
DOF camera pose/ camera trajectory and a 3D point cloud. It 
was also tested to estimate VO utilizing some traditional 
features and features extracted from DL such as VGG based on 
the PySLAM framework. At the same time, tests were 
performed on a pre-trained model trained from the KIti 
database of a DL-based method like DPVO. Among them, the 
SHI_TOMASI features gave the best results (Errd = 7.29 mm, 
rd = 98.97%). The results based on DPVO have a rate of 
frames with no feature extraction between frame pairs up to 
50%. This proves that the TQU-SLAM benchmark dataset is 
very challenging to build VO from monocular RGB-D 
cameras. In the future, research will be conducted on point 
cloud data in computer vision and DL [33-35]. Further 
comparative studies will be additionally performed on the use 
of DL models to build VO, such as fine-tuning models and pre-
trained models to estimate VO on the TQU-SLAM benchmark 
dataset.  
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