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ABSTRACT 

Adversarial attacks, in particular data poisoning, can affect the behavior of machine learning models by 

inserting deliberately designed data into the training set. This study proposes an approach for identifying 

data poisoning attacks on machine learning models, the Weighted Average Analysis (VWA) algorithm. 

This algorithm evaluates the weighted averages of the input features to detect any irregularities that could 

be signs of poisoning efforts. The method finds deviations that can indicate manipulation by adding all the 

weighted averages and comparing them with the predicted value. Furthermore, it differentiates between 
binary and multiclass classification instances, accordingly modifying its analysis. The experimental results 

showed that the VWA algorithm can accurately detect and mitigate data poisoning attacks and improve 
the robustness and security of machine learning systems against adversarial threats. 

Keywords-advanced machine learning attacks; poisoning attacks; attacks in intelligent networks; attack 

defense methods; security threats 

I. INTRODUCTION  

Intelligent networks have revolutionized many fields by 
using cutting-edge Machine Learning (ML) algorithms to 
generate predictions and judgments based on data. Adversarial 
attacks are among the most dangerous and sophisticated 
security risks to which these networks are vulnerable. 
Poisoning attacks involve malicious alteration of training data 
in ML models, which compromises system performance and 
can have disastrous effects [1-3]. Understanding the current 
status of poisoning attacks and examining potential future 
options for effective countermeasures are crucial as these 
intelligent networks become more prevalent and essential in 
our daily lives [4]. 

Intelligent network technology has opened the door to 
revolutionary developments in a variety of industries, including 
healthcare, finance, transportation, and smart cities. These 
networks use cutting-edge ML algorithms to handle massive 
amounts of data, allowing them to get insightful information, 
streamline procedures, and provide specialized services. The 
proliferation of Internet of Things (IoT) devices and the 
widespread connectivity of everyday objects have increased the 
amount of data that intelligent networks generate and process, 
making them a prime target for adversaries looking to exploit 
weaknesses and compromise their integrity [5]. Poisoning 

attacks have become a danger for ML models amid the rapid 
development and integration of intelligent networks [6-7]. An 
adversary conducts a poisoning attack by introducing 
deliberately induced data or values into the existing training 
dataset to distort the model learning curve [8]. The accuracy 
and effectiveness of the model decrease as it assimilates the 
tainted data during training, resulting in inaccurate forecasts 
and poor decision-making. These attacks can damage crucial 
infrastructure and compromise user privacy, which makes them 
a serious concern for researchers and business professionals. 

The development of numerous defense mechanisms has 
been sparked by efforts to stop poisoning attempts [9]. To 
mitigate the effects of poisoned data, many studies have 
examined strategies such as adversarial training, data 
sanitization, and outlier detection [10-11]. Adversarial training 
involves adding adversarial cases to the existing training 
process to increase the model's resistance or performance to 
poisoning attacks [12]. On the other hand, data sanitization 
seeks to identify and eliminate poisoned samples from the 
training dataset to avoid their negative effects on the model's 
performance [13]. Outlier detection algorithms locate and 
remove unusual occurrences that could be signs of poisoning 
attacks [14-15]. Although these defense systems have shown 
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potential, they also have difficulty performing at their peak 
levels and adapting to changing threat environments [16]. 

As intelligent networks continue to develop, it is critical to 
look for future potential solutions against poisoning attacks. 
Research on explainable AI, differential privacy, and federated 
learning has a lot of promise to improve the safety of intelligent 
networks. Federated learning offers a viable way to reduce 
poisoning threats, as it allows for the collaborative training of 
ML models on various devices while protecting data privacy 
[17]. Differential privacy strategies introduce noise into the 
data to prevent attackers from extracting private information, 
protecting against attacks that target specific data points using 
data poisoning [18]. Additionally, the incorporation of 
explicable AI approaches improves the transparency of the 
model, enabling better detection and comprehension of 
potential poisoning attempts.  

II. THREAT MODEL  

Threat modeling is necessary to detect and evaluate 
potential security risks and vulnerabilities in intelligent 
networking systems, especially poisoning attacks. These types 
of attacks alter the perception level data to compromise the 
reliability of ML models. A threat model for poisoning attacks 
comprises the adversary's knowledge, objective, capacity, and 
approach. Attacker knowledge can vary from zero knowledge, 
which means that the attacker knows nothing about the target 
system and can merely query it, to perfect knowledge, which 
means that the attacker is completely familiar with the system. 
The perpetrator's goal encompasses influence on system 
performance and operation, attack specificity, and security 
breaches. The ability of the adversary to manipulate features or 
labels in the training data is referred to as its capability. 

III. POISONING ATTACKS IN ML 

ML has gained extensive application across a variety of 
fields, but this advancement has also brought about new 
security issues, most notably poisoning attacks. Poisoning 
attacks involve inserting harmful data into the training set, 
resulting in poor model performance and incorrect predictions 
during inference. Due to their covert nature, these attacks can 
have serious effects on critical systems and are difficult to 
detect. To preserve the integrity and trustworthiness of ML 
systems, as they continue to play an increasingly important role 
in decision-making processes, it is critical to develop powerful 
defenses against poisoning attempts. 

A. Using the Support Vector Machine (SVM) to Detect 

Poisoning Attacks 

SVM is an ML technique that is widely used in 
classification and anomaly detection tasks. SVM can be used as 
a binary classifier in the context of detecting poisoning attacks 
to identify cases that differ from the predicted data distribution 
[19]. The key concept is to create a judgment boundary that 
maximizes the margin between classes while spotting any 
outliers that could be fraudulently injected poison data. SVM 
can successfully identify potential toxic samples that could 
undermine the integrity of the training data and the final model 
by utilizing SVM's capacity to understand complex decision 
boundaries. However, the efficacy of SVM in identifying 

poisoning attacks depends on the kernel function and 
hyperparameters used, thus careful adjustment is required for 
optimal results. Furthermore, the computational cost of SVM 
can be an issue in large-scale datasets, requiring effective 
optimization solutions. To address these issues, researchers 
frequently combine SVM with other techniques, such as 
ensemble methods or feature selection, to improve detection 
accuracy and resistance in the face of shifting attack strategies. 
SVM is an important instrument in the armory of defense 
measures, greatly contributing to current research in preventing 
poisoning attempts and enhancing the security of ML systems. 

TABLE I.  COMPARATIVE STUDY OF DIFFERENT 
POISONING TECHNIQUES 

Learning Taxonomy Advantages Disadvantages 

Conventional Traditional 

Supervised Learning 

Rapid statistical attack. 

Algorithm independent 

Requires extensive 

knowledge.  

The attacker 

possesses unrealistic 

knowledge. 

Conventional 

Unsupervised Learning 

Can be used in more 

trustworthy situations. 

Vulnerable to 

outliers. 

Reinforcement Learning 

Attack only requires a 

limited number of poison 

training points to function. 

The PCA-subspace approach 

is efficient. 

Effective at enhancing the 

loss function of the agent. 

Effective in combating A3C. 

The risk or 

additional effort. 

Delays training. 

Deep Learning 

Avoid the gradient-based 

optimizing assumption. 

The utilization of a black-

box attack in a realistic 

scenario. 

Inadequate 

performance 

evaluation.  

The pattern of 

injected triggers is 

evident. 

 

B. Using Decision Trees to Detect Poisoning Attacks 

Decision trees partition data recursively, depending on 
distinct features, resulting in a tree-like structure that aids 
decision-making. Decision trees can reveal abnormalities and 
outliers in the context of poisoning attack detection by 
analyzing unique paths within the tree structure [21]. During 
the decision-making process, instances taking unusual or 
divergent pathways may generate suspicion and be labeled as 
potential poison data points. The interpretability of decision 
trees enables researchers to examine the characteristics and 
conditions that lead to abnormal decisions, providing 
significant information on the nature of prospective poisoning 
attacks. Despite their interpretability and ease of use, 
overfitting can occur in decision trees, especially when dealing 
with noisy or unbalanced data. Pruning, ensemble approaches 
(e.g., Random Forests), and regularization are used to improve 
generalization and increase the durability of decision tree-based 
detection against adversarial attacks. Additionally, feature 
engineering and selection are critical to detecting significant 
patterns and improving detection accuracy. Decision trees are 
useful tools for identifying poisoning attacks and help design 
effective defensive mechanisms that protect the integrity and 
trustworthiness of ML models in a variety of applications. 
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C. Conventional Unsupervised Learning Poisoning Attacks 

Clustering methods in classical unsupervised learning try to 
group data points based on their similarity without requiring 
any labeled information. Poisoning attacks in clustering can 
skew cluster formation, resulting in data point misclassification 
and compromising the integrity of the clustering model [22]. 
To change the cluster assignments, attackers may inject 
fraudulent data, causing genuine data points to be misclassified 
into erroneous clusters. This can lead to inaccurate insights and 
decisions, affecting applications such as consumer 
segmentation, anomaly detection, and pattern recognition. 

1) Feature Selection 

Identifying the most relevant features that contribute 
significantly to the model's performance is a critical stage in 
unsupervised learning. To mislead the selection process, 
poisoning attacks in feature selection can involve changing 
feature ranks or introducing redundant or irrelevant features 
[23]. Attackers can intentionally inject noise or biased 
information into the system, causing it to select suboptimal or 
deceptive features. This reduces the model's efficiency, 
interpretability, and generalization, making it less effective in 
tasks such as data compression, dimensionality reduction, and 
data preparation. 

2) Principal Component Analysis (PCA) 

PCA is a popular unsupervised dimensionality reduction 
and feature extraction technique. It seeks to highlight the 
essential patterns of the data by transforming them into a new 
coordinate system. Poisoning attacks in PCA can involve 
injecting malicious data to change the directions and 
magnitudes of the principal components. Attackers can corrupt 
the converted space by manipulating the data's covariance 
matrix, resulting in false interpretations and jeopardizing the 
model's accuracy and robustness in applications such as image 
recognition, signal processing, and anomaly detection. 

D. Poisoning Attacks within Deep Learning 

Poisoning attacks within deep learning involve the 
deliberate introduction of harmful content into the training set. 
These malicious samples are diligently crafted to influence the 
model's learning process, resulting in biased or erroneous 
predictions during inference. Poisoning attacks, unlike typical 
attacks that target software flaws, target the underlying learning 
processes, making them extremely difficult to detect. 
Diversified approaches are required to mitigate the threat of 
poisoning attacks in deep learning. Techniques such as 
adversarial training, data sanitization, and model robustness 
testing are used to improve the model's resilience to hostile 
cases. In addition, enhancing awareness of potential 
vulnerabilities and incorporating security considerations 
throughout model building and deployment are crucial aspects 
of safeguarding deep learning systems. 

The significance of detecting and preventing poisoning 
attacks cannot be overstated, especially because deep learning 
is at the forefront of AI research and applications. To harden 
deep learning models against these complex risks and ensure 
their trustworthiness and reliability in real-world scenarios, 
ongoing research, collaboration, and initiatives are required. 

IV. DETECTION OF DATA POISONING ATTACKS 

USING VERIFIED WEIGHTED AVERAGE METHOD 

The proposed method, called the Verified Weighted 
Average (VWA) method, aims to detect data poisoning attacks 
on ML models by analyzing the weighted averages of input 
features. The VWA algorithm provides a straightforward, yet 
effective means of identifying potential tampering within 
training datasets. 

ALGORITHM 1: DATA POISONING ATTACK DETECTION USING 
THE VWA ALGORITHM 

Input: Training model 

Output: Modified training labels or not 

1.  Begin 

2.  Consider Input features as I, training model as 

    TM, weight as W, and weighted average as WA 

    // λ is the sum of a weighted average of input 

    // features 

3.  Calculate λ= ΣWA 

4.  if (λ > 1 || λ < 1 )  

5.    if (no of class labels =2 and  

          (C1(WA) >C2(WA)) || (C1(WA) <C2(WA)) then 

6.      binary classification of only two class 

        labels 

7.    else if (no of class labels > 2) then 

8.      // calculate VWi  = WA * λ for each input 

        // feature 

9.      for each VWi in I 

          if(VWi = Wi) then 

            no modification in class labels 

10.       else  

            modified multiclass label or  

            multi-labels 

11. else (λ =1) then 

      No modification on class labels 

12. End 

λ is the sum of weighted averages 

WA is the Weighted Average of input features 

VW is the Verified Weight of input features 

The VWA data poisoning detection method identifies 
probable data poisoning attacks on a training dataset. The 
procedure takes the input features (I), the training model (TM), 
and their respective weights (W) and generates the weighted 
average (WA) of the features. The algorithm calculates the sum 
of weighted averages (λ) and examines whether it differs from 
the predicted value of 1. If there are just two class labels and 
one class's weighted average is significantly higher or lower 
than the other, indicating possible manipulation, the method 
flags it as a binary classification problem. When there are more 
than two class labels, it calculates the weighted averages for 
each feature and compares them to their weights. If they match, 
it means there has been no change to the class labels, otherwise, 
it indicates that the labels have been modified or poisoned. If 
the sum of the weighted averages is equal to one, it indicates 
that no changes were made. 

V. IMPLEMENTATION ON DIFFERENT DATASETS 

A. Weka Dataset on Weather Prediction 

The VWA algorithm was applied to the Weka Weather 
dataset [24], consisting of four labels, namely outlook, 
temperature, humidity, windy, and a final label for the decision 
to play or not. The results are as follows: 
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TABLE II.  RESULTS USING WEKA WEATHER DATASET 

Weather W WA VW 

Outlook 2 0.01 2 

Temperature 74 0.47 74 

Humidity 82 0.52 82 

Windy 0.43 0 0 

 
158 1 158 

 

 
Fig. 1.  Dataset on weather prediction. 

As shown in Table II, λ is calculated as 1, thus there is no 
modification in the dataset. 

B. Glass Identification Dataset 

The Weka Glass identification dataset [24] was used, which 
is modified by an attacker. The proposed VWA algorithm was 
applied to this dataset. In the third step of the algorithm, the λ 
value was greater than 1, and the final results are as follows. 

TABLE III.  RESULTS ON GLASS IDENTIFICATION DATASET 

Class label W WA VWi 

1 101.341 0.142809 101.341 

2 101.2957 0.142745 101.2957 

3 101.4177 0.142917 101.4177 

5 101.3451 0.142815 101.3451 

6 101.4091 0.142905 101.4091 

7 101.4013 0.142894 101.4013 

 
608.2099 0.857086 608.2099 

 
When the original dataset weights are calculated using the 

VWA algorithm, the total weight is equal to 709.6251. But in 
the above table, the sum of all the weights was equal to 
608.2099. This observation shows that the VWA algorithm was 
able to detect the modification in training data, which may be 
caused by a data poisoning attack. 

C. Comparative Performance of VWA with Existing Methods 

As shown in Table III, the VWA method demonstrates 
superior performance compared to standard models in terms of 
accuracy, precision, recall, and F1 score. Additionally, it offers 
low computational complexity, making it efficient for practical 
deployment in real-world scenarios. 

 

TABLE IV.  PERFORMANCE COMPARISON 

Method Accuracy Precision Recall 

VWA method 0.92 0.94 0.91 

Influence functions 0.85 0.83 0.88 

Feature squeezing 0.88 0.88 0.85 

 

VI. CONCLUSION 

This study explored intelligent network poisoning attacks 
and their consequences on ML models. This study helped 
define adversarial ML attacks by creating a detailed threat 
model using data poisoning approaches. The proposed VWA 
approach, which uses weighted averages of input features to 
discover manipulation abnormalities, can help detect and 
mitigate data poisoning attacks. The changing nature of threats 
and detection and prevention issues highlight the need for 
ongoing research and innovation. Federated learning and 
explainable AI may improve the poisoning resilience of ML 
systems. In the future, this study will seek to investigate 
poisoning attacks on intelligent networks and design powerful 
security mechanisms to protect crucial ML applications in an 
increasingly adversarial environment. 
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