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ABSTRACT 

The condenser vacuum is an important variable in steam power plants. Monitoring and controlling this 

variable requires predicting its behavior. This paper develops further Autoregressive-Generalized 

Autoregressive Conditional Heteroscedasticity (AR-GARCH) models for this purpose, using lagged values 

of predictors. The predictors include the inlet temperature of the condenser cooling water and the active 

power of the generator. Models can be adequately trained with small-sized data, making them suitable for 

use in thermal plants, which are often regularly maintained with operating conditions being reset, 
rendering past data obsolete. Training and testing were carried out using operation data from an actual 

steam power plant generating unit during a period in which it faced the prospect of an emergency turbine 

shutdown. When the models pass all the required statistical tests, they tend to outperform other 

techniques, including autoregressive neural networks and support vector regression, in terms of 

prediction. This study also discusses an implementation scenario. The choice of training sizes and model 

variants can be flexible, enhancing the models' practicality for real operational situations. This study also 
provides additional directions for further research. 

Keywords-AR-GARCH; condenser vacuum; energy infrastructure asset; off-design condition; operation and 

maintenance; small-sized data; statistical learning; steam power plant; turbine trip 

I. INTRODUCTION  

The condenser vacuum is an important variable in steam 
power plants both for monitoring and control [1]. While 
frequency and voltage are usually the main control points in 
power generation [2-4], it is well understood that any decrease 
in condenser vacuum would increase the plant heat rate and, 
consequently, the operation cost [5]. Based on machine 
learning techniques, such as regression and neural networks, 
various prediction methods have been proposed to monitor and 
control the condenser vacuum [6-8]. Among those, the Long 
Short-Term Memory (LSTM) network is a promising 
approach. However, this type of network requires a large 
amount of training data to work effectively. In [7], a dataset 
consisting of 177,058 observations on condenser vacuum was 
used to train an LSTM network to predict future values. Such a 
large size of data would require constant measurements taken 
every minute for around four months. On the contrary, many 
steam plants in practice monitor hundreds of variables, with 
measurements of each variable taken regularly on an hourly 
basis. For example, in a typical generating unit of the Asam-

asam Steam Power Plant in South Kalimantan, Indonesia, daily 
operation data only contain 11 observations on each variable, 
that is, eight two-hour and two three-hour measurement 
intervals every day. An even smaller size of daily operation 
data is found in the generating units of the Pulang Pisau Steam 
Power Plant in Central Kalimantan, Indonesia, that is, 9 daily 
observations on every variable. 

Recently, a statistical approach was proposed to model 
condenser vacuum time series data [9]. Using two external 
regressors (predictors), i.e., the inlet temperature of the 
condenser cooling water and the active power of the generator, 
it only required a minimum of around 100 observations per 
variable involved to fit condenser vacuum models effectively. 
This technique was based on the Autoregressive-Generalized 
Autoregressive Conditional Heteroscedasticity (AR-GARCH) 
framework [10-12], a modeling technique originally developed 
to model volatile time-series data from financial assets. 
Compared to other statistical approaches that have also been 
suggested for the same purpose [13-15], this approach can deal 
effectively with the obvious fact that observations in operation 
data are autocorrelated over time and that the volatility in the 
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data is often non-homogeneous. In other words, these 
observations are both autocorrelated and heteroscedastic. 

However, to predict the condenser vacuum values, the AR-
GARCH model still needs to obtain the predicted values of the 
predictors. There is a possibility that the lagged values of the 
predictors can be used for this purpose. Lagged values are 
those observed several days before prediction, which may also 
be part of the training dataset. This study aimed to further 
develop the AR-GARCH modeling approach to predict the 
condenser vacuum values using lagged predictor values. This is 
subject to the model being trained using a dataset that can have 
a minimum of about 100 observations for each variable 
involved. The novelty of this work lies in the following: 

 Use AR-GARCH models to predict system variables in 
thermal plants based on small-sized operation data 

 Use a prediction technique that works for engineering 
systems that are often regularly maintained with operating 
conditions reset rendering past data, however big, obsolete, 
with recently acquired data becoming the actual baseline for 
future measurements 

 Develop a potential ability to monitor and predict the 
volatile behavior of important variables in a thermal plant 
system during a critical period before a possible emergency 
shutdown. 

II. METHOD 

A. Datasets 

The operation data for the condenser vacuum, the inlet 
temperature of the condenser cooling water, and the active 
power of the generator were derived from [9]. The dataset 
came from a generating unit (Unit 2) of the Asam-asam steam 
power plant, consisting of 13 days of observations, i.e., 143 
observations (11 observations per day) per variable, 
accompanied by reference data from the initial commissioning 
of the unit. During this period, the unit operated at around 86% 
of its rated capacity of 65 MW. Table I provides three possible 
segmentations of the dataset, each with its own training size for 
model fitting and testing or prediction size (i.e., the number of 
values to be predicted). Further transformation into 12 equally-
spaced observations a day is required for the data. 

TABLE I.  DATASET SEGMENTATIONS* 

Segmentation 
Training Size Testing Size 

(observations) (days) (observations) (days) 

1 99 9 44 4 

2 110 10 33 3 

3 121 11 22 2 

* based on the Asam-asam steam power plant's log sheets at Unit 2 

 
These observations represent an off-design condition that 

the unit underwent, recording a critical period that led to a 
potential emergency shutdown of the unit. After those 13 days, 
no complete observations were available for 8 days, indicating 
a possible turbine trip. When observations reappeared, the unit 
operated for 11 more days only at about 75.9% of its rated 
capacity. In such a situation, the ability to monitor and predict 
what would happen to the system for a short period ahead 

could make a big difference in terms of performance or even 
safety for this energy infrastructure asset. 

B. Models 

The AR(1)-eGARCH(1, 1) model has been proposed for 
the generating unit [9]. Predictors are included in the AR part 
only. The AR(1) part, which is the mean model, can be 
simplified from its general form [16] as follows: 

�1 − ������	 − 
	� = �	   (1) 


	 = 
 + ∑ ����,	
�
��� ,    (2) 

where yt is the tth observation on condenser vacuum, xi,t is the tth 

observation on the i
th

 predictor (i = 1, …, k), t is the t
th
 

observation error, Lyt = yt–1, and 
  and ��  are the regression 
coefficients to be estimated along with ��. At any given t, 
	 is 
the conditional mean. The eGARCH(1, 1), which is the 
variance model, can also be simplified from its general form 
[17] as follows: 
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�
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�
 are also parameters of the model, and 
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with !|�	| being the expected value of �	. Among the choices 
of conditional distributions of �	  are the normal and the 
Student's $ distributions, as well as their skew variants [18]. At 
any given $, �	

� is the conditional variance that represents the 
volatility in the data. 

All the above parameters are estimated simultaneously 
using the maximum likelihood method [12]. To ensure its 
validity, a fitted model is then tested for serial correlation (the 
Ljung-Box test) [19], autoregressive conditional 
heteroscedasticity (the ARCH-LM test) [10], leverage effects 
(the sign bias test) [20], distributional fitness (the Pearson 
goodness-of-fit test) [21], and parameter stability (the Nyblom 
test) [22]. Overfitting is taken care of by model selection using 
the Akaike Information Criterion (AIC) [23]. All the fitting and 
testing procedures were carried out using the R statistical 
programming language [24]. This study used the R package 
'rugarch' [25] to provide the necessary functions for this 
purpose. 

C. Prediction and Performance 

The inlet temperature of the condenser cooling water and 
the active power of the generator are used as predictors. The 
inlet temperature of the cooling water is a critical variable in a 
condenser, as it must be sufficiently low to allow effective heat 
transfer between the steam and the cooling water. Low 
effectiveness means that not enough heat is removed from the 
steam to ensure a sufficiently high vacuum inside the 
condenser's shell. The active power of the generator is basically 
its load. A higher load requires more steam to be supplied to 
the turbine and subsequently cooled in the condenser. As the 
cooling load of the condenser increases, its ability to maintain a 
sufficiently high vacuum may decrease. Obviously, variations 
in both variables affect how the condenser vacuum behaves. 
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The lagged values of these predictors are taken from the 
corresponding training set, i.e., the most recent ones in the 
dataset. These are the closest observations to those predicted. 
In particular, the size of the lag is taken to equal the prediction 
size. Prediction performance is measured using the following 
metrics [26]: Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), and Root Mean Squared Error 
(RMSE). The validity of the results is examined by comparing 
the performance to that of two other time series prediction 
techniques, namely, the autoregressive neural network (NNAR) 
and the Support Vector Regression (SVR), as implemented in 
R and used through the packages 'forecast' [27] and 'e1071' 
[28], respectively. 

III. RESULTS AND DISCUSSIONS 

A. Fitting the Model Variants 

This study uses two AR(1)-eGARCH(1, 1) models. The 
first has the temperature of the condenser cooling water inlet as 
the only predictor. The second has two predictors: the inlet 
temperature of the condenser cooling water and the active 
power of the generator. Table II shows six variants of the 
models fitted by varying the conditional distributions across 
different dataset segmentations. Variants 4 and 5 fail the 
Nyblom test, meaning that they have some non-constant 
parameters. This may affect the resulting predictions by the 
corresponding variants. Adding generator active power as 
another predictor improves AIC for any segmentation. In 
general, increasing the training dataset also improves AIC. 

TABLE II.  MODEL VARIANTS 

Variant Predictor(s) Segmentation Distribution AIC 

1 T 1 Student's t -7.8578 

2 T 2 normal -7.9201 

3 T 3 Student's t -7.9859 

4 T, P 1 Student’s t -8.2393 

5 T, P 2 normal -8.2949 

6 T, P 3 Student's t -8.4511 

T: condenser cooling water inlet temperature,  P: generator active power 

 

B. Prediction Results 

Table III compares the prediction performance of AR(1)-

eGARCH(1, 1) with that of NNAR and -SVR. The NNAR 
model consists of 50 2-2-1 networks, each with 9 weights, 1 
lag, and 2 hidden layers, and is then optimized over AIC. The 

-SVR model is based on the radial kernel, � = 1, and further 
tuned for   and cost. The results suggest that increasing the 
training size tends to increase the metrics for variants 1, 2, and 
3. This is an interesting phenomenon, assuming that a bigger 
size should normally result in lower performance metrics. 
However, given the small size of the data, such a rule may not 
always apply. Adding the active power of the generator as 
another predictor tends to reduce the performance of AR-
eGARCH but improve NNAR and SVR. However, a better fit 
of a model does not necessarily translate into better prediction 
performance. However, adding this predictor appears to 
stabilize the performance across varying lags for all variants. 
After all, in terms of performance, the difference between 
variants with the same training size does not seem significant. 

TABLE III.  PREDICTION PERFORMANCE 

Model Variant MAE
+
 MAPE RMSE

+
 

AR-eGARCH 

1 0.0049 0.0067 0.0062 

2 0.0052 0.0070 0.0065 

3 0.0053 0.0073 0.0068 

4 0.0049 0.0067 0.0062 

5 0.0060 0.0081 0.0075 

6 0.0054 0.0074 0.0070 

NNAR* 

1 0.0053 0.0073 0.0066 

2 0.0052 0.0070 0.0066 

3 0.0070 0.0096 0.0088 

4 0.0048 0.0066 0.0058 

5 0.0054 0.0073 0.0067 

6 0.0067 0.0091 0.0085 

SVR* 

1 0.0047 0.0064 0.0061 

2 0.0054 0.0073 0.0067 

3 0.0057 0.0078 0.0073 

4 0.0051 0.0069 0.0064 

5 0.0055 0.0075 0.0068 

6 0.0055 0.0076 0.0071 

*vary due to random weights and tuning; +in 0.1 MPa. 

 
The performance of AR-eGARCH tends to be the highest 

among the others for variants 1, 2, and 3. For variants 4 and 5, 
the performance of AR-eGARCH looks average compared to 
that of NNAR and SVR. These variants have some non-
constant parameters that might affect prediction badly. 
Nevertheless, it is certainly the highest for variants 3 and 6, that 
is, with the biggest training size. These comparison results also 
confirm the validity of the predictions made by all AR-
eGARCH variants. 

The results are also shown in Figure 1. In general, all 
variants visually demonstrate their ability to capture data 
dynamics. All AR-eGARCH variants can reliably produce 
predictions with patterns that mimic those of the actual data. 
Repeatability is also demonstrated by sequentially changing the 
prediction size from variants 1 to 3 and 4 to 6, in which the 
ability to capture the data dynamics remains consistent. On the 
other hand, it is possible to take the average of the training data 
and report it as a prediction with relatively high performance. 
However, the plot of this prediction would not show any 
resemblance to the actual data and cannot be considered 
reliable. 

C. An Implementation Scenario 

If the condenser vacuum is too low, which means that the 
pressure inside the condenser shell is too high, it becomes 
difficult for the incoming steam from the turbine to enter the 
condenser. Because of this, too much heat accumulates at the 
final stage of the turbine, and the temperature of the exhaust 
hood becomes too high for the system to operate safely. When 
this happens, the system has to either operate at a much lower 
capacity or be shut down. 

The last four days, as observed in the data, can be 
considered critical for the generating unit in question. The 
lowest condenser vacuum in that period was -0.0718 MPaG at 
an early point on the first day, while the highest exhaust hood 

temperature was 70.3C, as observed very late on the fourth 
day. Such a temperature is too high for normal operation. As a 
comparison, the average exhaust hood temperature during the 
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first 9 days of the data was 65.9C (or 66.1C for the entire 
dataset), and was already very high. Although the effect of 
condenser vacuum on exhaust hood temperature might be 
lagged, the turbine should have been shut down even before 
entering the first day of the period. In fact, an exhaust hood 

temperature as high as 70.7C was also observed on the first 
day of the training set. However, it might be too early to stop 
the turbine for that reason. 

Had the system implemented an emergency shutdown 
procedure based on an AR(1)-eGARCH(1, 1) model for 
prediction as proposed, it would have discovered, for instance, 
a maximum condenser pressure of -0.07192538 MPaG on the 

second day using variant 1, or -0.07198573 MPaG at exactly 
the point where it was observed (i.e., -0.0718 MPaG) on the 
first day using variant 4. Both would be too high. As a 
comparison, the average condenser vacuum during the initial 
commissioning of the unit was -0.0909 MPaG. In this case, 
variant 4 gives an earlier warning than variant 1. For either 
variant, such a procedure would not wait a few more days for 
the lagged effects to develop into high exhaust hood 
temperature just to begin operating at a lower capacity or to 
initiate a turbine shutdown. All other variants, except variant 5, 
also give their predicted minimum condenser vacuum on their 
first prediction day. 

 

 

Fig. 1.  Prediction plots (- actual, -- AR-eGARCH, -- NNAR,  SVR). 

It is important to note that cool, low-pressure steam at the 
later stage can act as a coolant. Unfortunately, lowering steam 
flow cancels out such a beneficial effect, whereas the windage, 
which is the friction between the rotor blades and the near-
stationary steam, at such low flow produces additional heat on 
the blades' surface. It should be noted that continuous operation 
at low steam flow is yet another cause of high exhaust hood 
temperature [5]. Therefore, an attempt to cope with the effect 
of low condenser vacuum on rising exhaust hood temperature 
by continuing to operate at lower steam flow would appear to 
be an attempt to remove one cause by introducing another. This 
can even exacerbate the problem. 

Here is a real example in which an attempt to reduce steam 
flow to contain the above-mentioned effect of condenser 
vacuum improves the cause but worsens the effect. During the 
entire period presented by the dataset, where the average active 

power was roughly 87.8% of the rated capacity, the average 

exhaust hood temperature was 66.1C with a maximum of 
70.3C. This was with an average main-steam flow of 98.0% of 
the initial commissioning value. When the observations 
reappeared eight days later, the average main-steam flow for 
the following 11 days was reduced to 89.2% of its initial 
commissioning value, pushing the average active power to as 
low as 75.9% of the rated capacity and the average exhaust 

hood temperature to reach 67.1C with a maximum of 70.5C. 
Although the minimum vacuum was improved from -0.0715 
MPaG to -0.0723 MPaG, as already expected, it still suggests 
that reducing steam flow is hardly a desirable solution to the 
problem. 

Furthermore, all variants also capture the trend in condenser 
vacuum in their respective prediction. For variants 1 and 4, this 
is shown in Figure 2. This is based on a simple moving average 
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taken for every 11 consecutive predicted values. Along with the 
minimum predicted vacuum, it suggests that an emergency 
procedure should also be considered as soon as such a 
prediction becomes available. 

 

 

Fig. 2.  AR(1)-eGARCH(1, 1) trend prediction (- predicted values, 
- predicted trend,  lowest predicted value). 

D. The Choice of Models and Training Sets 

One main concern with model fitting in statistics is how 
large the standard error is for each estimate. Fortunately, the 
size around 100 is not too small to estimate a statistical model 
such as AR(1)-eGARCH(1, 1) using the maximum likelihood 
method. In fact, for all variants trained so far, the standard 
errors are still reasonably small. Another concern is the power 
of each statistical test carried out on the models. It is at present 
difficult to measure and might take a series of simulations best 
left for future work. 

By examining the results produced by the different variants, 
one may notice that the difference in performance between two 
variants of the same training size is not so significant. Also, 
despite changes in performance, small changes in the training 
size can still maintain the models' ability to capture the correct 
trend in the actual values of the condenser vacuum. This offers 
flexibility in choosing between models with only one predictor 
(condenser cooling water inlet temperature) and models with 
two (condenser cooling water inlet temperature and generator 
active power). However, it is recommended that both models 
should be implemented simultaneously while being cautious 
when a model does not pass some of the tests. This also offers 

flexibility in choosing the training size. However, it is desirable 
to train a model as soon as the required size (e.g., 99 in this 
case) becomes available. As long as the model fits and passes 
all tests, it is ready to be used for prediction. Even if it does not 
pass the Nyblom test, for instance, it can still come up with 
reasonably accurate predictions (see variants 4 and 5). As more 
observations become available, the training size may grow. 

There is no guarantee that a specified model fits a given 
training set or passes all required tests. However, the flexibility 
to expand or even shrink the training set and choose the 
predictors, as well as the conditional distribution or model 
parameters, improves the chance of finding a suitable model. 

IV. CONCLUSIONS AND DIRECTIONS FOR 
FURTHER RESEARCH 

The importance of condenser vacuum in steam power 
plants has previously been highlighted, and this study explored 
a knowledge gap in predicting it using AR-GARCH models. 
The novelty of this work lies in three aspects: AR-GARCH 
models for predicting system variables in thermal plants with 
small-sized operation data, a prediction technique that works 
for engineering systems that are often regularly maintained but 
increasingly under off-design conditions, and a potential 
capability of monitoring and predicting the volatile behavior of 
a thermal plant system's important variables, even during a 
critical period before a possible emergency shutdown. Two 
AR-GARCH models were developed even further for 
predicting condenser vacuum, which can be trained with 
relatively small data sizes. These models use lagged predictor 
values. Six variants were tested for prediction performance, 
showing that they perform relatively well compared to two 
other techniques. 

An implementation scenario was discussed to an extent that 
covers some important engineering implications. The models 
can offer another way to deal with an emergency situation 
related to low vacuum in a steam power plant. This is based on 
information provided by the predicted vacuum, as well as its 
predicted trend. Instead of waiting for the lagged effects of low 
vacuum to translate into high exhaust hood temperature, 
emergency actions can be initiated whenever the prediction 
returns information on the future behavior of the condenser 
vacuum. The flexibility in choosing the model and the training 
size was discussed, showing that it can potentially improve the 
practicality of the technique for use in real operational 
situations. 

One major problem with small operation data is that they 
seldom capture the operation's long-term seasonal pattern. 
While AR-GARCH models natively work with large data, the 
presence of such a data pattern requires a correct set of 
parameters to be included in their formulation before training. 
As for the use of lagged values, the technique relies on the 
closeness between the values in the time series. While 
closeness often leads to similarity, a rare event such as a 
sudden turbine trip may still occur, resulting in extremely 
volatile observations and rendering some lagged values 
unrepresentative. 
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Future work can focus on the use of Autoregressive 
Fractionally Integrated Moving Average (or ARFIMA) instead 
of simply AR to derive more sophisticated ARFIMA-GARCH 
models for the condenser vacuum. Another direction may be 
toward the development of a procedure for an emergency 
turbine trip based on the condenser vacuum predicted patterns 
given a small window of observations. The possible 
involvement of predicted patterns, as exemplified using 
variants 1 and 4, suggests that conformity or, rather, non-
conformity can also be used in monitoring condenser vacuum 
in addition to exact point prediction. Specifically, this can 
possibly be implemented with a conformal prediction that 
provides prediction intervals. 
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