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ABSTRACT 

The construction of the regression models used to control machining processes is the objective of many 

experimental studies. Therefore, the effectiveness of the machining process control largely depends on the 

regression model’s accuracy. This study was conducted to determine the optimal regression model of 

surface grinding. Accordingly, eight different surface grinding regression models were constructed, 

including one model without data transformation and seven models that utilized various data 

transformations. The seven data transformations employed entailed square root transformation, 

logarithmic transformation, inverse transformation, exponential transformation, asinh transformation, 
Box-Cox transformation, and Johnson transformation. The process of determining the optimal model was 

carried out considering five parameters: R2, R2(adj), R2(pred) (predicted R2), MAE (Mean Absolute 

Error), and MSE (Mean Squared Error). SRP (Simple Ranking Process) was the optimization method 

followed to identify the best regression model. The Box-Cox transformation was recognized as the most 
accurate surface grinding regression model. 

Keywords-surface roughness model; grinding; data transformation method; multi-objective optimization 

I. INTRODUCTION  

The grinding method is deployed as a precision machining 
process for surfaces demanding fine roughness. Numerous 
studies have utilized surface grinding regression models as a 
basis for controlling the grinding process [1, 2]. Surface 
roughness is often chosen as the parameter to be measured in 
the grinding process because it has a significant impact on the 
wear resistance, chemical corrosion resistance, and fatigue of 
the machine components. In other words, surface roughness 
greatly influences the durability and lifespan of products [3]. 
Additionally, measuring surface roughness is more convenient 
than measuring other parameters, such as the cutting force, 
cutting heat, etc. [4]. The efficiency of controlling the grinding 
process depends significantly on the accuracy of the regression 
model. To assess the accuracy of a regression model, five 
parameters are typically considered: R

2
, R

2
(adj), R

2
(pred), 

MAE, and MSE [5]. R2 measures the variability of the model 
compared to the actual data. R2(adj) assesses the model's 
explanatory power for the dependent variable based on the 
number of independent variables. R

2
(pred) evaluates the 

model's predictive ability for new data. MAE calculates the 
average absolute deviation between the predicted and the actual 
values. MSE computes the average of the squared deviations 
between the predicted and the actual values. A lower value 
indicates a better predictive performance of the model. The 

values of R
2
, R

2
(adj), R

2
(pred) range from 0 to 1, and higher 

values are preferable, whereas lower values of MAE and MSE 
are preferred [6]. However, if the regression model is directly 
constructed from experimental data, its accuracy might not be 
high, meaning R

2
, R

2
(adj), R

2
(pred) could have low values, and 

MAE and MSE could have high values. This stresses the 
necessity to enhance the accuracy of the regression models. To 
address this limitation, some studies have performed data 
transformations to improve the accuracy of the regression 
models. Seven data transformations, namely square root 
transformation, logarithmic transformation, inverse 
transformation, exponential transformation, asinh 
transformation, Box-Cox transformation, and Johnson 
transformation, are commonly employed [7]. The square root 
transformation has been implemented to transform surface 
roughness data when grinding JIS-S45C steel flatly and has 
resulted in a regression model with higher accuracy compared 
to a model without data transformation [8]. The usage of the 
Box-Cox transformation has led to the development of 
regression models with higher accuracy compared to models 
without data transformation when milling EN 353 steel [9], 
AISI 1019 steel [10], AISI 1045 steel [11], 080A67 steel [12], 
and centerless grinding SCM435 steel [13]. Both the Box-Cox 
and Johnson transformations have been engaged to improve the 
accuracy of the surface grinding models when milling 3X13 
steel. In [14], it was demonstrated that the model using the 
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Box-Cox transformation had the highest accuracy, whereas the 
model without data transformation had the lowest accuracy 
[14]. Both Box-Cox and Johnson transformations were also 
used to enhance the accuracy of the surface grinding models 
when grinding 65G steel. In [15], it was concluded that the 
model employing the Johnson transformation had the highest 
accuracy, whereas the model without data transformation had 
the lowest one. In [16], both Box-Cox and Johnson 
transformations were identified to be equally effective in 
improving the accuracy of cutting force regression models 
when milling SCM440 steel. 

It can be concluded that Box-Cox and Johnson are the two 
data transformations most commonly utilized to ameliorate the 
regression models’ accuracy in mechanical machining. 
However, these two transformations exhibit different 
effectiveness in specific cases [14, 15, 17]. Additionally, the 
application of the remaining five data transformations is still 
very limited. It can even be argued that there has been no study 
applying all the seven transformations in a specific case. This is 
the reason why they are all deployed in this study. However, it 
is not certain that a regression model using a specific data 
transformation is the best model in terms of all five parameters 
(R

2
, R

2
(adj), R

2
(pred), MAE, and MSE) compared to the other 

models [16]. This means that determining the best model 
among the created ones must be carried out by applying multi-
objective optimization methods [18, 19]. The SRP method was 
adopted in this study because it is a very simple and recently 
emerging approach [20]. 

II. MATERIALS AND METHODS 

A. Data Transformations 

The formulas for each of the seven considered 
transformations are presented below [5, 6]. Here, Ra represents 
the surface roughness value in the experiment and yi (with 
i=2÷8) denotes the surface roughness value after performing 
the transformations.  

1) Square Root Transformation 

�� = √��     (1) 

2) Logarithmic Transformation  

�� = log (��)     (2) 

3) Reciprocal Transformation 

�� = �
��     (3) 

4) Exponential Transformation 

�� = ���      (4) 

5) Asinh Transformation 

�� = ln (�� + √��� + 1)   (5) 

6) Box-Cox transformation 

�� = � ��� �� � ≠ 0
 !(��) �� � = 0   (6) 

where μ is the parameter of the transformation. 

7) Johnson Transformation 

�" = # + $ ∙  ! &��'(
)'��*    (7) 

where λ, β, γ, δ are parameters of the transformation. 

B. Evaluation Parameters  

The coefficients R2, R2(adj), R2(pred) can be easily found 
using Minitab software for result analysis. MAE and MSE are 
calculated by [11, 15]: 

MAE = �
. ∑ 012'13

13
0 ∙ 100.45�    (8) 

MSE = �
. ∑ 7�8 − �:;� ∙ 100.�    (9) 

where n is the number of observations (number of 
experiments), yp is the predicted value of observation i (the ith 
experiment), and ye is the actual value (experimental value) of 
observation i. 

C. Optimization Method 

The SRP method was deployed to identify the best model. 
With m surface grinding models, each model is characterized 
by five parameters (R2, R2(adj), R2(pred), MAE, and MSE). 
The identification of the optimal model with the SRP method is 
conducted as follows [20]: 

 Internally rank the models, i.e. rank the surface grinding 
models for each parameter. 

 Calculate scores for each model using (10).  

<4 = ∑ =4> ∙ ?>�>5�     (10) 

where wj is the weight of the jth parameter. 

 Rank the models based on increasing scores. 

D. Metal Grinding Experiments 

This study performed flat grinding experiments. A 
summary of some conditions of the grinding process follows. 
The experimental steel is C45 steel, heat-treated to achieve a 
hardness of 45-45HRC. This type of steel is designated 
according to the DIN standard of Germany. This steel type is 
equivalent to S45C steel (JIS/Japan), AF65C45 
(AFNOR/France), 070M46 (BS/England), C45k (UNE/Spain), 
1650 (SS/Sweden), 45 (PN/Poland), 12050 (CSN/Czechia), 
C45SW (ONORM/Austria), 45 (GOST/Russia). The basic 
physical properties of this type of steel are summarized in 
Table I. The flat grinding machine employed was APSG-
820/2A. The aluminum oxide grinding wheel utilized was 
WA46J7V1A.  

TABLE I.  PHYSICAL PROPERTIES OF C45 STEEL 

Young’s 

modulus 

Yield 

strength 

Tensile 

strength 

Poisson 

coefficient 
Elongation 

200 GPa 480 MPa 720 MPa 0.32 20% 

TABLE II.  INPUT PARAMETERS 

Parameter Code 
Value at leves 

-1 0 1 

v x1 15 20 25 

f x2 3 5 7 

ap x3 0.005 0.01 0.015 
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The coolant sprayed into the grinding area was an emulsion 
type with a flow rate of 4.6 l/min and a coolant concentration 
of 15%. The wheel dressing was carried out prior to each 
experiment using a single-point diamond dressing tool. The 
corresponding depth and feed rate of the diamond tool dressing 
are 0.01 mm and 150 mm/min, respectively. Three cutting 
parameters were varied in each experiment: cutting speed v 
(m/s), cross-feed rate f (mm/stroke), and depth of cut ap (mm). 
Each parameter was varied at three values corresponding to 
three encoding levels as portrayed in Table II [21, 22]. 
Eighteen experiments were designed in the Box-Behnken 
design as observed in Table III. This is a commonly deployed 
method for designing experimental matrices [15, 16]. The 
surface roughness was measured using an SJ-301 machine 
(Mitutoyo - Japan). At each experiment, measurements were 
conducted at least three times, perpendicular to the direction of 
the cutting velocity vector during grinding. The surface 
roughness value for each experiment is the average of these 
consecutive measurements. The experimental results (Ra) are 
listed in the last column of Table III. 

TABLE III.  EXPERIMENTAL RESULTS 

Exp. 

No. 

Code value Real value 
Ra 

(m) x1 x2 x3 
v 

(m/s) 

f 

(mm/stroke) 

ap 

(mm) 

1 0 0 0 20 5 0.01 2.61 

2 -1 -1 0 15 3 0.01 0.83 

3 0 -1 1 20 3 0.015 0.72 

4 1 0 1 25 5 0.015 0.62 

5 0 -1 -1 20 3 0.005 0.69 

6 0 0 0 20 5 0.01 2.45 

7 0 0 0 20 5 0.01 2.40 

8 0 1 1 20 7 0.015 2.02 

9 0 0 0 20 5 0.01 0.88 

10 -1 0 1 15 5 0.015 1.02 

11 1 0 -1 25 5 0.005 0.67 

12 0 0 0 20 5 0.01 2.58 

13 1 1 0 25 7 0.01 1.22 

14 -1 0 -1 15 5 0.005 0.82 

15 0 1 -1 20 7 0.005 1.88 

16 1 -1 0 25 3 0.01 0.72 

17 -1 1 0 15 7 0.01 1.19 

18 0 0 0 20 5 0.01 2.55 

 

III. RESULTS AND DISCUSSION 

Considering the experimental data values of Ra in Table II 
and with the assistance of Minitab software, the corresponding 
values of μ, λ, β, γ, δ were determined to be -0.5, 0.136718, 
0.283804, 0.61858, and 2.61372, respectively. The surface 
roughness values after performing the transformations are 
summarized in Table IV. From the data in Table IV, regression 
equations (11) to (18) were established. For each equation, 
three coefficients R2, R2(adj), and R2(pred) are also listed. 

Without transformation: R
2
 = 0.7520; R

2
(adj) = 0.4730; 

R2(pred) = 0.1484: 

�� =  �� = 2.2450 − 0.0787 ∙ F�  + 0.4187 ∙ F� +
0.0400 ∙ F� − 0.9000 ∙ F��  − 0.3550 ∙ F�� − 0.5625 ∙ F�� +
0.0350 ∙ F� ∙ F�  − 0.0625 ∙ F� ∙ F� + 0.0275 ∙ F� ∙ F� (11) 

Square root transformation: R2 = 0.7656; R2(adj) = 0.5020; 
R2(pred) = 0.1269: 

�� = 1.4785 − 0.0448 ∙ F�  + 0.1936 ∙ F� + 0.0176 ∙
F� − 0.3636 ∙ F��  − 0.1261 ∙ F�� − 0.2345 ∙ F�� + 0.0190 ∙ F� ∙
F�  − 0.0338 ∙ F� ∙ F� + 0.0080 ∙ F� ∙ F�   (12) 

Logarithmic transformation: R
2
 = 0.7825; R

2
(adj) = 0.5379; 

R
2
(pred) = 0.1085: 

�� = 0.3247 − 0.0443 ∙ F�  + 0.1586 ∙ F� + 0.0138 ∙
F� − 0.2619 ∙ F��  − 0.0782 ∙ F�� − 0.1776 ∙ F�� + 0.0181 ∙ F� ∙
F�  − 0.0321 ∙ F� ∙ F� + 0.0031 ∙ F� ∙ F�  (13) 

Reciprocal transformation: R2 = 0.8207; R2(adj) = 0.6189; 
R2(pred) = 0.0473: 

�� = 0.5206 + 0.1336 ∙ F�  − 0.3431 ∙ F� − 0.0270 ∙
F� + 0.4514 ∙ F��  + 0.0913 ∙ F�� + 0.3542 ∙ F�� − 0.0511 ∙ F� ∙
F�  + 0.0898 ∙ F� ∙ F� + 0.0058 ∙ F� ∙ F�  (14) 

Exponential transformation: R
2
 = 0.7320; R

2
(adj) = 0.4304; 

R
2
(pred) = 0.3042: 

�� = 10.7710 − 0.1712 ∙ F�  + 1.5463 ∙ F� + 0.1816 ∙
F� − 5.1681 ∙ F��  − 2.8473 ∙ F�� − 3.3886 ∙ F�� + 0.0847 ∙ F� ∙
F� − 0.1495 ∙ F� ∙ F� + 0.2310 ∙ F� ∙ F�   (15) 

Asinh transformation: R2 = 0.7682; R2(adj) = 0.5075; 
R2(pred) = 0.1155: 

�� = 1.5102 − 0.0622 ∙ F�  + 0.2676 ∙ F� + 0.0242 ∙
F� − 0.4843 ∙ F��  − 0.1600 ∙ F�� − 0.3115 ∙ F�� + 0.0265 ∙ F� ∙
F� − 0.0473 ∙ F� ∙ F� + 0.0095 ∙ F� ∙ F�   (16) 

Box-Cox transformation: R
2
 = 0.8015; R

2
(adj) = 0.5782; 

R
2
(pred) = 0.0851: 

�� = 0.7030 + 0.0583 ∙ F� − 0.1754 ∙ F� − 0.0146 ∙ F� +
0.2571 ∙ F�� + 0.0644 ∙ F�� + 0.1863 ∙ F�� − 0.0230 ∙ F� ∙ F� +
0.0406 ∙ F� ∙ F� − 0.0001 ∙ F� ∙ F�   (17) 

Johnson transformation: R2 = 0.7499; R2(adj) = 0.4685; 
R2(pred) = 0.00: 

�" = 0.9125 − 0.2850 ∙ F�  + 0.3876 ∙ F� − 0.0753 ∙
F� − 0.9710 ∙ F�� − 0.2881 ∙ F�� − 0.8296 ∙ F�� + 0.0615 ∙ F� ∙
F� − 0.3137 ∙ F� ∙ F� − 0.0035 ∙ F� ∙ F�  (18) 

Combining (1) and (12), the surface grinding model using 
the square root transformation is formed as (19): 

�� = ���     (19) 

Combining (2) and (13), the surface grinding model 
utilizing the logarithm transformation is formed as (20): 

�� = 101J     (20) 

Combining (3) and (14), the surface grinding model 
employing the reciprocal transformation is formed as (21): 

�� = �
1K

     (21) 

Combining (4) and (15), the surface grinding model using 
the exponential transformation is formed as (22): 

�� =  !��     (22) 
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Combining (5) and (16), the surface grinding model 
deploying the asinh transformation is formed as (23): 

�� = �1L − √��1L − 1    (23) 

Combining (6) and (17), the surface grinding model 
utilizing the Box-Cox transformation is formed as (24): 

�� = �
1MN

     (24) 

Combining (7) and (18), the surface grinding model 
employing the Johnson transformation is formed as (25): 

�� = O.��"�"P�.�����∙:Q.NRJRQKSRTQ.UJLMUR
�P:Q.NRJRQKSRTQ.UJLMUR   (25) 

The models (11), (19), (20), (21), (22), (23), (24), (25) were 
used to predict the surface roughness with the selected input 
parameters depicted in Table III. The results are summarized in 
Table V. 

TABLE IV.  TRANSFORMED SURFACE ROUGHNESS VALUES 

Exp. Ra y2 y3 y4 y5 y6 y7 y8 

1 2.61 1.62 0.42 0.38 13.60 1.69 0.62 1.92 

2 0.83 0.91 -0.08 1.20 2.29 0.76 1.10 -0.47 

3 0.72 0.85 -0.14 1.39 2.05 0.67 1.18 -0.69 

4 0.62 0.79 -0.21 1.61 1.86 0.59 1.27 -1.92 

5 0.69 0.83 -0.16 1.45 1.99 0.64 1.20 -0.80 

6 2.45 1.57 0.39 0.41 11.59 1.63 0.64 0.82 

7 2.40 1.55 0.38 0.42 11.02 1.61 0.65 0.74 

8 2.02 1.42 0.31 0.50 7.54 1.45 0.70 0.38 

9 0.88 0.94 -0.06 1.14 2.41 0.79 1.07 -0.40 

10 1.02 1.01 0.01 0.98 2.77 0.90 0.99 -0.25 

11 0.67 0.82 -0.17 1.49 1.95 0.63 1.22 -0.89 

12 2.58 1.61 0.41 0.39 13.20 1.68 0.62 1.29 

13 1.22 1.10 0.09 0.82 3.39 1.03 0.91 -0.10 

14 0.82 0.91 -0.09 1.22 2.27 0.75 1.10 -0.48 

15 1.88 1.37 0.27 0.53 6.55 1.39 0.73 0.29 

16 0.72 0.85 -0.14 1.39 2.05 0.67 1.18 -0.69 

17 1.19 1.09 0.08 0.84 3.29 1.01 0.92 -0.12 

18 2.55 1.60 0.41 0.39 12.81 1.67 0.63 1.10 

TABLE V.  SURFACE ROUGHNESS PREDICTED BY THE MODELS 

Exp. Experiment Using (11) Using (19) Using (20) Using (21) Using (22) Using (23) Using (24) Using (25) 

1 2.61 2.25 2.19 2.11 1.92 2.38 0.11 2.02 1.68 

2 0.83 0.69 0.74 0.77 0.82 0.38 0.27 0.80 1.49 

3 0.72 0.92 0.87 0.83 0.78 1.08 0.24 0.80 1.46 

4 0.62 0.68 0.67 0.66 0.66 0.73 0.29 0.66 1.33 

5 0.69 0.90 0.84 0.79 0.75 1.11 0.25 0.76 1.48 

6 2.45 2.25 2.19 2.11 1.92 2.38 0.11 2.02 1.68 

7 2.40 2.25 2.19 2.11 1.92 2.38 0.11 2.02 1.68 

8 2.02 1.81 1.79 1.76 1.66 1.87 0.13 1.72 1.56 

9 0.88 2.25 2.19 2.11 1.92 2.38 0.11 2.02 1.68 

10 1.02 0.96 0.95 0.94 0.93 1.00 0.22 0.94 1.50 

11 0.67 0.73 0.73 0.72 0.72 0.70 0.27 0.72 1.44 

12 2.58 2.25 2.19 2.11 1.92 2.38 0.11 2.02 1.68 

13 1.22 1.36 1.34 1.31 1.25 1.44 0.17 1.28 1.52 

14 0.82 0.76 0.76 0.76 0.76 0.72 0.26 0.77 1.43 

15 1.88 1.68 1.65 1.62 1.55 1.73 0.14 1.59 1.58 

16 0.72 0.46 0.53 0.58 0.63 -0.05 0.33 0.61 1.40 

17 1.19 1.45 1.46 1.48 1.57 1.48 0.16 1.51 1.59 

18 2.55 2.25 2.19 2.11 1.92 2.38 0.11 2.02 1.68 

TABLE VI.  PARAMETERS OF THE SURFACE GRINDING MODELS 

Model 
R2 (%) R2(adj) (%) R2(pred) (%) MAE (%) MSE (%) 

value rank value rank value rank value rank value rank 

(11) 75.20 6 47.30 6 14.84 2 22.60 5 14.60 2 

(19) 76.56 5 50.20 5 12.69 3 21.05 4 14.34 1 

(20) 78.25 3 53.79 3 10.85 5 20.25 2 14.78 3 

(21) 82.07 1 61.89 1 4.73 7 20.27 3 18.38 5 

(22) 73.20 8 30.42 8 43.04 1 31.26 6 20.37 6 

(23) 76.82 4 50.75 4 11.55 4 79.62 8 224.46 8 

(24) 80.15 2 57.82 2 8.51 6 20.02 1 16.03 4 

(25) 74.99 7 46.85 7 0.00 8 60.83 7 47.27 7 
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Equations (8) and (9) were implemented to calculate MAE 
and MSE for each surface grinding model. Table VI 
summarizes all five considered parameters for each model, 
along with its ranking for each parameter. It is noticeable from 
Table VI that no model ranks first in all five parameters. 
Therefore, selecting the optimal model requires the application 
of the SRP method. So far, no study has addressed which of the 
five considered parameters is more important. Therefore, this 
study chose these five parameters with equal weights, all equal 
to 0.2. Applying (10), the scores of each model were calculated 
as illustrated in Table VII, and the rank of each model was 
determined. 

TABLE VII.  . SCORES (Si) AND RANKINGS OF SURFACE 
GRINDING MODELS 

Model Si Rank 

(11) 4.20 5 

(19) 3.60 4 

(20) 3.20 2 

(21) 3.40 3 

(22) 5.80 7 

(23) 5.60 6 

(24) 3.00 1 

(25) 7.20 8 

 

The accuracy of the models ranked in a decreasing order is: 
(24) > (20) > (21) > (19) > (11) > (23) > (22) > (25). This 
means that the surface grinding model using the Box-Cox 
transformation has the highest accuracy, the model without 
data transformation ranks 5th, and the model employing the 
Johnson transformation has the lowest accuracy. Asserting the 
model deploying the Box-Cox transformation yields the highest 
accuracy, similarly to the case of utilizing data transformations 
to enhance the accuracy of the surface roughness model when 
milling 3X13 steel [14].  

IV. CONCLUSION 

This is the first study that applies seven data transformation 
methods with the aim of improving the accuracy of regression 
models. The surface roughness model in grinding was selected 
as the target for performing data transformations. The SRP 
method was followed to determine the optimal surface 
roughness model. Eight surface roughness models in grinding 
were established, including one model without data 
transformation and seven models that employed data 
transformation methods. The model utilizing the Box-Cox 
transformation had the highest accuracy, whereas the model 
deploying the Johnson transformation had the lowest. 
Therefore, the Box-Cox transformation surface roughness 
model with the highest accuracy had metric values of: R

2
, 

R
2
(adj), R

2
(pred), MAE, and MSE equal to 80.15%, 57.82%, 

8.51%, 20.02%, and 16.03%, respectively. 

The methods employed in this study not only identified the 
optimal surface roughness model, but are also expected to be 
successful in selecting optimal models in other applications. 
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