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ABSTRACT 

Combining Intelligent Reflecting Surfaces (IRSs) with Non-Orthogonal Multiple Access (NOMA) 
effectively enhances communication. This study introduces a NOMA-assisted Downlink Transmission (DT) 

system, emphasizing Energy Efficiency (EE) optimization. EE, crucial in Wireless Communications (WCs), 

measures data transmission relative to energy consumption. This study focuses on a Deep Deterministic 

Policy Gradient (DDPG) algorithm that intelligently adjusts IRS phase-shift matrices and access point 

beamforming in NOMA DT. Beamforming directs signals to users for optimal strength and quality, while 

phase shift control enhances signal coverage and quality. Strategic IRS placement improves user signal 

transmissions. The simulation results demonstrate significantly improved EE compared to other 
algorithms, such as Deep Q Network (DQN) and Proximal Policy Optimization (PPO), showcasing the 
effectiveness of the combined IRS and NOMA approach in enhancing communication systems' EE. 

Keywords-5G; deep deterministic policy gradient; DRL; energy efficiency; IRS-NOMA; optimization 

I. INTRODUCTION  

Advances in wireless technologies from 1G to 5G have 
been developed on the assumption that the wireless 
environment is uncontrollable and unalterable. Consequently, 
improvements have primarily focused on designing efficient 
transmission and reception technologies to compensate for 
these inherent challenges. However, the advances made at the 
communication endpoints are insufficient to fulfill the Quality 
of Service (QoS) requirements for networks beyond 5G. The 
concept of 6G involves a fundamental change in approach, 
where the wireless landscape is viewed as a dynamic entity 
capable of adaptation and optimization. This transformative 
approach can be achieved by integrating Intelligent Reflecting 
Surfaces (IRSs), a key technology for the development of 6G 
networks [1]. The 6G plan, which is designed to enable the 
connectivity of the expanding network of interconnected 
devices serving applications, such as smart homes, cities, and 
transportation, using IRSs, requires sophisticated resource 
allocation frameworks that prioritize Energy Efficiency (EE) 
and Spectral Efficiency (SE). IRSs have become a focal point 
because of their adept management of electromagnetic waves. 
These surfaces consist of integrated electronic circuits with 
programmable features that enable customized control over the 
propagation properties of the electromagnetic channels. This 
technology offers a cost-effective solution to expand EE and 
SE in Wireless Communication (WC) beyond the capabilities 
of 5G, unlocking diverse application possibilities.  

The incorporation of IRSs can take various forms. An IRS 
can function as a passive reflector operating without Radio 
Frequency (RF) chains and requiring minimal power for 
tuneable chip manipulation [2]. A passive IRS offers benefits, 
such as scalable costs, lower energy consumption, and 
simplified interference management. Conversely, an active IRS 
incorporates RF chains and can function as an active 
holographic Multiple Input-Multiple Output (MIMO) system. 
This study signifies a progressive advancement beyond MIMO, 
offering the potential to leverage the propagation features of 
the electromagnetic channel with notable simplicity in practical 
implementations [3-4]. Furthermore, the characteristics of IRSs 
include easy integration into existing wireless networks and 
versatility for deployment in diverse structures, such as 
buildings, roadside billboards, windows, and indoor walls. 
Many studies have explored the benefits of integrating IRSs 
into WCs, considering aspects, involving minimized power 
transmission, reduced interference, and improved security [5]. 

Non-Orthogonal Multiple Access (NOMA) is positioned as a 
leader in the next-generation multiple access category in 6G 
communication networks, with anticipated advances in 
terrestrial, aerial, and maritime communications, providing 
faster, more efficient, and reliable connectivity [6]. The 6G 
network is designed to accommodate extensive connectivity 
with exceptionally low latency requirements, catering to 
applications, like smart homes, cities, and transportation. 
NOMA plays a pivotal role in fulfilling the ambitious goals of 
6G, attracting both academic and industrial interest. It is 
recognized for its superior SE, providing fair network access 
and equitable treatment to users [7], and effectively addressing 
resource conflicts that arise from intense transmissions within 
limited resources. The combination of NOMA with IRSs offers 
a compelling opportunity to enhance massive connectivity 
while improving both SE and EE [8-9]. Notably, NOMA 
networks empowered by IRSs exhibit enhanced adaptability in 
contrast to conventional NOMA networks. The key advantage 
of IRSs lies in their ability to intelligently adjust the direction 
of received signals (channel vectors), simplifying NOMA 
deployment [10]. Acting as a passive amplifier and forwarder, 
an IRS improves signal transmission and is particularly 
valuable in cell-free massive MIMO systems [11]. IRSs offer 
superior EE compared to traditional AF relays [12-13] and 
have been proven beneficial for multicast communications [14-
15], demonstrating considerable improvements in the EE of 
IRS-assisted broadcast communication systems. 

In [16], the balance between EE and SE was explored in 
IRSs of several mobile units in an uplink system to optimize 
phase shift and covariance matrix. In [17], the challenge of 
maximizing security in IRS-assisted multicast communication 
was addressed by effectively suppressing unwanted signals. 
However, the specific considerations related to EE in IRS-
assisted multicast communications present an open area for 
exploration [18- 19]. Improving EE and SE is crucial in the 
WC dynamic landscape [20-21]. Combining IRSs and NOMA 
presents novel opportunities to address NOMA's constraints by 
leveraging IRSs' wave manipulation and NOMA's multiplexing 
[22-23]. Optimizing EE is crucial, with IRSs offering cost-
effective implementation and the potential for enhanced system 
performance [12, 24]. Recent studies focused on various IRS-
enabled aspects, including channel modeling, estimation, 
encoding, modulation, and performance evaluation [25-26]. 
This study aims to optimize EE in IRS-NOMA using a Deep 
Reinforcement Learning (DRL) algorithm to minimize power 
consumption. 
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A. Research Motivation 

The next generation WC demands high data rates with 
limited energy. This study explores DRL to optimize IRS-
NOMA systems. The Deep Deterministic Policy Gradient 
(DDPG) algorithm helps the IRS dynamically adjust signals, 
maximizing energy efficiency while enabling high data rates 
for future communication networks. 

B. Research Contribution  

This study significantly advances WC systems by 
improving EE in the IRS-NOMA context and presenting an 
optimization algorithm based on DRL principles, particularly 
enhancing EE in NOMA-assisted WC systems using the DDPG 
algorithm. 

 This study explores the integration of IRS and NOMA into 
DT WC systems. This integration is studied with a focus on 
optimizing the EE within the system. This study considered 
the direct link of transmission between BS and users. The 
purpose of combining the IRS and NOMA was to improve 
the efficiency of data transmission while minimizing energy 
consumption. 

 This study employs DDPG, a DRL algorithm, to optimize 
the beamforming and IRS phases for maximum EE in 
communication systems. This approach allows for 
adaptation to changing conditions and enhanced system 
performance. 

 This study evaluates DDPG's performance (reward, loss, 
exploration) during training to assess its learning and 
adaptation. Simulations compare DDPG with other 
algorithms (DQN, FL, PPO) to demonstrate its 
effectiveness in optimizing beamforming for EE in WC 
systems. 

 

 
Fig. 1.  The proposed IRS-NOMA system model. 

II. SYSTEM MODEL 

A. IRS-NOMA System  

The IRS-NOMA communication system comprises an IRS, 
a BS, and multiple users, as observed in Figure 1. The BS is 
equipped with antennas denoted by ℳ � �1, 2, … , �	  and 

 � �1, 2, … , �	 . The IRS comprises �  reflection units, 
represented by 
 � �1,2, … , �	. The IRS can independently 

reflect incoming signals according to CSI and modify the 
amplitude or phase of each reflection unit to manage the 
signal's directions. The signal transmitted in the IRS-NOMA 
DT communication system can be expressed as: 

� � ∑ ��������      (1) 

In this context, �� ∈ ℂ�  is the generated precoding matrix 
and �� ∈ ℂ� is the transmitted signal [27]. The signal received 
by the users can be characterized by: 

�� � ���� �  �!"�  #�   (2) 

The communication channel parameters between the BS 
and the user, BS and IRS, and IRS and the user are denoted as 
�! ∈  ℂ$%� , � ∈  ℂ$%& , and �� ∈  ℂ&%� , respectively. The 
IRS is represented by a diagonal phase-shift matrix denoted by 

Θ � diag,#-./ , … , #-.01 ∈ ℂ&%& , where 23 ∈ 40, 267 , 

 8 ∈ 41, … , �7 , and #� ∼ :
�0, ;!" . The additive white 
Gaussian noise with variance ;!  is present in the system to 
facilitate NOMA transmission. All the users are grouped based 
on channel quality compared to the BS. NOMA technology 
relies on Successive Interference Cancellation (SIC). Users 
decode the strongest signal first and then remove its 
interference from the received signal to decode weaker signals. 
This means that stronger signals act like noise for weaker users. 
The equation representing the received signal by the user is 
given by: 

�� � ���� �  �!"�′  #�   (3) 

where �′ � ∑ �������� . Successful decoding of the ordered 
signal facilitates the determination of the transmission rate for 
user > employing the following equation: 

ℛ� � log!� |�C/D EFCG"HI|G

J�C/D EFCG" ∑ HIKLMIN/ JGFOIG
"  (4) 

In this context, the expression: 

� |�C/D EFCG"HI|G

J�C/D EFCG" ∑ HIKLMIN/ JGFOIG
"  

represents a signal-to-interference-ratio (SINR) at the kth user, 
which leads to formulating the system's SE as follows: 

ℛ � ∑ ℛ�����      (5) 

B. Optimization Problem 

To improve the IRS-NOMA system, EE was determined 
using its SE ratio to its total power consumption, as defined by: 

PQ�RST���U", V�U", ��, �!" �  

    
ℛ

W ∑ XIFYZ[ F�Y\F&Y]KIM/
    (6) 

�. U U^��� ℋ	 ` ab   

|φ3| � 1   ∀8 � 1,2, … , �  

In this expression, e ∑ f�, agh, a3 , ai ,����  are the combined 
power consumption of the transmitting BS, the power 
dissipation at the BS, the power loss at the mobile UT, and the 
power consumption of the IRS, respectively [28]. 
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Fig. 2.  Schematic diagram of the optimization model for the DT system incorporating IRS-NOMA and using the DDPG algorithm. 

III. DEEP REINFORCEMENT (DRL) ALGORITHM  

A. Deep Reinforcement Learning (DRL) 

DRL interacts with environments via Markov Decision 
Processes (MDPs), executing actions based on observed states 
and receiving rewards. The goal is to discover optimal 
strategies for maximizing cumulative rewards. MDP policies 
depend on current states, represented by j � 4k, l, a, m, n7, 
where k � ���, �!, … , �3	  denotes the sets of states ( k ), 
l � �Q�, Q!, … , Q3	  denotes the sets of actions, ao→oqr �
as��q|��, Q"" denotes the probability of transitioning from the 
current k to the subsequent k' when l is performed, m��, Q" �
t4mbF�|�, Q7  denotes the instant reward obtained when the 
agent performs l in the current k, and n is the discount factor 
that determines the significance of each reward as it varies. The 
cumulative reward of the agent is the total of the rewards 
gathered throughout a series of interactions with the 
environment: 

���" � ∑ nbm��b" 0 ` n u 1vb�w   (7) 

The optimization of the agent is to find a strategy 6�Q|�" that 
maximizes the overall reward ���", where 6�Q|�"  �  a�Q|�", 
representing the likelihood of taking l in the current k: 

xy��" � ty4m��, Q"  n xy�kbF�|kb � �"7 (8) 

Given the k at the time U, the resultant function represents the 
anticipated reward. The state-action pair function is the 
probable reward of an k at U following the selection of l, and it 
is calculated as follows: 

zy��, Q" �  

    t4mbF�  nzy�kbF�, lbF�"|kb � �, lb � Q7 (9) 

The optimal solution for the following equations is 
determined using the Bellman optimality criterion as in [22]: 

x∗��" � PQ�yxy��" �  

    PQ�r |m��, Q"   n ∑ ao→o}ro}∈h x∗��q"~ (10) 

z∗��, Q" � PQ�yzy��, Q" �  

    m��, Q"  n ∑ ao→o}ro}∈h PQ�rqz∗��q, Qq" (11) 

In this context, x∗��" is the value obtained from choosing Q, 
representing the optimal value by evaluating every conceivable 
outcome in the current k . z∗��, Q"  is the persistent value 
obtained by considering all potential k resulting from each l 
and selecting the best l. 

B. Deep Deterministic Policy Gradient (DDPG) Algorithm 

This study aims to enhance EE in the IRS-NOMA system 
by considering dynamic variations in wireless cellular network 
parameters. Figure 2 illustrates the optimization model for the 
IRS-NOMA DT system using the DDPG algorithm, segmented 
into actor and critic components with symmetric 
characteristics. A Deep Neural Network (DNN) with three 
layers facilitates generalization. 

2r∗ � Q^�PQ�z.� ,�, Q; 2��Q � l��, 2r"1  (12) 

2�∗ � argmin.�
�
! �z��, Q; 2�"J

r���o,.�" � m��, Q""!  (13) 

Both 2r∗ and 2�∗ are differentiable. Using the chain rule, the 
gradients of these variables can be derived as: 

 �2r � �rz���, Q; 2�"|r���o,.�"�.�l��; 2r"  (14) 

�2� � �z��� , Q; 2�" �                                  
                                    m��, Q""�.� z��, Q; 2�"�

r���o,.�"
  (15) 

Software updates were implemented to modify parameters 
in the target network. This was accomplished using an initial 
update rate that progressed gradually. The equations governing 
this process are: 

2rq � �2r  �1 � �"2qr}    (16) 
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2�q � �2�  �1 � �"2q�}    (17) 

where � is the update coefficient. 

 

 
Fig. 3.  Flowchart of DRL optimization algorithm. 

This study utilized the IRS-NOMA system's EE, which was 
improved deploying the DDPG algorithm. Taking advantage of 
the DDPG algorithm's ability to collect real-time channel status 
information, the current state, possible actions, and immediate 
rewards were defined: 

 State: In the tth step, the state ��b" is collectively determined 
by the channel matrices �� and �!, the received power of 
users, and the action taken in the (t-1)

th
 step. Due to the 

complexity of the matrices in the system, employing 
absolute operators to calculate the transmitted and received 
powers results in loss of information. Therefore, it is 
essential to differentiate between the imaginary part and the 
real part of the signal that has been transmitted. 

 Action: The action is generated by combining the transmit 
beamforming matrix �  and the phase shift matrix V . 
Similarly, the real and imaginary components of � are split 
into two parts, Re��	  Im��	, and V is separated into its 
real and imaginary parts as Re�V	  Im�V	. 

 Reward: In DRL, in the t
th
 step, the reward is calculated as 

the EE, represented by T�G�U", Φ�U", ��, �!" in the context 
of IRS-NOMA WCs. 

The DDPG algorithm employs four neural networks. It is 
assumed that each network consists of � layers, with each layer 
containing  ��  neurons. The complexity of neurons varies 
depending on their type [29]. The sum of nodes for batch 
normalization, ReLU, and tanh layers are denoted as ��, �s, 
and �b , respectively. �r  are the nodes of the actor network 
�Tr"  and ��  are the nodes of the critic network (T�" . The 
requirement for floating point calculations in each batch 
normalization node, ReLU node, and tanh node is 5, 1, and 6, 
respectively [30]. Both the Tr  and T�  collaborate during the 
training process. Therefore, their complexities are: 

��5���  �s�  6�b�  ∑ ���  ��F�������w " and 

��5��r  �sr  6�br  ∑ ��r  ��F�r "�����w   

Meanwhile, the target network's complexity is  

��∑ ���  ��F�������w "  �(∑ ��r  ��F�r "�����w  

Therefore, the overall complexity of the algorithm is: 

���. �. ,�5���  �s�  6�b�  ∑ 2���  ��F�������w "  
    �5��r  �sr  6�br  ∑ 2��r  ��F�r "�����w "1 (18) 

The number of training episodes and the number of steps 
per training episode are denoted by N and T. Algorithm 1 
presents the DDPG algorithm's pseudocode in the context of an 
IRS-NOMA [31]. 

ALGORITHM 1: IRS-NOMA DDPG ALGORITHM 

1: Input: The episode number, the learning rates 

for Tr and T�, and the channel matrices �� and �! 
2: Set up a size D memory for an experience, 

establish parameters for the training of the Tr 
(2r), initialize parameters for the target Tr as 
equal to the Tr 2r} = 2r, define parameters for 
training the T� 2�, set parameters for the target 
T� to match those of the T� 2�} � 2�, prepare the 
matrix (G) for beamforming transmit, and matrix 

(Φ) for the phase shift. 

3: For 8 � 1 to � do 
4:   Compile and pre-process, �� and �! to obtain  

  the first state �� 
5:   For U �  1  to  � do 
6:     Obtain the action Qb from the Tr 
7:     Perform the action �Qb " and observe the  

    immediate reward (^b " 
8:     Observe the succeeding state (�bF�) 
9:     Store the experience parameters (�b, Qb , ^b, 

    �bF� ) in the replay memory 
10:     Calculate the critical gradient (∇θ�) using 

    (15) and update parameter (θ�) using  
    θ� ← θ� � T�∇θ� 

11:     Calculate the gradient of the actor (∇θr)  
    using (14) and adjust the parameter (θr) 
    using θr ← θr � Tr ∇θr 

12:     Update the �b � �bF� states in Tr and T� 
13:   End For 

14: End For 

15: Output: the function value of Q and the action 
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IV. SIMULATION RESULTS AND ANALYSIS   

The main objective of the simulation was to assess and 
maximize the EE and then enhance the performance of the 
DDPG algorithm in a system. The simulation considered a 
small-scale Rayleigh fading, a standard model in WC that 
mimics signal strength variations due to factors such as 
multipath propagation. Table I displays the settings and 
parameters of the simulation. TensorFlow served as the basis 
for the simulation environment, the dataset was simulated using 
MATLAB 5G Simulator, and the proposed algorithm was 
implemented utilizing MATLAB and Python. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value Description  

θr  0.001 Learning rate for the Tr  update 

θ�  0.001 Learning rate for the T�  update 

D 100000 Experience replays buffer size 

N 1000 The training episode number 

T 10000 Number of steps in the training episode 

agh   10 dBW Power dissipation in the BS circuit 

e  1.2 
Coefficients for power dissipation in the 

BS circuit 

ai    10 dBW 
Coefficients for power dissipation in the 

BS circuit 

a3  10 dBW 
Power dissipation at the 8th

 elements of the 

IRS 

K 2-10 user Number of users served by the BS 

M 100 
Number of elements in the IRS that 

manipulate the signal 

�b  2 Number of transmit antennas at the BS 

�s  1 Number of receive antennas at each user. 

ab  15 -30 dBm Total power transmitted by the BS 

Distance BS 

to IRS 
100 m The distance between IRS and BS 

Distance IRS 

to user 
110 m The distance between IRS and user 

Path loss 

exponent (α) 
2 

This models the signal attenuation with 

distance 

Fading 
Exponential, 

Rayleigh 

Overall signal weakening due to long 

distances 

Doppler 

frequency 
40 - 200 Hz Define the Doppler frequency 

Episodes 100 - 400 The number of training iterations. 

 
Figure 4 depicts the training diagram for the DDPG 

algorithm, showing an increase in reward with training steps 
until stabilization. More users decrease EE when the 
transmission power is constant. An increase in the transmitting 
power of the BS results in a reduction in EE. Furthermore, the 
overall EE of the system diminishes with an increase in the 
number of reflecting elements. The number of reflecting 
elements on the IRS can be carefully increased to achieve 
optimal performance. Figure 5 indicates a proportional increase 
in EE with increased BS transmission power and reflects a 
decrease in total EE with more reflecting elements. Adding 
reflecting elements benefits IRS performance. Figure 6 
compares the DDPG algorithm in IRS-NOMA and CNN IRS-
NOMA transmission, highlighting a growing disparity in 
achievable rate with an increased number of reflecting 
elements. The DDPG algorithm provides the best achievable 
rate compared to other algorithms. 

 
Fig. 4.  Changes in EE in response to variations in the power transmitted 

by the BS for � � 10, 20, 30, 40, 50. 

 
Fig. 5.  Maximum EE reached using the DDPG algorithm. 

 

Fig. 6.  Achievable rates against the number of reflecting elements for the 
DDPG algorithm against CNN and traditional IRS-NOMA. 

NOMA technology proved to be beneficial for EE 
enhancement. In Figure 7, DDPG outperformed FL and IRS 
with random phases. Comparing RL algorithms, such as 
DDPG, with techniques, such as FL for EE in IRS-NOMA, is 
complex and context-dependent, suitable for continuous action 
spaces and complex policies. DDPG's performance relative to 
other methods depends on factors such as problem specifics 
and data. DDPG excels in continuous action spaces, offering 
fine-grained control in persistent problems. In comparisons 
(Figures 8 and 9), DDPG exhibits high EE in IRS-NOMA 
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setups, aligning closely with optimal EE. Utilizing DNN for 
policy and value function approximation enables DDPG to 
capture complex relationships and enhance performance. 

 

 
Fig. 7.  Comparison of the effect of transmit power on the EE of an IRS-

NOMA system and the proposed DDPG, Federated Learning IRS-NOMA 

[12], and random phase-based-IRS [30]. 

 
Fig. 8.  Maximum achievable EE against the number of reflecting elements 

in an optimal IRS, the proposed DDPG algorithm, FL [28], imperfect CSI 
[29], and without IRS. 

 
Fig. 9.  Comparison of the improvements in performance against the 

signal-to-noise ratio of different optimization algorithms, namely, the 
proposed DDPG, PPO [32], and DQN [29]. 

Figure 10 discloses that the DDPG algorithm provides the 
minimum power consumption compared to traditional IRS-
NOMA due to the optimization method followed, and this 
result can provide high EE compared to the traditional IRS 

method. In Figure 11, the proposed DDPG algorithm was able 
to provide a very high reward signal because it is an RL 
algorithm designed to maximize cumulative rewards in tasks 
involving sequential decision-making. DDPG can achieve high 
rewards in various environments. As a policy gradient 
algorithm, DDPG optimizes policy to maximize rewards, 
which is beneficial for finding optimal approaches in control 
problems, such as EE optimization in IRS-NOMA systems.  

 

 
Fig. 10.  Power consumption against the number of reflecting elements for 

DDPG and traditional IRS-NOMA. 

 
Fig. 11.  Moving average reward concerning the episodes in the proposed 

DDPG algorithm for training and reward validation. 

The design of the reward function significantly affects 
DDPG's performance. A well-designed function efficiently 
guides the agent to high rewards, which is beneficial in WCs, 
autonomous systems, and similar domains. Rewards suggest 
agent performance, with higher values indicating better 
performance. Figure 12 compares the EE of different IRS-
assisted systems (DDPG-NOMA, FL-NOMA, Traditional) for 
varying SE levels, showing that as SE increases, EE reaches a 
maximum point. In particular, DDPG-NOMA achieves 
significantly higher EE compared to FL-NOMA and traditional 
methods at all SE levels. Figure 13 offers a focused view of the 
average performance of the DDPG algorithm over time, 
smoothing out variations in episode rewards. Monitoring this 
average reward is crucial to assess learning progress and 
algorithm convergence. Figure 13 provides valuable insight 
into the algorithm's learning and performance changes during 
training, serving as standard tools for evaluating training 
progress in RL tasks. 
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Fig. 12.  Impact of SE on EE in IRS-NOMA systems with DDPG, FL, and 

traditional algorithms. 

 
Fig. 13.  Comparison of the average reward concerning episode numbers in 

the proposed DDPG algorithm. 

T�  represents the z  values estimated by the DDPG 
algorithm, which are a fundamental concept in RL representing 
the expected cumulative reward that can be achieved by taking 
a specific action in a particular state. It is essential to monitor 
the z values to understand the agent's assessment of the value 
of different actions in different states. Figure 14 provides 
critical insights into the learning progress of the DDPG 
algorithm through its T�. Accurate z value estimation is crucial 
for effective decision-making. The plot tracks how these 
estimates evolve over episodes, ideally converging to accurate 
values. Convergence indicates learning success. Figure 14 
assesses the DDPG's algorithm learning progress and the 
quality of its z  value estimates, which are essential for 
informed decision-making in complex environments [33]. 

 

 
Fig. 14.  Proposed DDPG algorithm's estimation of z  against the episode 

number using its T� . 

 
Fig. 15.  Proposed DDPG algorithm's (a) policy loss, (b) value function loss, 

(c) success rate, (d) training time, and (e) learning curve. 

Figure 15(a) depicts policy loss, a key RL metric that 
indicates the disparity between the predicted and optimal action 
probabilities. It guides DDPG's policy network learning, with 
decreased loss signaling policy improvement. Increasing policy 
loss can imply exploration or action uncertainty. Value 
function loss measures T� accuracy in predicting the expected 
rewards. Decreasing loss signifies improved value estimation, 
crucial for action quality assessment and policy enhancement. 
The success rate measures the agent's achievement of the 
predefined goals to assess task performance. Training time 
measures the completion time of the DDPG algorithm, which is 
vital in resource-constrained settings as it indicates how long 
training for acceptable performance takes. The learning curve 
depicts performance changes over time, showing the agent's 
learning progress. Assessing these components offers insights 
into the performance of the DDPG algorithm. Figure 15 allows 
various aspects of the performance of the proposed DDPG 
algorithm to be evaluated, including policy improvement, the 
accuracy of the value function estimation, the agent's success in 
achieving specific goals, the time required for training, and 
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overall learning progress. These metrics and the learning curve 
provide valuable insights into the behavior and effectiveness of 
the algorithm in the given environment. 

V. CONCLUSION AND RECOMMENDATIONS FOR 
FUTURE STUDIES 

The DDPG algorithm, widely deployed in various domains, 
including WCs, stands out in IRS and NOMA systems. It 
optimizes transmit power levels for both IRS and NOMA 
users, to maximize EE while maintaining performance. This 
study improves EE in IRS-NOMA systems by refining power 
allocation and resource management, using the DDPG 
algorithm. This framework optimizes beamforming vectors and 
IRS phase shift, resulting in significant EE improvements. The 
simulation results demonstrated the superiority of DDPG over 
other algorithms, such as DQN and FL. Integration of NOMA 
and IRS proves effective in bolstering EE. Future studies can 
consider incorporating context-aware DRL with transfer 
learning to ameliorate efficiency by adapting to network 
scenarios and leveraging knowledge across them, utilizing 
contextual information (user traffic, channel conditions, etc.) 
for better DRL performance, and leveraging transfer learning to 
enhance efficiency across different network scenarios.  
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