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ABSTRACT 

This study presents the design of a controller for a two-degree-of-freedom (2-DOF) helicopter based on 

sequential invariant manifolds with exponential convergence. The system is decomposed into two 

subsystems for pitch and yaw angles, and exponentially stable manifolds are constructed for each 

subsystem. The control law is found based on sequential manifolds and the Analytical Design of 

Aggregated Regulators (ADAR) method. The controller is designed to increase the system's stability 

against disturbances while ensuring stability over a finite period of time. The response time of the system 
can be evaluated in advance through the parameters of the designed manifold. The robustness of the 

control law for external disturbances was proven using the Lyapunov function in the design process. 

Finally, the effectiveness of the proposed controller based on the synergetic control theory is demonstrated 
by numerical simulation results and a comparison with the backstepping controller. 

Keywords-sequential manifold; backstepping controller; SMC; 2-DOF helicopter; ADAR 

I. INTRODUCTION  

A helicopter not only has the characteristics of small size, 
strong adaptability, and ease of use, but also has the functions 
of vertical takeoff, hovering, and low-altitude flight in a small 
area. However, directly using the aircraft model in control law 
testing is not realistic for academic researchers. Therefore, 
various experimental pieces of equipment in the laboratory 
have been specially designed for teaching and research in flight 
dynamics and control. The 2-DOF helicopter system is a 
helicopter model commonly employed in laboratories. This 
system operates similarly to a helicopter in certain aspects. The 
2-DOF helicopter is a nonlinear and unstable multiple-input, 
multiple-output (MIMO) system characterized by the coupling 
effect between the dynamics of the rotor blades and the body 
structure, which is caused by the impact reaction principle 
originating from the acceleration and deceleration of motor-
propeller groups. All these features make controlling a 2-DOF 
helicopter a technical problem that needs to be investigated. 

Many studies have proposed backstepping and sliding mode 
controllers for engineering and 2-DOF helicopter systems [1-
22]. In [1], a new output feedback control strategy was 

presented for unmodeled uncertainties in nonlinear systems. 
Sliding Mode Controllers (SMCs) have been introduced in [7-
10]. These studies provide stable control algorithms in the 
presence of noise and inaccuracy in the mathematical model. 
The robust control algorithm is based on super-twisting sliding 
mode control (2-SMC), providing a solution to deal with the 
torque caused by center-gravity turbulence and ensure smooth 
flight. In [9], the SMC law was combined with a state observer 
for a 2-DOF helicopter system, helping to achieve asymptotic 
attitude adjustment for set points and follow the trajectory. The 
backstepping method has also been widely applied to study the 
control law of 2-DOF helicopter systems [11-14]. As far as is 
known, there are very few studies that directly use the 
backstepping control law, which is often combined with 
adaptive techniques, sliding control methods, neural networks, 
and fuzzy theory. In [11, 12], the backstepping method was 
combined with the recommendation law to synthesize the 
control law for this system, giving satisfactory results when 
there was interference. In [13,14], the design of an SMC was 
combined with the backstepping method to control the pitch 
and yaw angles of the main and tail rotor of the 2-DOF system 
under incorrect parameter conditions. This control strategy 
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dealt with the problems of the 2-DOF helicopter relatively well. 
Although good developments have been presented in control 
research for nonlinear systems with uncertainty, these control 
strategies require very accurate system models. However, in 
reality, many nonlinear system models are often inaccurate. 

This study proposes a method to design a finite-time control 
law based on sequential manifolds to ensure global stability in 
the presence of disturbances. The controller is established on 
the ADAR method presented in [23-25]. Some studies [26-28] 
examined and applied this method to technical objects to 
achieve some pretty impressive results. The proposed controller 
ensures system stability after a given period. The stability of 
the system in the presence of noise is proven through the 
Lyapunov function, which provides a limit on the amplitude of 
the noise, making the system globally stable. Finally, the 
simulation results displayed the superiority of the control law 
proposed in this study compared to the backstepping controller. 

II. MATHEMATICAL MODEL OF A 2-DOF 

HELICOPTER 

The 2-DOF helicopter includes a bar that is rotated on its 
base so that it can rotate freely in both the horizontal and 
vertical planes. There are two rotors (main rotor and tail rotor), 
driven by direct current motors, at each end of the rod. Two 
rotors, driven by variable-speed electric motors, allow the 
helicopter to rotate in the vertical and the horizontal plane 
(altitude and yaw). The mathematical model of the 2-DOF 
helicopter was developed according to the assumptions in [5, 
6]. 

 

 
Fig. 1.  The 2-DOF helicopter model. 

The dynamic model of the system was developed using the 
Euler-Lagrange equation. Based on [4], the equations for the 
dynamics of a 2-DOF helicopter are: 

⎩⎪⎪
⎨
⎪⎪⎧

�� � �	
��
��� ����������� �	
��
������ � ������ ���������� 	
��
���! "�#��$� #�% $%���_� 	
��
���'� � ��%��  (	
��
����� �� ������ ���������%  	
��
��� �������! #%�$� "%#%%$%���_% 	
��
��� �������
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where θ and α are the pitch and yaw angles, and Vp and Vy are 
the voltages of the front and rear motors, respectively. Mheli is 
the total moving mass of the 2-DOF helicopter, g is the 

gravitational acceleration, l0 is the distance from the 2-DOF 
helicopter center of gravity to the rotation axis, Bp and By are 
the coefficients of resistance to movement acting on the pitch 
and yaw axes, respectively, and Jeq_p and Jeq_y are the moments 
of inertia along the lift and rotation axes, correspondingly. The 
coefficients Kpp and Kyy are the constants of the front and rear 
engine thrust along the lifting and rotating axes. Kpy and Kyp are 
the constants of the front and rear engine thrust along the 
rotation and lifting axes. The parameters rp and ry are the 
distances from each engine to the center of rotation of the 
helicopter. 

Lets set variables x1 = [x11, x12]
T = [θ, α]T, and x2 =[x21, 

x22]
T = [θ,̇α]̇T. According to the 2-DOF helicopter system, it can 

be converted to a general MIMO system as follows: 

)*�+ � *(*�( � , ! -. ! /    (2) 

where u = [Vp, Vy]
T
 represents the control input, d = [d1,d2]

T
 

denotes the unknown disturbances which are bounded |d| < D, 
and D has finite positive elements. Furthermore, N and M are 
determined from (1): 
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III. SYNTHESIS OF CONTROL LAWS AND 
STABILITY ANALYSIS  

A. Synthesis of Control Laws Considering Stability Time 

based on Sequential Manifolds 

The assembly control design process follows the analytical 
design of the aggregated regulators (ADAR) approach. The 
main steps of the process can be summarized as follows. 

Suppose the controlled MIMO system is divided into s 
subsystems of order n, described by a system of autonomous 
nonlinear differential equations of the form: 

)*� ��:� � ;��*+, … , *�� ! >� +*� +,  @ � 1 B C D 1*���:� � ;��*+, … , *�� ! ∑ FG.G�GH+  (3) 

where x is the subsystem state vector, u is the control input 
vector of the large system, and t is time. 

First, define I  macro variables for the subsystems as a 
function of the subsystem's state variables JG�K � 1 B I�. The 

potentiometric control law will force the moving system to 
operate on manifolds JG � 0 . By selecting these macro 

variables, it is possible to ensure that the system has the 
characteristics according to the desired control quality 
parameters. The conventional selection method is based on a 
function of system state variables of the form: JG � *� D MGN*+, … , *��+, *�5O  
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Macro variables will have dynamic properties that satisfy 
the system of convergent functional equations, usually 
choosing a system of equations of the form: PGJ�G ! JG � 0, PG > 0,     K � 1, I  (4) 

where PG  is a design parameter that determines the rate of 

convergence to the manifold specified by the macro variable. 
Substituting the macro variable derivative into (3) and (4) 
gives: 

PG RSTR1 N;��*+, … , *�� ! ∑ FG.G�GH+ O ! JG � 0, PG > 0 (5) 

These equations are utilized to synthesize the control law 
vector u, but in the control law, the function φj is unknown. The 
function MG  in the I  equations above is found from the 

subsystems. Based on [26, 28], for each SISO subsystem, 
manifolds are built to ensure that the final manifold converges 
to 0. Normally, the functional form  JG,��+ = *( − (*+ − *�5)/PG,�    
can be chosen, where *�5 is the desired technology invariant. 

Lemma 1: When the manifold satisfies (4), in each time 
channel, the manifold JG(*) is stable from the initial position 

to the origin with an error of less than 5%, satisfying: : ≤ 3PG     (6) 

Proof: 

The solution of (4) demonstrates that the stable function is 
asymptotically stable to the origin. Transforming (4) gives: − +X /: = YSS ⇒ − +X [ /:\] = [ YSSS^S� ⇒ − +X : = _C `|S^||S�|b ⇒  

: = −P _C `|S^||S�|b  

With the condition of stability about the origin with error 
less than 5%, we have: : = −PG _C `|S^||S�|b ≤ −PG _C `|].dS�||S�| b ≤ 3PG (7) 

Lemma proven. 

Lemma 2: The stabilization time to the origin for a MIMO 
system with I  subsystems (3) with the control law u found 
above satisfies the following conditions. 

Proof: 

For each subsystem, the proposed control law will push the 
system through C − 1  manifolds to reach the desired 
technological invariant, and in the first step, to make the system 
globally stable, it is necessary to perform an initial movement 

about I  manifold JG . From here, combined with Lemma 1, 

Lemma 2 is proven. 

B. Synthesis of Finite-Time Control Law for 2-DOF 

Helicopter based on Sequential Manifolds 

The purpose of the 2-DOF helicopter control problem is to 
certify that the helicopter's pitch and yaw channels follow the 
desired values θsp and αsp by changing the voltage applied to 

the motor to create an impact torque. From the synthesis 
process presented above, the control signal vector function . � [f5, f8]X  depends on the phase coordinates. The control 

signal vector will move the 2-DOF helicopter position 
according to the given signal or stabilize at the desired position 
when there is interference to assure the required quality of the 
system. From the purpose of the problem of controlling a 2-
DOF helicopter following a given signal, based on integrated 
control theory, the first technological invariant is presented, 
corresponding to the control goal. *�5 = [��5 '�5]X    (7) 

In the first step, based on the system mathematical model, 
when the control signal vector u changes, it affects the 
dynamics of the pitch and yaw channels, so the first manifold 
vector is selected as: J+ = [J++ J(+]X =  

    [*(+ − M++(*++, ��5) *(( − M(+(*+(, '�5)]X (8) 

where the function vectors M++  and M(+ determine the desired 
characteristics of the change in angular velocity of the pitch 
and yaw channels at the intersection with the invariant 
manifolds J+ = 0 and J( = 0. The functions M++  and M(+  are 
determined in the process of synthesizing the control law, 
proceeding from the first technological invariant condition (7). 
To ensure the global stability of the manifold (8), according to 
the design method above, the macro variables J+  and J( must 
satisfy the solution of the system of basic functional equations:  PJ�+ + J+ = 0    (9) 

where P = [P+  0; 0 P(] is a positive definite constant matrix to 
ascertain the conditions for asymptotic stability of the system 
motion. Substituting (8) into (9) and (2) gives the system:  -. + , =  

  0 − +X2 `*(+ − M++N*++ , ��5Ob + Ri22R122 *(+ + Ri22R�j� ���5− +X� `*(( − M(+N*+( , >�5Ob + Ri�2R12� *(( + RiT,2Rkj� >� �56 (10) 

The vector of the internal control signal u is: 

. = -�+ l7− +X22 J++ + Ri22R122 *(+ + Ri22R�j� ���5− +X�2 J(+ + Ri�2R12� *(( + Ri�2R�j� '� �59m (11) 

When the system enters the manifold, the point representing 
the system touches the intersection of the manifold J+ = 0, the 
system will experience dynamic separation of the subsystems 
in (2), and the dynamics of the subsystems will occur. The 
subsystem according to the channels is modeled by: *� = [M++(*++, ��5) M(+(*+(, '�5)]X  (12) 

where the functions M++(*++, ��5) and M(+(*+( , '�5)  in the 

decomposition systems (11) and (12) can be considered internal 
control signals. 

In the second step of the synthesis, to search for control and 

to determine the functions M++(*++, ��5)and M(+(*+(, '�5), an 
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additional invariant manifold is introduced, which will ensure 
the stability of the closed-loop system and the fulfillment of 
technological invariance (7). System dynamics (11) and (12) to 
certify stability and satisfy technological invariance (7) will 
choose the internal control signals: M++(*++) = −(*++ − ��5)/P++  and M(+(*+() = −(*+( − ��5)/P(+  

so that the system of separation equations has the following 
form: 

*� = n− +X22 N*++ − ��5O − +X�2 N*+( − '�5OoX
 (13) 

For (13), the asymptotic stability conditions at *++ = ��5 ,  *+( = '�5 and P++,  P(+ are positive constants. From (13) and 

the manifolds M++(*++ , ��5) and M(+(*+(, '�5) selected above, 

the control law u for the 2-DOF helicopter can be described as: . =   -�+× 

⎝⎜
⎛

⎣⎢⎢
⎢⎡− +X2 v*(+ + +X22 N*++ − ��5Ow − +X22 *(+ + +X22 ���5
− +X� v*(( + +X�2 N*+( − '�5Ow − +X�2 *(( + +X�2 '� �5⎦⎥⎥

⎥⎤ − ,
⎠⎟
⎞

  (14) 

With control law (12) and Lemma 2, the time for the system to 
stabilize is: :�8�_ℎ3�� ≤ ~>* `N~>*N3PG ,+O + ~>*N3PGOO�GH+( b (15) 

C. Synthesis of the Backstepping Controller for 2-DOF 

Helicopter 

To prove its effectiveness, a control law was synthesized 
deploying the Backstepping method [12] to compare the 
numerical results of the system's response. The design process 
using the backstepping method is carried out as follows: 

1) Step 1 

First, the angular error on the Pitch and Yaw channels is 
selected: �+ = *+ − *�5     (16) 

The virtual control variable is defined as: '+ = −�+�+      (17) 

where �+ is a positive definite diagonal matrix. Then consider 
the error given by: �( = *( − '+ − *��5     (18) 

After that, ��+ = *�+ − *��5 = *( − *�Y = �( + '+. 

According to the backstepping control, the first Lyapunov 
function is defined as: f+ = +( �+X�+      (19) 

Differentiating (19) with respect to time gives: f�+ = �+X��+ = −�+�+X�+ + �+X�(    (20) 

Obviously, if �( =  0  then f�+ ≤ 0 , but it cannot be 
guaranteed that �( =  0  all the time. Therefore, the virtual 
control variable '( is introduced to make �( = 0. 

2) Step 2 

From (18) and (17) '�+ = −�+��+ = −�+(*�+ − *��5) . The 

derivative of �( is expressed as: ��( = , + -. + �+(*( − *��5) − *��5  (21) 

Choose the positive definite Lyapunov function: f( = f+ + +( �(X�(     (22) 

Differentiating (22) with respect to time gives: f�( = f�+ + �(X��( = −�+�+X�+ + �(X(�+ + ��() (23) 

Similarly, to f�( ≤ 0 for all states of the system: �+ + ��( = −�(�(     (24) 

where �( is a positive definite diagonal matrix. From (21) and 
(24), the control law becomes: . = -�+N−�(�( − �+(*( − *��5) − �+ − , + *��5O (25) 

D. Stability Analysis 

To check the stability of the control law u when the system 
has unknown and noisy components, such as (2), the positive 
definite Lyapunov function is chosen, having the form: f = 0.5J+XJ+     (26) 

Taking the Lyapunov derivative (26) when the control law 
(14) acts on (2), gives: 

f� = J+� �, + -. + / − 0Ri22R122 *(+ + Ri22R�j� ���5Ri�2R12� *(( + RiT,2Rkj� >� �56� (27) 

Substituting the proposed control law (14) into (27) gives: 

f� = J+�

⎝
⎜⎜⎜
⎜⎛ � + � − 0Ri22R122 *(+ + Ri22R�j� ���5Ri�2R12� *(( + RiT,2Rkj� >� �56 +

7− +X22 J++ + Ri22R122 *(+ + Ri22R�j� ���5− +X�2 J(+ + Ri�2R12� *(( + Ri�2R�j� '� �59 − �⎠
⎟⎟⎟
⎟⎞ ⇒  

f� = −J+�(��+J+ + /)    (28) 

The proposed control law (21) will bring the moving 
system to the J+ manifold. From (9), the solution of J+ can be 
found: J+(:) = J]��X�2\      (29) 

where J] = [ J+]  J(]] is the value vector at the initial point 
in each manifold. Substituting (36) into (35) gives: f� = −NJ]��X�2\OXNP�+J]��X�2\ + /O =  

    = −��X�2\J]XNP�+J]��X�2\ + /O  (30) 
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The system is asymptotically stable if f� ≤ 0. So, d must 
satisfy: |/| � P�+|J]|��X�2\     (31) 

Therefore, with the proposed control law, when interference 
is blocked, the system is still stable near the desired state but is 
not able to eliminate interference. The parameters of the T 
matrix affect the sustainability when there is interference. 

IV. RESULTS AND DISCUSSION  

A. Test Description  

In-depth computer-based simulations were carried out to 
demonstrate the potential of the proposed control law for the 2-
DOF helicopter system. The parameters of the 2-DOF 
helicopter system were: Mheli = 1.0750 kg , g = 9.8 m/s2, Bp = 
0.0071 N/V, By = 0.0220 N/V, Jeq_p = 0.0215 kgm

2
, Jeq_y = 

0.0237, Kpp = 0.022 Nm/V, Kyy = 0.0022 Nm/V , Kpy = 0.0221 
Nm/V, Kyp = -0.0227 Nm/V, l0 = 0.002 m, rp =0.25 m, and ry = 
0.2 m. The proposed control law parameters were selected 
based on the desired stabilization time through the parameters P+ , P( , P++  and P(+ .  These parameters reflect the convergence 
time to the selected manifolds and the total time from the initial 
position to the desired point can be calculated in advance. In 
this study, a set of parameters was selected with the scenario 
where the system is expected to be stable for 1 s as follows: P+ = 0.01, P( = 0.01, P++ = 0.25, P(+ = 0.25. Backstepping 
controller parameters �+ and �( were selected on the basis of 
[12] by trial and error. The first method for implementing the 
backstepping control law and the proposed control law was 
carried out with 3 scenarios: the first scenario is when the 
initial state of the system is at the origin *+(0) = [0; 0]P rad, 
*((0) = [0; 0]P rad and will stabilize to the expected values 
*�5(:) = [0.3; −0.8]P rad. The second scenario is when the 

initial state of the origin system will track the orbit with the 
desired tracking signal of the form: 

*�5(:) = [1.4sin (0.5:); 1.4cos (0.5:)]P rad [5]. The third 

scenario is when the initial state of the system at the origin will 
stabilize to the expected values *�5(:) = [0.2; 0.3]P rad when 

the system is affected by random disturbance / in the range [-
5; 5]. 

B. Numerical Test Results 

The simulation scenarios were performed in Matlab. In the 
first scenario, Figures 2 and 3 depict the response of the pitch 
and yaw angles of the 2-DOF helicopter system with the two 
control laws. It can be noted that both the backstepping 
controller and the proposed control law are stable about the 
origin. The actual value of the angle in the channels of the 2-
DOF helicopter system is the desired value. However, the 
graph clearly shows that the proposed controller's transient time 
is better. The transition time from the pitch angle �  to the 
desired value with an error of 0.015 rad is 0.76 s, while the 
backstepping controller takes 5.28 s, and for the yaw angle 
channel ' the time transient is 0.76 s, while the backstepping 
controller takes 5.30 s. In addition, it can be noticed that the 
quality of the proposed controller is much better, as there are 
no overshoots and fluctuations. In contrast, the backstepping 
controller has large overshoot and oscillations. The transient 

time of the system with the proposed control law to meet the 
requirements of the scenario is less than 1 s and satisfies 
inequality (20). This demonstrates the effectiveness of the 
control law design following this method. 

 

 
Fig. 2.  Pitch angle response of the 2-DOF helicopter. 

 
Fig. 3.  Yaw angle response of the 2-DOF helicopter. 

Figures 4 and 5 portray the responses of the pitch and yaw 
angles of the 2-DOF helicopter system with the two control 
laws. 

 

(a) 

 

(b) 

 

Fig. 4.  The pitch angle response of the 2-DOF helicopter: (a) trajectory 

tracking signal, (b) error signal of angle compared to set value. 

Figures 4(a) and 5(a) manifest that if the setting signal is 
oscillating, the quality of the proposed and the backstepping 
controller are both worse than in the first scenario. These two 
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controllers both give results in phase tracking with small errors. 
The recommended controller is out of phase before the set 
signal (0.13 rad), and the backstepping controller is in phase 
before the set signal (0.14 rad). However, with the proposed 
controller, the system response results are better in terms of 
amplitude than with the backstepping controller. With the 
proposed control law, the amplitude tracking error is in the 
range [-0.174; 0.174] for the pitch channel and [-0.173; 0.173] 
for the yaw channel. For the backstepping controller, it is [-
0.85; 0.85] for the pitch channel and [-0.84; 0.84] for the yaw 
channel. In addition, the error graphs in Figures 4(b) and 5(b) 
also exhibit that the proposed controller gives the largest error 
at CP/2 signal cycles, while the backstepping controller gives 
the largest error at ( 2C − 1)P/4 set signal cycles. Thus, it can 
be concluded that the backstepping controller is sensitive to 
changes in set value amplitude. The proposed controller 
responds well to changes in the set signal and is in a stable 
state. 

 

(a) 

 

(b) 

 

Fig. 5.  The yaw angle response of the 2-DOF helicopter: (a) trajectory 

tracking signal, (b) Signal of angle error compared to set value. 

In the third scenario, when there is noise, Figures 6 and 7 
show the responses of the two channels' pitch and yaw. It can 
be observed that the proposed controller gives good response 
results when there is noise, the system is stable at the desired 
value on the two amplitude channels, and the noise is very 
small in both [-0.0006; 0.0006]. The backstepping controller is 
very sensitive to random noise with large fluctuation 
amplitudes for both channels [-0.2; 0.2]. These results suggest 
that the response of the proposed control law provides much 
better findings. This can be explained by the fact that in the 
proposed control law, it is only necessary to introduce the first 
manifold, and (31) proves the simulation results in this 
scenario. 

 

 
Fig. 6.  Pitch angle response of a 2-DOF helicopter when there is 

interference. 

 
Fig. 7.  Yaw angle response of a 2-DOF helicopter in response to noise. 

V. CONCLUSION 

This study developed a finite-time trajectory control law for 
a 2-DOF helicopter in the presence of interference, based on 
sequential manifold and combinatorial control theory. 
According to the analysis of the results, the proposed controller 
exhibits good responses to different types of set values and 
good trajectory-tracking ability with trigonometric set signals. 
When the system has noise, the proposed controller has good 
anti-interference ability and small fluctuation amplitudes. In 
addition,  the present study has disclosed the stability time of 
the proposed control law, given the inequality testing by 
numerical simulations. Furthermore, this work also reveals 
stability conditions through stability analysis using the 
Lyapunov function. Finally, the simulation results confirmed 
the superiority and effectiveness of the proposed control law. In 
the future, focus will be placed on control research with 
different manifold shapes for 2-DOF helicopters, taking into 
account the physical properties of the manifold, with specified 
performance when model-clogging uncertainties and external 
disturbances exist. 
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