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ABSTRACT 

With the dramatic increase in mobile users and wireless devices accessing the network, the performance of 
5G wireless communication systems is severely challenged. Reconfigurable Intelligent Surface (RIS) has 

received much attention as one of the promising technologies for 6G due to its ease of deployment, low 

power consumption, and low price. This study aims to improve accuracy, reliability, and the capacity to 

estimate channel characteristics between transmitter and receiver. However, this is practically challenging 

for the following reasons. Due to the lack of active components for baseband signal processing, low-cost 

passive RIS elements can only reflect incident signals but without the capability to transmit/receive pilot 

signals for channel estimation as active transceivers in conventional wireless communication systems. This 
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study presents different channel estimation methods for RIS-MIMO systems that use deep learning 
techniques. 

Keywords-channel estimation; deep learning; RIS-MIMO; beamforming; phase shift 

I. INTRODUCTION  

Reconfigurable Intelligent Surfaces (RIS) have attracted a 
lot of attention [1]. RIS technology is used in many sectors, 
including secure communications, UAVs, and energy 
efficiency [2-5]. The source node (BS) is equipped with N 
antennas, joint phase shift optimization at the RIS element, and 
beamforming optimization at the same time. This optimization 
process relies on acquiring channel state information for all 
connections. Separate channels are utilized for BS → RIS and 
RIS → UE links, while cascaded channels are employed for 
end-to-end BS → RIS → UE links. Estimating individual BS 
→ RIS and RIS → UE channels poses a challenge. However, it 
is feasible to estimate these channels with some degree of 
ambiguity [7]. In [8], the tensor model technique was employed 
to estimate separate channels within the MIMO RIS network. 
In [9], an iterative approach was followed to compute these 
individual channels. On the contrary, estimating the cascaded 
BS →  RIS →  UE channels is comparatively more 
straightforward. 

In [10, 11], cascaded channel estimation was proposed for 
various scenarios, including the Single-Input Single-Output 
(SISO) scenario (a single antenna employed on both the 
transmitter and receiver sides), double RISs, and Multiple-
Input Single-Output (MISO) RIS-assisted network. 
Additionally, in [12], cascaded channel estimation was 
achieved in the MIMO-OFDM situation applying deep learning 
algorithms. The estimation of the cascaded channels often leads 
to problems. Analyzing the total channel capacity in cascade 
scenarios becomes intricate, especially when dealing with 
multiple antennas at both the transmitter and the receiver. 
However, the estimation of separate channels presents unique 
difficulties. On the other hand, more well-established 
technologies include integrated phase shift and beamforming 
techniques. This study suggests combining cascaded and 
separate channel approaches with phase shift and 
beamforming. Previous studies [8, 9] have shown that it is 
possible to optimize beamforming and phase corrections 
simultaneously for RIS-assisted MIMO networks utilizing 
individual channel estimates. In [13], the optimization of phase 
adjustment in cascaded channels was addressed when 
beamforming was not necessary on the transmitter side of the 
SISO-RIS system. In [14], further research on RIS-MIMO 
beamforming was carried out deploying the cascaded channel 
and iterative beamforming/phase correction execution. 

Beamforming and phase shifts in MIMO-RIS networks 
must be fine-tuned using iterative optimization techniques. 
Because of concerns about convergence, this further increases 
the demand for online computations and makes implementation 
more complicated. Maintenance of constant amplitude gains 
across different phase shifts simplifies the optimization 
procedure. Optimization becomes more complicated when this 
requirement is not met [15, 16]. 

Emerging developments in the field of machine learning 
provide appealing substitutes for the RIS phase transition [17]. 
This study presents a new deep-learning architecture 
employing two interconnected neural networks. Each network 
is specifically trained to address the distinct channel 
characteristics encountered in two scenarios. Compared to 
traditional reinforcement learning approaches, the proposed 
double neural network exhibits exceptional performance, even 
in scenarios with a large number of RIS components. A 5G link 
level-based RIS-MIMO MATLAB 2023a simulator was 
utilized to model the time-frequency response of the channel as 
a 2D picture and Anaconda Spyder for training on the dataset. 

II. SYSTEM AND CHANNEL MODELS 

Figure 1 depicts the passive/hybrid RIS architecture in 
conjunction with MIMO communication systems based on a 
limited number of RF chains. 

 

 
Fig. 1.  The proposed RIS design uses a surface-distributed array of K 
active/passive channel sensors. These sensors operate in two modes: (i) a 
channel sensing mode connected to the baseband for channel estimation and 
(ii) a reflection mode applying phase shifts to incident signals. The remaining 
RIS elements are passive reflectors without baseband connections. 

In scenarios where direct communication between the 
source (BS) and the destination (UE) nodes is impeded by 
severe obstruction or is blocked, the channel efficiency from 
the n

th antenna at the BS to the k
th element of the RIS 

experiences Rician fading, as outlined below: 

��,� � � ��,	
��,	
�  ℎ�,�

�����  � � ��,	
��,	
� ℎ�,�

������ (1) 

where ��,�  represents the Rician fact respective link, and ℎ�,�
����� 

and ℎ�,�
������  are the components of the Rician fading channel 

for Line Of Sight (LOS) and Non Line Of Sight (NLOS). The 
expression for the LOS component is as follows: 

ℎ�,�
����� �  ���������������  !�,�

"#
$    (2) 
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In this equation, θ denotes the angle of arrival at the RIS, and 
β0 represents the path loss at the reference distance of 1 m. In 
the NLOS scenario:  

ℎ�,�
���%�� = ℎ&�,� !�,�

"#
$   

where ℎ&�,�  is the complex Gaussian small-scale fading with a 
unit variance, and zero mean is denoted by ��,' . Similarly, the 
channel connecting the kth RIS elements and the mth antenna at 
the UE is denoted as  ��,'.  The signal received at the 
destination is expressed as: 

) = ��,�  Θ ��,' + + ,   (3) 

In this context, )  belongs to the -.×� , ��,� ∈ -�×�  is the 
channel matrix between UE and RIS, and ��,' ∈  C.×�, is the 
channel matrix representing the communication link between 
the RIS and UE. Additionally, 2 belongs to the C.×� space and 
signifies the additive noise between the BS and RIS, and the 
phase shift matrix at the RIS is represented as Θ, which is given 
by: 

Θ = diag78��� 9 … … . , 8��� � ;  (4) 

In this context, 8�  signifies the amplitude, and <�  represents 
the phase shift at the kth elements. Although <�  is typically 
presumed to remain constant in numerous existing 
methodologies, it is also acknowledged that it can be subject to 
variation. 

A. Cascaded Channel Estimation Scenario 

Cascaded channel estimation aims to capture the combined 
influence of the BS-RIS and RIS-UE channels in a single step. 
When employing fully passive RIS without sensing devices, it 
becomes impractical to estimate the BS-RIS and RIS-UE 
channels separately. Instead, only the combined BS-RIS-UE 
channel can be estimated, typically at one endpoint, such as the 
UE, in the downlink communication system. For passive RIS, 
direct estimation is limited to the overall BS-RIS-UE channel. 
Separate channel estimates require additional capabilities at the 
RIS, typically at the UE, in the downlink communication 
system. During time slot =, the BS transmits pilot signals, and 
the properties of the signal received by the UE can be described 
by: 

>?@
�A� = ∑ �CD�

�
�E�  ��,�  F�A���,' +�

�A� + G?@
�A�  (5) 

where +�
�A� ∈  -.H× �  represents the transmitted signal of the 

pilot by the BS, F�A� = diag7F�A�; is represented as a diagonal 
reflection matrix during time slot = at RIS, and the AWGN at 
the user can be represented as GI

�A� ∈  -.J×�. Using the product 
properties of Khatri-Rao the following equation can be derived: 

K�L7��,�  F�A���,'; = ��,'
� ⊙ ��,�  <�A�,   � = 1. . O (6) 

                                  ��PPPPP⃑  

In this expression, ��PPPPP⃑  ∈  -.R.J× � signifies the cascaded 
channel of user k, vec(⋅) denotes vectorization, and ⊙ denotes 
the Khatri-Rao product. 

B. Separate Channel Estimation Scenario 

Unlike the combined channel estimation approach, the 
separate channel estimation approach treats the transmitter-to-
RIS (BS-RIS) and RIS-to-receiver (RIS-UE) channels as 
independent and estimates them individually. This method is 
particularly applicable in scenarios with semi-passive or hybrid 
RIS equipped with dedicated sensing devices (Ns). When such 
sensing devices are available, they can be used to estimate the 
individual channels between the BS or UE and the RIS using 
dedicated pilot signals sent by either the BS or UE. Channel 
estimation is conducted at the RIS. TDD systems can 
effectively leverage channel reciprocity to obtain the Channel 
State Information (CSI) from the RIS to the BS or UE. This is 
because the same channel is deployed for transmission in both 
directions. Applying this method in Frequency-Division 
Duplexing (FDD) systems is complex. FDD engages separate 
frequencies for transmission and reception, eliminating channel 
reciprocity. To reduce hardware costs in semi-passive RIS, a 
limited number of low-resolution Analog-to-Digital Converters 
(ADCs) might be employed. However, this necessitates active 
sensors on the RIS, capable of transmitting and receiving pilots 
for channel estimation in FDD systems, leading to increased 
power consumption. Specifically, the channels from the BS and 
UE to the Ns sensing devices are represented as follows:  
T�U ��,�� ∈  -�V×.R  and �U ���,'� ∈ -�V×�H , respectively. 
Additionally, WD ∈ -.R×� and W? ∈ -�H× � represent the pilot 
sequences transmitted by the BS and UE, in which the channel 
sensing period is represented by X pilot symbols. Hence, the 
following is a possible expression for the signal received at the 
Ns sensing devices: 

)� = ℚ7�CD  TU WD + ∑ �C?��E�   ��U W? + G�; (7) 

where ℚ��  is the quantization function that depends on the 
precision of the ADCs. The transmit power at the BS and the 
UE can be represented as PB and Pu, respectively. The AWGN 
at the sensing devices is represented as G� ∈ -�V× �  . This is 
particularly advantageous in millimeter-wave [18] or THz [19] 
frequency bands. 

III. JOINT PHASE SHIFT AND BEAMFORMING 

A. Cascaded Channel 

In a fully passive RIS scenario, estimating the combined 
effect of the BS and the RIS on the signal requires considering 
both the beamforming applied at the BS and the phase shifts 
introduced by the RIS elements. This combined influence is 
reflected in the received signal at the UE, which can be 
expressed mathematically as: 

)?@ = Z[1\+ + G    (8) 

where ϕ = diag�ϕ^ , … . . ϕ^� ∊  -��×��  , and 1\ = [1�� , ..., 
1��]. The matrix 1� is a O × a matrix where in the 2th column, 
all elements are set to one and all other elements are set to zero. 
The beamforming at the BS can be derived as:  

+ = Wc     (9) 

where W = [e�, … . . ef] , where, eg  represents the qth 
beamforming vector, and c = [c�, … . . cf]�, where  cg  signifies 
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the qth transmit data, with the assumption that Eicgjk = 1 for all 
q. Upon substituting (8) into (9), we obtain: 

)?@ = Z[1\  lc + G    (10) 

The joint optimization of beamforming and phase shifting 
aims to maximize the capacity of the channel between the 
source (S) and destination (D), as: 

maxo,pq - = log det rs + tooutu

v$ r  (11) 

where w = Z[1\ ∊ -.×�. The Singular Value Decomposition 
(SVD) of matrix A can be represented as A = U~V|, where U 
is a matrix in -.×. representing the left singular vectors, V is a 
matrix in -�×� representing the right singular vectors, and ~ is 
a matrix in -.×� representing the singular values. When [^ is 
fixed, the optimal beamforming vectors are: 

eg = �Cg  Kg ,           } = 1,2, … , �  (12) 

Consider  v�  as the right singular vector of qth in �, and Cg  
denoting the power allocated for the transmit data of qth to 
ensure the satisfaction of the transmit power constraint 
∑ Cg

f
gE� � C� obtained through water-filling. Substituting (12) 

can give: 

max��� - = log det rs + �~~u

v$ r   (13) 

where P = diag[C� , … … … Cf , 0, … … ,0�����
.�f

]. 

To achieve the highest possible system capacity, the 
cascaded network undergoes training. This is achieved through 
the minimization of the negative values of the network's 
outputs, essentially aiming for the most positive values:  

min �∑ �- ��� � -\���,ɸ����j��
�E�    (14) 

B. Separate Channel 

This section focuses on designing the phase control matrix 
at the RIS and the beamforming vectors for both the BS and 
UE when separate estimation of the BS to RIS (BS-RIS) and 
RIS to UE (RIS-UE) channels, denoted by ��,�  and ��,' 
respectively, is performed using a semi-passive RIS. The 
equation representing the signal received at the RIS's sensing 
devices (a�) is given by: 

)�� = >D� + >?@    (15) 

>'��
�A� = ∑ �CD�

�
�E�  ��,�  F�A� +�

�A� + G�
�A�  (16) 

>'��
�A� = ∑ �C?@

�
�E�   ��,' F�A� +�

�A� + G�
�A�  (17) 

Assume a diagonal matrix ϕ of size �Oa × �Oa with all 
diagonal elements equal to ϕ^, represented as: 

ϕ = !�8��ϕ^, … . . ϕ^�  ∊ -.���.��  

Let +D� and +?@ denote the pilot sequences transmitted by 
the BS and UE, respectively. X represents the number of pilot 
symbols transmitted during the channel sensing period. The 
beamforming matrix at the sensing device, denoted by a� can 
be obtained as: 

+�� = +D� +  +?@    (18) 

+ = lc     (19) 

The objective of jointly optimizing beamforming and phase 
shifting is to maximize the capacity of the channel between the 
S and D, where W represents the qth beamforming vector and s 
denotes the qth transmit data from both S and D. 

maxo,pq -  �
�  ∑ ���j

�
�E� �1 + SNR¢�ℎ�,�ʘℎ�,'��ɸ¢j

 (20) 

The uplink channels from the transmitter and receiver to the 
RIS at the k

th subcarrier are denoted as ��,�  and ��,' , 
respectively. Leveraging reciprocity, the downlink channels 
from the RIS to the transmitter and receiver are given by the 
transposes ��,�� , ��,' � . With this notation, the received signal at 
the receiver can be expressed as: 

>?@ =  ��,'
�  ʘ ��,�  +� + G�   (21) 

IV. DEEP LEARNING MODEL DESIGN FOR 
OPTIMAL PHASE SHIFT AND HIGH-CAPACITY DATA 

RATE 

A. Deep Learning Structure 

The updated deep learning model employs two distinct 
neural networks, Net1 and Net2, as observed in Figure 2. Net1 
is the main operating network. The system's inputs, which are 
N×M×K, stand for each item in a collection of 2R dimensional 
category vectors that are cascaded O times. There is one RIS 
element for every set of ¤  bits, and each set indicates a 
different phase shift. 

 

 
Fig. 2.  The deep learning network structure. 

The primary network Net1 is trained indirectly by 
combining Net1 and Net2 to create a powerful learning 
pipeline of cascaded networks. This pipeline trains without the 
need for labeled data by minimizing the negative of its final 
output. After the training phase, Net1 generates phase shifts to 
maximize the network capacity for a given channel 
(represented as Z). With these optimal phase shifts, the ideal 
beamforming configuration at the source is determined by (12). 
Net2 efficiently processes the channel information (Z) and the 
precoding matrix ϕ^ to directly estimate the resulting channel 
capacity -\, ϕ. 

B. The Training Phase of Deep Neural Networks 

Algorithm 1 describes the training phase of Net1 and Net2 
for cascaded and separate channel estimation. 
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ALGORITHM 1: TRAIN NET1 AND NET2 FOR CASCADED AND 
SEPARATE CHANNEL ESTIMATION 

Procedure: 

1. Generate the dataset by scenario 1, from N×K×M, 

then obtain the least square channel matrix H�,�,'(BS-
RIS-UE), H�,�, and H�,' (BS-RIS, RIS-UE), and the 
random phase shift control matrix ɸ^. 
 

2. Train Network 1 

Input: 40,000 frames channel matrix H����,�,'�, true 
phase shift ɸ�¦I§  , and random phase shift ɸ^. 
� = 0 (initial epoch) 
Initialize optimizer = Adam 

While � < 600 (max epochs) 
  Obtain the equivalent channel matrix from F and ɸ  
  A = F diag�ɸ�,……. ɸ^)1\ 
  Obtain optimal phase control matrix ɸ^ 
  � = � + 1 
End While 

Return Φ 

Output: ɸ^  (estimated optimal phase shifts) 
 

3.Cascade Net1 with Net2 after training Net1  

 

4. Train Network 2 

Input: 40,000 frames channel matrix H����,�,'� optimal 
phase shift matrix ɸ^ 
i = 0 (initial epoch) 

Initialize optimizer = Adam 

Initialize loss function = MSE 

While � < 600 (max epochs) 
  Obtain the equivalent channel matrix from F and ɸ 
  A = F diag�ɸ� , … , ɸ^)1\ 
  Utilize the water-filling algorithm to determine  

  the transmit power C 
  Obtain the capacity as  

  maxo,pq - = log det rs + tooutu

v$ r   (11) 
  where A = Zϕ1\ ∊ -.×� 
  Calculate the loss function as 

  min�∑ �- ��� � -\���,ɸ����j��
�E�                       (14) 

  � = � + 1 
End While 

Return - 
Output: -\,¬ (corresponding capacity) 
End Procedure 

 

V. SIMULATION RESULTS 

An RIS-supported network was tested, in which M = 2, 
two-antenna users were linked to two BSs equipped with N = 2 
antennas via a RIS with Kactive = 8 and Kpassive = 80 components. 
All simulations presented below assume that the channels 
undergo Rician fading with a Rician factor Kk,n of 10 dB. 
Additionally, the phase shifts at each RIS element are 
quantized using three bits. Figure 3 demonstrates the capacities 
of the RIS-MIMO network, where both the source and 
destination are equipped with multiple antennas. The results 
portrayed are for RIS configurations with varying numbers of 
elements, specifically 8, 32, and 64. Figure 3 indicates that the 
data rates achieved by both the cascade and separate channels 
are high, which is an amazing performance considering the 
signal-to-noise ratio. 

 

 
Fig. 3.  Contrasts the RIS-MIMO network's capabilities for ideal channels 
with varying amounts of K elements, cascaded, separable, and double deep 
learning. 

Figures 4 and 5 illustrate the normalized path loss 
performance across various observation angle values with K= 
8, exhibiting a similar trend. The simulation parameters are 
consistent with Figure 3. The spatial correlation in H is greater 
at 8 = ­/2  compared to when 8 = ­/5  gives better 
performance. However, when the distance 8  is equal to the 
wavelength ­, the path loss is notably high, albeit less than in 
the case of 8 = ­/2 wavelength, and it represents the worst 
performance compared to a wavelength of 4­. The proposed 
technique is advantageous in both cases, leading to higher-
quality estimated channels. However, the route loss is quite 
large when the distance 8 is equal to the wavelength ­, but it is 
lower than when 8 = ­/2 , and it is the worst performance 
when compared to a wavelength of 4­ . Positioning the 
reconfigurable intelligent surfaces either near the source or far 
from the destination results in a very high level of overall 
channel gain. The channel gain is maximum when the 
reflecting surface is close to the source or target, or when the 
distance between the RIS source and the RIS destination is 
zero. Figure 7 manifests the difference between LOS and 
NLOS. The data rate was also calculated. For the first scenario, 
the data rate is extremely high when employing LOS, 
presuming there is no obstruction between the sender and the 
receiver. 

 

 
Fig. 4.  The normalized path loss for two separate channels when the area 
between the node and another node (meta-atom a) is equal to 4­, ­, ­/2, 
and ­/5 incoming wavelength with different degrees of angle <� . 
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Fig. 5.  Normalized path loss for cascaded channels when the area between 
the node and another node (meta-atom 8) is equal to 4­ , ­ , ­/2 , and ­/5 
incoming wavelengths with different degrees of angle <� . 

 
Fig. 6.   The total channel gain depends on the distance of the source and 
destination from the RIS. 

 
Fig. 7.  Path LOS and NLOS with RIS and direct path. 

The second scenario employs the reflecting surface method 
while utilizing NLOS technology, assuming that there is an 
obstruction preventing a direct path between the transmitter and 
the receiver. In this case, the use of reflecting surfaces has a 
noticeable impact. The results disclose that the proposed 
reflected surfaces yield a higher data rate than the standard 
surface. Figure 8 compares the performance of various PSBA-
based separate channel estimator architectures, such as 
CBDNet [20], GAN-CBDN [21], CV-DnCNN [22], and 

MDRN [21], against conventional channel estimating methods, 
including ADMM [23] and PARAFAC [24]. The results of the 
simulations were averaged over 400 iterations for the proposed 
method. Notably, both PSBA-HK,R and PSBA-HT,K exhibit 
superior NMSE performance compared to GAN-CBD and 
CBDNet by 5.63 and 4.51 dB, respectively. Additionally, when 
compared to CV-DnCNN, which also employs CNN, along 
with traditional ADMM and PARAFAC methods, PSBA 
demonstrates lower complexity while achieving comparable 
NMSE performance. 

 

 
Fig. 8.  Comparison of NMSE performance among ADMM, CV-DnCNN, 
CBDNet, GAN-CBD, and MRDN using separate CS methods. 

 
Fig. 9.  Comparison of NMSE performance among ADMM, CV-DnCNN, 
CBDNet, GAN-CBD, and MRDN using cascaded CS methods. 

Figure 9 compares various models, namely MRDN, 
CBDNet, and GAN-CBD. It can be observed that PSBA-HT,K,R 

shows superior NMSE performance and faster convergence 
compared to other models. This advantage stems from its 
network judgment capability, which outperforms PSBA-HT,K 

and PSBA-HK,R. Additionally, PSBA-HT,K,R offers reduced 
computational complexity in training and offline operation, 
leading to enhanced robustness of the channel estimator across 
different scenarios. The average running time of PSBA-HT,K,R 

is 0.0073 s, while PSBA-HT,K, and PSBA-HK,R exhibit running 
times of 0.0096 and 0.0092 s, respectively. Furthermore, the 
computational complexity in both training and offline 
operations for PSBA-HT,K,R is lower than that of PSBA-HT,K 
and PSBA-HK,R. 
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VI. CONCLUSION AND FUTURE WORK 

This study presented a DL network that simultaneously 
optimizes phase shifts and beamforming in the RIS-MIMO 
system, taking into account cascaded and separate channels. A 
two-stage channel estimate approach was proposed for the RIS-
MIMO communication system, with the first stage estimating 
the cascaded channel between the BS-RIS-UE and the second 
stage estimating the separate channels between the BS-RIS and 
the RIS-UE. Then, to make the most of the user's channel gain, 
a phase shift design and a beamforming approach were 
demonstrated for the RIS. The incorporation of RIS into bands 
with higher frequencies, such as the THz band, also poses a 
formidable obstacle. More accurate channel estimate 
algorithms are needed to guarantee dependable communication 
while deploying RIS in complex and dynamic contexts, such as 
cities with many buildings, moving cars, or satellite 
communications [25]. 
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