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ABSTRACT 

The robustness and reliability of neural network architectures are put to the test by adversarial attacks, 

resulting in inaccurate findings and affecting the efficiency of applications operating on Internet of Things 

(IoT) devices. This study investigates the severe repercussions that might emerge from attacks on neural 

network topologies and their implications on embedded systems. In particular, this study investigates the 

degree to which a neural network trained in the MNIST dataset is susceptible to adversarial attack 

strategies such as FGSM. Experiments were conducted to evaluate the effectiveness of various attack 
strategies in compromising the accuracy and dependability of the network. This study also examines ways 

to improve the resilience of a neural network structure through the use of adversarial training methods, 

with particular emphasis on the APE-GAN approach. The identification of the vulnerabilities in neural 

networks and the development of efficient protection mechanisms can improve the security of embedded 
applications, especially those on IoT chips with limited resources. 
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I. INTRODUCTION  

Technological environments have undergone substantial 
changes in the last years due to the widespread use of neural 
networks in numerous applications, particularly in embedded 
systems such as Internet of Things (IoT) devices. Complex 
computational models have demonstrated remarkable 
performance in various domains, including natural language 
processing and image categorization. As a result, complex data 
analysis and decision-making are now more accurate and 
efficient. The widespread adoption of this technology has 
sparked a new wave of innovation and development that is 
propelling an expansion in numerous industries and businesses 
[1]. Deep learning, a kind of machine learning, has 
revolutionized computational methods by allowing models to 
learn from data and gain an organized understanding of the 
world. Deep learning methods improve data representation 
across successive layers by analyzing large datasets and 

identifying intricate patterns through the adoption of 
backpropagation techniques. With the advent of high-
performance technology and Deep Neural Network (DNN) 
architectures, deep learning has made a significant progress in 
many areas. This advancement extends to novel domains, such 
as drug molecule analysis and brain circuit reconstruction, as 
well as to more traditional areas, namely speech recognition 
and image classification. Due to the extraordinary accuracy of 
these models, prominent players in the industry, involving 
Google, Alibaba, Intel, and Nvidia have contributed 
significantly to the advancement of AI-powered services [2].  

Initiatives must be taken to limit the risks posed by 
adversarial attacks and address the vulnerabilities existing in 
neural network topologies to preserve the ongoing efficacy and 
reliability of such systems [3, 4]. This has led to an increase in 
the research efforts made in a variety of domains, aimed at 
clarifying the basic mechanisms underlying adversarial attacks, 
determining how resilient neural network architectures are 
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against such threats, and creating effective defensive strategies 
to protect against malicious modifications [5]. By investigating 
many facets of neural network vulnerabilities and offering 
innovative solutions to boost the resilience and security of 
neural networks, numerous studies have unveiled the diversity 
of the topic. However, concerns about the security and integrity 
of DNNs have grown in significance, as these systems leave 
the lab and find use in real-world applications. Adversaries can 
cause trained models to produce false output even if they can 
stealthily alter legitimate inputs, which are frequently invisible 
to human observers.  

In [6], new insights were provided into how adversaries can 
target high-performing DNNs, underscoring the urgent need for 
robust security measures. Vulnerabilities have been discovered 
in Voice-Controllable Systems (VCS) and Automatic Speech 
Recognition (ASR) [7, 8], underscoring how commonplace this 
security risk is. In [2], attacks against driverless vehicles were 
disclosed. The former manipulated the traffic signals to mislead 
the learning algorithms. This made the concerns about the 
security of AI-driven systems in critical situations even more 
acute. Adversarial training of linear models has been supported 
by an extensive analysis and experiments conducted in related 
studies, such as in [10]. In [11], the generalization properties of 
adversarial situations were studied. The diverse approaches 
provided in [12] are indicative of the various efforts currently 
underway to address the evolving landscape of neural network 
safety. These strategies focus on applying distributed deep 
learning algorithms to ensure the privacy of the training data. 

II. RELATED WORKS 

Based on computer vision concepts, adversarial attacks are 
carefully designed to distort a classifier's decision-making 
process and significantly affect important performance 
measures, such as accuracy, loss, and precision [13]. There are 
several types of attacks, such as white-box attacks, black-box 
attacks, and techniques, like the Forward Gradient Descent 
(FGD), Momentum Iterative Method (MIM), and FGSM, 
among others [14]. Adversarial attacks are divided into two 
main categories: white-box and black-box attacks [15]. White-
box attacks, which are characterized by the attacker's extensive 
knowledge of the architecture, variables, and gradients of the 
model under attack, provide a sophisticated way to use 
adversarial tactics [16]. Armed with this deep knowledge, 
attackers carefully plan perturbations to input data to take 
advantage of weaknesses in the model's decision-making 
process. Black-box attacks are restricted in their ability to 
access the internal workings of the target model. Attackers in 
these situations have no knowledge of the model's underlying 
structure or parameters and are only able to depend on its 
input-output behavior. In this case, attackers use black-box 
strategies, such as transferability [17], which involves adapting 
adversarial instances created for one model to another with 
similar behavior. The key distinction between white-box and 
black-box attacks is the amount of information that the attacker 
may access. White-box attacks use extensive internal 
knowledge, whereas black-box attacks operate within the 
boundaries of information access restrictions. 

Numerous studies, involving [18], have defined several 
types of adversarial attacks. In white-box attacks, attackers are 

assumed to be well-versed with the target model's parameters, 
training protocols, training data, and architectural 
specifications, namely input structure, weight values, activation 
functions, and training methodology. These attacks can be 
divided into two other subcategories: targeted attacks and non-
targeted attacks. Non-targeted attacks just attempt to cause 
misclassifications, regardless of the final class. In targeted 
attacks, the adversarial example is specifically designed to 
elicit a certain classification, for instance classifying all 
photographs as featuring one specific person. The generation of 
adversarial examples involves iterative access to the model to 
compute gradients. White-box attacks can be segmented into 
two main categories: gradient-based concepts and constrained 
concepts [19]. 

III. PROPOSED METHOD: ENHANCING CNN 
SECURITY AGAINST ADVERSARIAL ATTACKS 

The proposed method was designed to improve the security 
of CNNs against adversarial attacks [20, 21]. Figure 1 shows 
the design of the proposed approach for a CNN, specifically 
designed for the MNIST dataset. This study also incorporates a 
cutting-edge augmentation strategy, using APE-GAN, 
indicating how it can be customized to withstand an adversarial 
attack. 

 

 
Fig. 1.  Proposed method to enhance CNN resilience against adversarial 

attacks. 

A. MNIST Dataset 

The MNIST dataset has a prominent place in the area of 
neural networks, is well recognized for its role as a 
fundamental benchmark in image classification tasks, and is a 
fundamental tool for training and evaluating different 
algorithms [22]. It is made up of a series of 28×28 pixel 
grayscale images with handwritten digits. Due to its wide 
applicability and consistent structure, the MNIST dataset 
provides a reliable framework for assessing the resilience of 
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CNN models against adversarial attacks. By subjecting CNN 
architectures trained on the MNIST dataset to rigorous testing 
following adversarial techniques, important insights can be 
obtained into the effectiveness of protective mechanisms and 
techniques. The dataset was divided into 60,000 samples for 

the train set and 10,000 samples for the test set. Figure 2 
presents the label distribution of the training and testing sets, 
respectively, while Figure 3 provides samples of the MNIST 
dataset. 

 

 
              (a)           (b) 

Fig. 2.  Label distributions of the (a) training and (b) testing sets. 

 
Fig. 3.  MNIST dataset sample. 

B. CNN Architecture 

The CNN was designed employing a layering scheme to 
quickly analyze and extract characteristics from the input data. 
It consisted of three convolutional layers to extract complex 
spatial patterns and characteristics from the input data. Three 
batch normalization layers were carefully included to speed up 
and stabilize the training process. Three dropout layers were 
also included to reduce overfitting by randomly deactivating a 
subset of neurons during training. The output of the 
convolutional layers was then reshaped into a one-dimensional 
array by a flattened layer, which smoothed the transition to 
fully linked layers. This architecture offers a strong framework 
that is appropriate for tasks, such as image recognition and 
classification, thanks to its two thick layers that are responsible 
for categorization based on the learned features. 

C. FGSM Technique 

FSGM stands as a prominent technique in the realm of 
adversarial attacks, particularly in the context of neural 
networks. To achieve its goal of fooling the target model into 
providing inaccurate output, this approach works by 
introducing minor perturbations into the input data [10]. These 
perturbations are carefully constructed and strategically placed. 
The fundamental idea of the FSGM algorithm is the use of 
gradient information of the loss function in relation to the input 
data to ascertain the direction in which to perturb the input. 
Mathematically, the perturbed input �′ can be computed as: 

�′ � � � � ⋅ ��	
�� ���, ����� �   (1) 

where �′  represents the perturbed input data, �  denotes the 
original input data, � denotes the magnitude of the perturbation, 
and � ���, ������ represents the gradient of the loss function � 
for the input �. Finally, ����� is the true label of the input data. 

TABLE I.  CNN ARCHITECTURE 

Layer (type) Output shape Param. # 

Conv2d  (None, 28, 28, 20) 520 

Batch_normalization (None, 28, 28, 20) 80 

Dropout (Dropout) (None, 28, 28, 20) 0 

Conv2d_1 (Conv2D) (None, 28, 28, 20) 6420 

Batch_normalization_1 (None, 28, 28, 20) 80 

Dropout_1 (Dropout) (None, 28, 28, 20) 0 

Conv2d_2 (Conv2D) (None, 28, 28, 20) 6420 

Batch_normalization_2 (None, 28, 28, 20) 80 

Dropout_2 (Dropout) (None, 28, 28, 20) 0 

Flatten (Flatten) (None, 156688) 0 

Dense (Dense) (None, 200) 3136200 

Dense_1(Dense) (None, 10) 2010 

Total params: 3,151,810 

Trainable params: 3,151,690 

Non-trainable params: 120 

 

IV. RESULTS AND DISCUSSIONS  

A. Standard Training Results of the Proposed CNN 

The accuracy and validation accuracy curves presented in 
Figure 5 provide an insight into the model's overall 
performance and its ability to generalize on unseen data. The 
accuracy of the model reaches approximately 99.86%. The loss 
and validation loss curves offer a glimpse into the convergence 
behavior of the model during training, indicating the degree of 
error reduction over epochs reaching 0.0047. Table I portrays 
the evaluation metrics for precision, recall, and F1-score of the 
CNN, gauging its effectiveness in predicting digits. The 
categorized digits indicate average precision, average recall, 
and average F1-score of almost 100%. Figure 6 depicts the 
confusion matrix, providing a comprehensive overview of the 
model's performance in accurately predicting the digits. This 
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matrix displays the number of correct predictions (true 
positives) along the diagonal, whereas off-diagonal elements 
indicate misclassifications. The confusion matrix discloses 
which digits are frequently misclassified, providing an 
understanding into potential areas for improvement. The well-
structured confusion matrix displays a strong diagonal pattern, 
indicating a high proportion of correct predictions across all 
digits and demonstrating the model's effectiveness in accurately 
identifying and classifying digits. 

 

 
Fig. 4.  Accuracy and loss curves. 

TABLE II.  CNN PERFORMANCE EVALUATION 

Classes Precision Recall F1-score Support 

0 1.00 1.00 1.00 422 

1 1.00 0.99 1.00 473 

2 1.00 0.99 1.00 409 

3 1.00 1.00 1.00 426 

4 0.99 1.00 1.00 429 

5 1.00 1.00 1.00 382 

6 1.00 1.00 1.00 412 

7 0.99 1.00 1.00 469 

8 0.99 1.00 1.00 384 

9 1.00 0.99 1.00 394 

Accuracy   1.00 4200 

Macro avg 1.00 1.00 1.00 4200 

Weighted avg 1.00 1.00 1.00 4200 

 

B. Attack Results on the Standard CNN model 

1) FGSM Attack Results 

The effects of the FGSM attack on the performance of the 
CNN model were investigated by varying the epsilon 
parameter, which controls the magnitude of the injected error in 
the input images. Varying classification degrees were observed 
by systematically adjusting the epsilon and applying the FGSM 
attack to test images from the MNIST dataset. As the epsilon 
increases, the perturbations introduced into the input images 
become more pronounced, resulting in a higher rate of 
misclassifications. This analysis manifests how different levels 
of perturbation affect the model's ability to correctly classify 
digits. By examining the misclassified test images across 
different epsilon values, valuable insights are provided into the 
model's sensitivity to adversarial attacks. These insights offer 
recommendations for the development of robust defense 
strategies to mitigate such vulnerabilities. Figure 6 presents the 
attack results of the FGSM technique on the standard CNN 
model. 

 

 
Fig. 5.  Confusion matrix, 

 
Fig. 6.  FGSM attack. 

C. FGSM-based Adversarial Training  

The use of FGSM-based adversarial training resulted in a 
loss of 0.044 and an accuracy of 98.83%, underscoring the 
resilience of CNN models against adversarial attacks. Although 
these models excel in accuracy when handling clean data, their 
performance decreases notably when confronted with 
adversarial examples constructed through FGSM. This serves 
as a stark reminder of the necessity for rigorous robustness 
testing and the implementation of defenses to counter 
adversarial threats. Adversarial training, particularly employing 
the FGSM technique, presents a promising strategy to enhance 
model robustness. By incorporating both clean and adversarial 
examples during training, models can adapt and strengthen 
their defenses against such attacks.  

TABLE III.  ADVERSARIAL TRAINING PERFORMANCE 

Test scenario 
Standard CNN 

accuracy (%) 

APE-GAN CNN 

accuracy (%)  

Improvement 

(%) 

Original Data 99.86 99.98 0.12 

Adversarial attacks 

FGSM attack (� = 0.1) 60.2 85.7 25.5 

FGSM attack (� = 0.3) 40.1 78.9 38.8 

LBFGS attack 30.8 69.4 38.6 
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Adjusting the epsilon parameter of the FGSM technique, 
Figure 7 depicts the robustness of the adversarially trained 
CNN against FGSM attacks. This modification showcases the 
model's ability to withstand varying levels of adversarial 
perturbations, highlighting the effectiveness of the adversarial 
training approach in fortifying the model against equivalent 
attacks. 

 

 
Fig. 7.  FGSM attack on the adversarial trained CNN model. 

V. CONCLUSION 

This study stresses the efficacy of the APE-GAN in 
fortifying machine learning models against adversarial attacks. 
By comparing APE-GAN with traditional techniques, such as 
FGSM and other related approaches, significant improvements 
were achieved in both accuracy and robustness. These results 
underscore the promising potential of APE-GAN in addressing 
the vulnerabilities posed by adversarial attacks, thus advancing 
the field of adversarial machine learning. As the threat of 
adversarial attacks persists, the findings of this study 
emphasize the importance of adopting robust techniques, like 
APE-GAN, to enhance the security and reliability of machine 
learning systems. Looking ahead, further exploration of APE-
GAN's scalability and applicability across various datasets and 
domains could offer valuable insights for developing more 
resilient machine-learning solutions in real-world settings. 
Among the next tasks for APE-GAN is the stabilization of the 
prediction via the use of majority voting from a collection of 
the samples created after burn-in, as well as the development of 
tools that estimate the gradient with more precision in high-
dimensional spaces. 
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