
Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14788-14792 14788

www.etasr.com Koka & Muppavaram: An Enhanced Framework to Mitigate Post-Installation Cyber Attacks on …

An Enhanced Framework to Mitigate Post-

Installation Cyber Attacks on Android Apps

Vijay Koka

Department of CSE, GITAM School of Technology, Hyderabad, India

kokavijay58@gmail.com

Kireet Muppavaram

Department of CSE, GITAM School of Technology, Hyderabad, India

kireet04@gmail.com (corresponding author)

Received: 12 April 2024 | Revised: 29 April 2024 | Accepted: 7 May 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7467

ABSTRACT

The widespread use of smartphones worldwide has led to a corresponding rise in the number of mobile

applications available for Android devices. These apps offer users convenient ways to perform various

daily tasks, but their proliferation has also created an environment in which attackers can steal sensitive

information. Insecure options employed by many app developers create vulnerabilities that can be

exploited by attackers to gain access to most smartphones. While existing methods can detect malware

during app installation, they do not sufficiently address post-installation attacks, such as those resulting

from fake apps or Man-in-the-Disk (MitD) attacks. To address this issue, the current study conducted
research on post-installation attacks, including data leakage, malware injection, repackaging, reverse

engineering, privilege escalation, and UI spoofing. MitD attacks are particularly challenging to counter, so,

to mitigate this risk, the Post-Installation App Detection Method is proposed to monitor and regulate

sensitive information flow and prevent MitD attacks.

Keywords-cyber attacks; malware; cyber attacks in android apps; post installation attacks; fake apps; MITD

attacks

I. INTRODUCTION

Smartphones have become an indispensable part of daily
life, with 6.648 worldwide users. Nearly 45% of these users
own Android smartphones, which are popular for their
openness and ease of use. Unfortunately, this accessibility has
led to the proliferation of malicious apps on the Android
platform, and recent reports indicate that over 9.5 million
malwares have been blocked to secure smartphones. Although
Android offers many security provisions to detect malware, its
existing mechanism only checks app permissions and faults
without verifying the logical connectivity of the app. This
leaves open attack vectors [1] that hackers can exploit to
introduce malicious activities and access sensitive information.

This paper focuses on investigating post-installation attacks
in mobile applications, particularly one of the most significant
post-installation attacks, Man-in-the-Disk (MitD) attacks [2].
MitD attacks occur when an attacker intercepts data between an
app and external storage, potentially compromising the external
storage and extracting sensitive information from the user, such
as login credentials or financial data. The proposed Post-
Installation App Detection Method offers a solution to MitD
attacks by detecting them and regulating the flow of sensitive
information to the attacker. Detecting post-installation attacks
[3] in mobile applications is critical for enhancing the security

of sensitive user information. By providing a solution to
mitigate MitD attacks, this paper improves the security of
mobile applications and reduces the risk of sensitive
information exposure to attackers.

The attacks which occur after the app installation and
functioning are termed as post installation attacks. Authors in
[3] identified how the attackers intercept the sensitive data sent
from the app to the server, such as login credentials and
personal information, using methods like Man-in-the-Middle
(MitM). Authors in [5] presented how attackers inject malware
into the app's code, which can allow them to control the device
or steal sensitive data. Authors in [6] studied how the attackers
download the original app from the app store, modify its code,
and repackage it as a new app, allowing them to access the
user's sensitive information. Authors in [7] discussed how the
attackers decompile the app's code, identify vulnerabilities, and
exploit them. Authors in [8] reported how the attackers gain
escalated privileges within the mobile app to access sensitive
information or control the device. Authors in [9] analyzed how
the attackers modify the app's user interface to deceive users
into providing sensitive information, such as login credentials.

Automatic Android Malware Detection [18] is a robust
method which detects the malware using static analysis by
passing API to the deeplearning models. Antibypasssing four

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14788-14792 14789

www.etasr.com Koka & Muppavaram: An Enhanced Framework to Mitigate Post-Installation Cyber Attacks on …

stage dynamic behavior [19] shows the four stage dynamic
behavior which addresses the dynamic behavior of an attack
and when this method is applied to recent attacks it bypasses a
few post installation attacks like MitD, but does not bypass the
few cases where the apk is not extracted. EnDroid [20] has
worked on post installation attacks. It extracts the critical
behavior of the attacks.

It is recommended that users only download apps from
reliable sources, keep their devices updated with the latest
security patches, and use strong passwords and multi-factor
authentication. Additionally, mobile app developers can
implement security measures, such as encryption, secure data
storage, and code obfuscation to make vulnerability
exploitation more challenging. However, despite the security
measures provided by Android, recent attackers still target
smartphones through post-installation attacks. Extensive
research on post-installation attacks has identified solutions for
common attacks, entailing MitM [8], malware injection,
privilege escalation, and UI spoofing. However, many reports
indicate that MitD attacks are becoming increasingly common
and that the existing studies do not have adequate detection
methods to identify these types of attacks. The present study’s
investigation into MitD attacks reveals that attackers depploy
update app package insertion as a major attack vector. This
MITD attack is similar to the MitM attack in which the attacker
uses the app data stored employing external storage permission.

MitD attacks are similar to MitMattacks [9] and involve
replacing legitimate update files with malicious program code.
Once the app is installed, the attacker can obtain necessary
access and extract user information. MitD attacks can also
disable the app's functionality, rendering its services
inaccessible to the user. The external storage on an Android
device is usually located on the SD card or within the storage
partition, and it enables components and files to be shared
among various mobile apps. This sharing of data creates a
vulnerability that can be exploited by collusion attacks [10],
inter-leaking attacks [11], and MITD attacks [11].

II. THE PROPOSED METHOD FOR DETECTING
POST INSTALLATION ATTACKS IN MOBILE

APPLICATIONS

In this paper, the Post Installation App Attack Method is
proposed to identify recent exploits in Android mobile
applications [13, 14], such as MitD attacks. The recommended
approach is designed to cover attacks that occur after the
installation of Android applications. Most current techniques
[9, 15] only offer malware detection [15] prior to app
installation, and do not provide detection after installation.
Developers regularly update their apps by publishing new
packages, which are often used in mobile application attacks
[16]. While the Play Store has some methods to validate the
packages, MitD attacks still occur while utilizing these updated
packages. To address this issue and identify any potential MitD
attack, the Post Installation App Detection Method has been
developed. The method involves four steps:

1) Feature Extraction from Apps

The initial step of the proposed method involves the
extraction and pre-processing of app features. The Virustotal

tool was employed to extract the complete package details of
an app, including permissions, system calls, certificate details,
version, developer data, and intent filters used in the app. These
details were pre-processed although some outdated apps had
compatibility issues, which were addressed by engaging an
APK decompiler.

2) Pre-Processing of Key Features

In the second step, the proposed solution pre-processes the
features of permissions and certificate attributes. Putting into
service the Virustotal tool, the APK file of the app is extracted,
including permissions, services, activities, intent filters,
receivers, and providers. Focus is given on pre-processing the
requested permissions and certificate attributes since they are
crucial for app detection.

3) Detection of Fake Apps

The third step of the proposed technique involves utilizing
an algorithm for detecting fake apps.

4) Detection and Identification of MITD Attacks

This step encompasses detecting and identifying MitD
attacks.

Fig. 1. Detection of MitD post installation attacks.

An investigation of apps was conducted using various
sources, such as DREBIN, Virusshare, Google Play store, etc.
to gather information on app packages. The performed
investigation revealed that permission features and certificate
attributes are crucial aspects for detecting fraudulent apps. The
current approaches adopted to detect recent malware attacks
require more than five attributes. The accuracy of the detection
was tested at different levels of feature reduction. During the
pre-processing stage, it was observed that the outcomes of the
three app features and the two app features were identical.

The proposed method relies on two key features:
permissions and certificate attributes. To obtain these features,
the Virustotal tool was implemented to extract them from the
app apk file. When the app apk file is provided to the Virustotal
tool, it extracts various components, namely basic properties,
history, names, Android information as summary, certificate
attributes, certificate subject, certificate issuer, permissions,
activities, services, receivers, and intent filters [17, 18]. The
proposed method determines whether the app is a fake or not.

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14788-14792 14790

www.etasr.com Koka & Muppavaram: An Enhanced Framework to Mitigate Post-Installation Cyber Attacks on …

The detection of a fake app is the first stage in detecting an
attack. If the app does not contain any data, it is a dummy or
fake app installed by the attacker. The certificate attributes are
very important in determining whether an app is a fake app or a
legitimate app.

Algorithm 1: Fake App Detection

Input: P as Permissions, C as Certificate

CA as Certificate Attributes, CS as

Certificate Subject, CI as Certificate

Issuer, CN as Common Name, OG as

Organization, OGU as Organization Unit, St

as State, and LC as Locality

Output: App legitimacy status (genuine or

fake)

Extract app permissions and certificate

attributes using the VirusTotal tool.

if app permissions listed in P and

certificates in C are present then

Verify the attributes of CN, OG, OGU, ST,

and LC

if CN equals OG, OG equals OGU, and OGU is not

equal to ST or LC then

Set app legitimacy status to "genuine."

else

Set app legitimacy status to "fake."

end if

else

Set app legitimacy status to "fake," and

Print "App is fake due to mismatch in

permissions and certificate details."

end if

The algorithm first extracts app permissions and certificate
attributes using the VirusTotal tool. It then verifies if the app
permissions listed in P and the certificates in C are present in
the app. If both are present, the algorithm proceeds to verify the
attributes of CN, OG, OGU, ST, and LC. If CN equals OG, OG
equals OGU, and OGU is not equal to ST or LC, the app is
considered genuine, and the algorithm sets the app legitimacy
status to "genuine." If these conditions are not met, the
algorithm sets the app legitimacy status to "fake." If the app
permissions and certificates do not match, the algorithm sets
the app legitimacy status to "fake" and prints "App is fake due
to mismatch in permissions and certificate details." Overall,
this algorithm also aims to identify potential attacks by
distinguishing between genuine and fake mobile applications.

Algorithm 2: MitD Attack Detection

Input: App data including update

information, original application

information, and additional permissions.

Output: Indication of whether the updated

app may lead to a MitD attack.

Retrieve information on the updated app.

Retrieve information on the original app.

Determine if any additional permissions

are present in the updated app. Verify if

the updated app is genuine.

if the updated app is genuine and the

additional permissions are the same as the

original app, then

Verify if the package name of the updated

app matches the package name of the

original app.

if the package names match then

Print "App is safe."

else

Print "Updated app may lead to a MitD

attack due to mismatched package details."

end if

else if the updated app is genuine and the

additional permissions are different from

the original app, then

Print "Updated app may lead to a MitD

attack due to additional permissions."

else

Print "Updated app may lead to a MitD

attack due to being a fake app."

end if

This algorithm takes as input app data and outputs whether

the app may lead to an MitD attack. It utilizes the variables upd
app to represent the mobile application update information, org
app to represent the original application information, and P1 to
represent additional permissions. The algorithm begins by
checking if the app is genuine by calling the
CheckAppGenuine() function and comparing the result to the
input app. If the app is genuine, it proceeds to check if the app
has the same permissions as listed in P and if the package
names match between the updated app and original app. If the
permissions and package names match, the algorithm prints,
"App is safe". If the package names do not match, the
algorithm prints, "Updated app may lead to a MitD attack due
to mismatched package details." If the permissions do not
match, the algorithm prints, "Updated app may lead to a MITD
attack due to additional permissions." If the app is determined
to be fake (i.e. not genuine), the algorithm prints, "Updated app
may lead to a MITD attack due to being a fake app."

III. IMPLEMENTATION

The proposed approach aims to identify MitD attacks
following two methods. Firstly, it detects fake apps by utilizing
the first algorithm, while the second algorithm verifies the
update file. To test this approach, 300 unsafe and 300 safe apps
were employed, and the datasets were balanced accordingly.
The pdfebookconverter app was deployed as a case study to
demonstrate the post-installation app detection approach, and
its features were extracted using the Virustotal tool. The app's
features are presented in Figure 2, where they were combined
for easy observation. The first algorithm was applied to check
if the app data are empty, while the second algorithm verified
the certificate attributes, such as the common name,
organization, and organizational units. By utilizing the
suggested approach, the certificate attributes were verified, and
it was observed that the CN, OG, OGU, ST, and LC were
identical, whereas the updated package app details led to an

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14788-14792 14791

www.etasr.com Koka & Muppavaram: An Enhanced Framework to Mitigate Post-Installation Cyber Attacks on …

MitD attack. The algorithm printed the app and certificate
details, revealing that it was a fake.

Fig. 2. Sample of a fake app.

Figure 3 portrays the extracted features of the Adobe app
deploying the proposed method. The app's features were
extracted using the Virustotal tool. By analyzing Figure 3, it is
evident that the certificate attributes of CN, OG, OGU, ST, and
LC are different and not identical. Furthermore, the updated
package app details do not lead to any type of MitD attacks,
and the original package file details are the same as those of the
updated files.

Figures 2 and 3 indicate that this study’s algorithms can
easily detect whether an app is malicious or benign. Updated
app package files stored in different versions of the app were
collected to verify if the proposed method is effective in
detecting apps. The investigation carried out clearly revealed
that attackers have significant opportunities to attack an app by
using storage access permissions.

Fig. 3. Sample of a genuine app.

IV. METRICS AND RESULT ANALYSIS

The effectiveness of the proposed model in detecting MitD
attacks was evaluated using industry-standard metrics, such as
True Positive Rate (TPR) and False Positive Rate (FPR). TPR
measures the number of apps accurately identified as exposed

to MitD or fake app attacks, while FPR measures the number of
apps wrongly identified as MitD attacks or fake apps. To
analyze the performance of the suggested approach,
experiments were conducted on two categories of apps -
whitelisted and blacklisted - as well as on standard malicious
apps from the DREBIN datasets [11]. Harmful apps that were
downloaded from various sources were categorized as
blacklisted, whereas apps downloaded from the Google Play
store were considered safe and placed on the whitelist. The
obtained results can be observed in Table I.

TABLE I. RESULTS OF THE POST INSTALLATION APP
DETECTION METHOD

Apps TP FP

Blacklisted 278 21

Whitelisted 297 23

Standard 292 24

TABLE II. RESULTS OF THE POST INSTALLATION APP
DETECTION METHOD USING DIFFERENT DATASETS

APP_Datasets TP TN FP FN

Health_apps_dataset 179 174 21 26

Sports_apps_dataset 178 184 21 16

Fake_apps_dataset 176 179 24 21

Karon_malware_apps_dataset 173 188 27 12

Deep_zone_apps_dataset 196 182 4 17

The results presented in Table I illustrate the True Positives
(TP) and False Positives (FP) identified by the proposed Post
Installation App Detection method when applied to datasets
from both internal and external sources. Regardless of whether
the method was applied to malicious applications, safe apps, or
ordinary apps, consistent TP were obtained, with fewer FP.
Specifically, this work managed to achieve a 97% TPR when
detecting standard datasets from DREBIN. Figure 4 displays
the accuracy obtained when the proposed method was applied
to different datasets. The results indicate that the average
attained accuracy is 93%. The proposed method is accurate in
detecting the most common post-installation attack, i.e. MitD.

Fig. 4. Accuracy achieved when applying different datasets.

The Post Installation Attacks Detection Method is highly
effective in detecting threats in an Android environment due to
its advanced behavioral analysis, dynamic monitoring of app
behavior after installation, anomaly detection capabilities,
integration of machine learning and AI for improved accuracy,
real-time alerting and response mechanisms, continuous

Engineering, Technology & Applied Science Research Vol. 14, No. 4, 2024, 14788-14792 14792

www.etasr.com Koka & Muppavaram: An Enhanced Framework to Mitigate Post-Installation Cyber Attacks on …

monitoring and updates to stay ahead of the evolving threats,
and its low FPR, ensuring accurate identification of malicious
activities while minimizing disruptions for users when
compared with existing and standard recent malware detection
models.

TABLE III. PERFORMANCE COMPARISON OF THE
PROPOSED METHOD AND STANDARD AND RECENT

MALWARE DETECTION MODELS

Model Name Precision Recall Accuracy

Post-Installation-attacks detection

method
95.79% 98.94% 97.32%

Automatic Android Malware

Detection
86.11% 77.22% 82.66%

Endroid 91.33% 95.56% 93.35%

DREBIN 93.75% 97.57% 95.61%

Recent developments in post-installation attack detection
[18-2] for Android apps focus on utilizing machine learning
algorithms to better detect sophisticated threats, such as zero-
day exploits and polymorphic malware. Additionally, there has
been a shift towards leveraging behavioral analytics and
anomaly detection techniques to identify subtle deviations in
app behavior that may indicate malicious activity. Real-time
monitoring and response capabilities have also seen
improvements, allowing for quicker mitigation of the emerging
threats. Overall, these advancements aim to strengthen the
resilience of the Android app security against any evolving
post-installation attacks.

V. CONCLUSION

This study focused on post-installation attacks on Android
smartphones, with a specific emphasis on MitD attacks, which
are a recent and prevalent attack vector that lacks adequate
detection solutions. A post-installation app detection method is
proposed that uses two algorithms to determine whether an app
is susceptible to MitD attacks. The recommended approach was
tested on various datasets and it was found that it effectively
detects MitD attacks. The former was compared with several
standard models and it was discovered that it outperforms them
in post-installation attack detection. The investigation
conducted also revealed that attackers use several attack paths
to gain access to devices and steal personally identifiable
information. Therefore, it is crucial for Android developers to
strictly adhere to Google's recommendations to prevent
cybercriminals from launching attacks. Finally, the suggested
approach can handle MitD attacks, which is essential for
safeguarding sensitive user data. Overall, the proposed method
provides an effective solution to mitigate the risks of post-
installation attacks on Android smartphones.

REFERENCES

[1] J. Kumar and G. Ranganathan, "Malware Attack Detection in Large
Scale Networks using the Ensemble Deep Restricted Boltzmann

Machine," Engineering, Technology & Applied Science Research, vol.
13, no. 5, pp. 11773–11778, Oct. 2023, https://doi.org/10.48084/etasr.

6204.

[2] M. Kireet, P. Rachala, M. S. Rao, and R. Sreerangam, "Investigation Of
Contemporary Attacks In Android Apps," International Journal of

Scientific & Technology Research, vol. 8, no. 12, pp. 1789–1794, 2019.

[3] S. Nasiri, M. T. Sharabian, and M. Aajami, "Using Combined One-Time
Password for Prevention of Phishing Attacks," Engineering, Technology

& Applied Science Research, vol. 7, no. 6, pp. 2328–2333, Dec. 2017,
https://doi.org/10.48084/etasr.1510.

[4] Y. Sun et al., "Detecting Malware Injection with Program-DNS

Behavior," in 2020 IEEE European Symposium on Security and Privacy

(EuroS&P), Genoa, Italy, Sep. 2020, pp. 552–568, https://doi.org/

10.1109/EuroSP48549.2020.00042.

[5] M. Conti, N. Dragoni, and V. Lesyk, "A Survey of Man In The Middle
Attacks," IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp.

2027–2051, 2016, https://doi.org/10.1109/COMST.2016.2548426.

[6] M. Yaseen et al., "MARC: A Novel Framework for Detecting MITM

Attacks in eHealthcare BLE Systems," Journal of Medical Systems, vol.
43, no. 11, Oct. 2019, Art. no. 324, https://doi.org/10.1007/s10916-019-

1440-0.

[7] S. Anand and V. Perumal, "EECDH to prevent MITM attack in cloud
computing," Digital Communications and Networks, vol. 5, no. 4, pp.

276–287, Nov. 2019, https://doi.org/10.1016/j.dcan.2019.10.007.

[8] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam, "Intelligent Vision-
Based Malware Detection and Classification Using Deep Random Forest

Paradigm," IEEE Access, vol. 8, pp. 206303–206324, 2020,
https://doi.org/10.1109/ACCESS.2020.3036491.

[9] K. Aldriwish, "A Deep Learning Approach for Malware and Software

Piracy Threat Detection," Engineering, Technology & Applied Science

Research, vol. 11, no. 6, pp. 7757–7762, Dec. 2021, https://doi.org/

10.48084/etasr.4412.

[10] A. Souri and R. Hosseini, "A state-of-the-art survey of malware
detection approaches using data mining techniques," Human-centric

Computing and Information Sciences, vol. 8, no. 1, Jan. 2018, Art. no. 3,
https://doi.org/10.1186/s13673-018-0125-x.

[11] W. Enck et al., "TaintDroid: An Information-Flow Tracking System for

Realtime Privacy Monitoring on Smartphones," ACM Transactions on

Computer Systems, vol. 32, no. 2, pp. 5:1-5:29, Mar. 2014,

https://doi.org/10.1145/2619091.

[12] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, "Hey, You, Get Off of My

Market: Detecting Malicious Apps in Official and Alternative Android
Markets," in Proceedings of the 19th Network and Distributed System

Security Symposium NDSS 2012, San Diego, CA, USA, Jan. 2012.

[13] Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization
and Evolution," in 2012 IEEE Symposium on Security and Privacy, San

Francisco, CA, USA, Feb. 2012, pp. 95–109, https://doi.org/10.1109/
SP.2012.16.

[14] A. A. Alhashmi, A. M. Alashjaee, A. A. Darem, A. F. Alanazi, and R.

Effghi, "An Ensemble-based Fraud Detection Model for Financial
Transaction Cyber Threat Classification and Countermeasures,"

Engineering, Technology & Applied Science Research, vol. 13, no. 6, pp.
12433–12439, Dec. 2023, https://doi.org/10.48084/etasr.6401.

[15] A. Al-Marghilani, "Comprehensive Analysis of IoT Malware Evasion

Techniques," Engineering, Technology & Applied Science Research,
vol. 11, no. 4, pp. 7495–7500, Aug. 2021, https://doi.org/10.48084/

etasr.4296.

[16] "VirusTotal - Home," Virus Total. https://www.virustotal.com/gui/
home/upload.

[17] M. İbrahim, B. Issa, and M. B. Jasser, "A Method for Automatic

Android Malware Detection Based on Static Analysis and Deep
Learning," IEEE Access, vol. 10, pp. 117334–117352, 2022,

https://doi.org/10.1109/ACCESS.2022.3219047.

[18] Y. Zhang, S. Luo, H. Wu, and L. Pan, "Antibypassing Four-Stage

Dynamic Behavior Modeling for Time-Efficient Evasive Malware
Detection," IEEE Transactions on Industrial Informatics, vol. 20, no. 3,

pp. 4627–4639, Mar. 2024, https://doi.org/10.1109/TII.2023.3327522.

[19] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, "A Novel Dynamic Android
Malware Detection System With Ensemble Learning," IEEE Access, vol.

6, pp. 30996–31011, 2018, https://doi.org/10.1109/ACCESS.2018.
2844349.

[20] H. Lu et al., "EAODroid: Android Malware Detection Based on

Enhanced API Order," Chinese Journal of Electronics, vol. 32, no. 5, pp.
1169–1178, Sep. 2023, https://doi.org/10.23919/cje.2021.00.451.

