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ABSTRACT 

Android stands out as one of the most prevalent mobile operating systems globally, due to its widespread 

adoption and open-source nature. However, its susceptibility to malware attacks, facilitated by the ability 

to install third-party applications without centralized control, poses significant security challenges. Despite 
efforts to integrate security measures, the proliferation of malicious activities and vulnerabilities 

emphasizes the need for advanced detection techniques. This study implemented and optimized Long 

Short-Term Memory (LSTM) and Neural Network (NN) models for malware detection on the Android 

platform. Leveraging meticulous hyperparameter tuning and robust data preprocessing techniques, this 

study aimed to increase the efficacy of LSTM and NN models in identifying and mitigating various forms 

of malware. The results demonstrate remarkable performance, with the LSTM model achieving an 
accuracy of 99.24%, precision of 99.07%, recall of 98.79%, and F1-score of 98.93%, and the NN model 

attaining an accuracy of 99.18%, precision of 99.02%, recall of 98.84%, and F1-score of 98.93%. By 

addressing these challenges and achieving such high levels of accuracy and effectiveness, this study 

contributes significantly to the ongoing endeavor to fortify defenses against cyber threats, thus fostering a 
safer digital environment for users worldwide. 
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I. INTRODUCTION  

In today's digital landscape, safeguarding computer systems 
against cyber threats, particularly in the realm of malware 
detection, is of paramount importance [1, 2]. The widespread 
usage of mobile operating systems, such as Android, has 
heightened the significance of this issue, given the platform's 
susceptibility to various forms of malware. Despite efforts to 
improve security measures, the persistent emergence of new 
malware variants underscores the need for continuous 
improvement in detection techniques. This necessitates a 
deeper investigation of more advanced approaches that can 
effectively identify and mitigate the evolving threats. This 
study responds to the specific need by focusing on optimizing 
the performance of LSTM models for malware detection on the 
Android platform by refining its hyperparameters and 
implementing proper data preprocessing techniques, aimed at 
enhancing its ability to detect and counteract various types of 
malware effectively.  

This study used Deep Learning (DL) models for Android 
malware detection, including Long Short-Term Memory 
(LSTM) and Neural Networks (NN), instead of traditional 
Machine Learning (ML) methods. LSTMs, a specialized type 
of Recurrent Neural Networks (RNNs), were chosen for their 
ability to handle long-term dependencies and capture complex 
patterns in malware behavior. These DL models automatically 
learn hierarchical representations from the data, reducing the 

need for manual feature engineering and enhancing detection 
accuracy. The main contribution of this study is that it takes 
advantage of these advanced DL techniques to ameliorate the 
accuracy and classification of Android malware signatures, 
addressing the challenges of detecting complex and evolving 
malware threats. 

II. LITERATURE REVIEW 

Table I depicts previous studies with various approaches to 
malware detection. In [3], extensive datasets from both benign 
and malicious apps were collected to evaluate DroidCollector, 
which achieved a high detection rate of 98% through ML 
algorithms. In [4], a deep NN achieved an impressive accuracy 
of 93.4% on a dataset containing 23 attacks without 
hyperparameter tuning. In [5], Android application and 
network layer features were employed in ML models, resulting 
in detection rates of 99 and 81%, respectively. In [6], static and 
dynamic artifacts were utilized to classify Android applications 
and address the challenge of ransomware, surpassing the 
existing solutions. Meanwhile, other studies’ proposed models 
and methods ranging from system permission features to 
ensemble ML approaches, achieving accuracies between 94% 
and 99% [7-12]. Despite their effectiveness, some approaches, 
such as the Ensemble Deep Restricted Boltzmann Machine 
[13], demonstrated accuracy below 80%. In [14], previous 
limitations were addressed by implementing rigorous data 
preprocessing and hyperparameter tuning using Gridsearch CV. 
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TABLE I.  LITERATURE REVIEW DETAILS 

Reference Summary 

[3] 

Collected substantial datasets from both benign and malicious 

apps (11560). Applied ML algorithms on these datasets and 

achieved a 98% average detection rate. 

[4] 

Used a Deep NN, achieving an accuracy of 93.4%. The 

dataset encompasses 23 attacks. However, a significant 

limitation was the absence of hyperparameter tuning. 

[5] 

Leveraged Android application and network layer features in 

ML models to detect malware applications. The models 

achieved detection rates of 99% and 81% on open datasets. 

[6] 

Implemented static and dynamic artifacts from ransomware to 

classify Android applications as malicious or benign, using an 

NN for static artifacts and an LGBMClassifier for network 

traffic, surpassing current solutions. 

[7] 
Proposed a model utilizing Android system permissions 

features for malware detection. 

[8] 

Employed an RNN model, demonstrating exceptional 

efficiency in detecting potential threats with over 99% 

accuracy, even with a reduced number of evaluated 

networking features. 

[9] 

Introduced DREBIN, a lightweight method for Android 

malware detection. By conducting extensive static analysis 

and integrating features into a unified vector space, DREBIN 

identified malware patterns with 94% accuracy. 

[10] 
Android malware detection with 96% accuracy using the 

DREBIN dataset. 

[11] 

Presented DroidFusion, a fusion classification approach 

utilizing a multilevel architecture for enhanced accuracy. By 

training base classifiers and applying ranking-based 

algorithms, DroidFusion achieved 98.74% accuracy on the 

DREBIN dataset. 

[12] 

DCNN was employed for malware detection via binary 

visualization. The combined approach of DCNN and TFDNN 

achieved a classification accuracy of approximately 98%. 

[13] 

Presented an Ensemble Deep Restricted Boltzmann Machine  

(EDRBM) to classify cybersecurity threats in large-scale 

networks, particularly focusing on malware. While 

simulations demonstrated its effectiveness against various 

malware attacks, its accuracy remained below 80%. 

This study 

Addressed previous limitations by implementing rigorous 

data preprocessing and hyperparameter tuning using 

Gridsearch CV. 

 

III. METHODOLOGY 

Figure 1 shows the steps followed. 

 

 
Fig. 1.  The overall workflow of this study for malware detection. 

A. Data Preprocessing 

This investigation used the DREBIN-215 dataset, which is 
a real Android malware dataset from [9, 11]. The DREBIN-215 
dataset is a well-known dataset commonly implemented for 
Android malware detection research. It comprises Android 
applications, including both malware and benign applications, 

collected from various sources. Each sample in the dataset is 
represented by a feature vector containing a set of static 
analysis features extracted from the app's APK file. The 
features in the DREBIN-215 dataset capture various aspects of 
Android applications, such as permissions requested, API calls 
made, and other characteristics related to the app's behavior. 
This rich feature set enables researchers to develop and 
evaluate machine learning and deep learning models to detect 
malicious Android apps effectively. A collection of feature 
vectors comprising 215 attributes sourced from 15,036 
applications was assembled. This compilation includes 5,560 
instances of malware applications from the Drebin project and 
9,476 benign applications. The dataset consisted of 15,036 
rows and 216 columns. Each row represented an individual 
application and each column represented a specific feature of 
the application. The word cloud visualization technique was 
followed to get a visually appealing representation of the 
textual data, as observed in Figure 2, where the size of each 
word corresponds to its frequency in the corpus. 

 

 
Fig. 2.  The word cloud of the DREBIN dataset used in this study. 

Proceeding with the data preprocessing step, the first task 
involved handling numerical features with missing values. To 
identify such features, a list called numerical_nan was created, 
comprising those numerical columns where the count of NaN 
values exceeded one and the data type was not categorical. 
Subsequently, the categorical features with missing values were 
addressed. The dataset was transformed using one-hot encoding 
to handle the categorical variables. Following this 
transformation, the categorical features with missing values 
were identified and stored in the list categorical_nan, where 
each feature had a nonzero count of NaN values and a data type 
of 'object'. An attempt was made to understand the 
relationships between the features of the datasets using a 
correlation heatmap, as spotted in Figure 3. 

B. Class Balancing using SMOTE 

Class balancing was employed to address the challenges 
posed by an imbalanced dataset. Not performing class 
balancing led to a biased model that favored the majority class, 
resulting in reduced sensitivity and poor generalization to the 
minority class. This imbalance also skewed performance 
metrics, leading to misleading accuracy scores and an increased 
risk of false negatives. Implementing class balancing 
techniques aims to improve model robustness, sensitivity, and 
overall performance in detecting both majority and minority 
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class instances effectively. This study adopted the Synthetic 
Minority Over-sampling Technique (SMOTE) to address the 
class imbalance issue. SMOTE was chosen over other methods 
due to its effectiveness in generating synthetic samples by 
interpolating between existing minority class instances, thereby 
increasing the representation of the minority class without 
duplicating the existing samples. This approach helps to retain 
the original distribution of the minority class and reduces the 
risk of overfitting. The Drebin 215 dataset originally contained 
5,560 instances of malware and 9,476 instances of benign 
applications. Class imbalance poses a challenge for ML 
algorithms, as they may become biased towards the majority 
class, leading to suboptimal performance in detecting the 
minority class. SMOTE was applied to augment minority-class 
samples by generating synthetic instances that are similar to the 
existing minority-class samples [14]. This process effectively 
balanced the class distribution, resulting in an equal number of 
instances for both malware and benign applications after 
SMOTE, as shown in Figure 4. The balanced dataset enables 
more accurate and reliable training of ML models for malware 
detection, contributing to improved overall performance and 
effectiveness in cybersecurity applications. 

 

 
Fig. 3.  Heatmap of the dataset features. 

 
Fig. 4.  Class distribution before and after implementing smote. 

C. Implementation of the LSTM and NN models 

The LSTM model was applied for Android malware 
detection, featuring a series of layers optimized to process input 
data and generate output predictions. The model architecture 
begins with an input layer to accommodate sequential data, 
structured as a 3-dimensional tensor. This initial layer 
seamlessly transitions into an LSTM layer, strategically 
engineered to capture and retain long-term dependencies 
inherent in the input sequences, thereby enhancing the model's 
capacity to discern intricate patterns indicative of malware 
presence. To avoid overfitting, dropout layers are judiciously 
integrated following the LSTM layer, serving to systematically 
deactivate a portion of neural units during training iterations, 
thereby fortifying the model's generalization capabilities. After 
this, two dense layers, each utilizing Rectified Linear Unit 
(ReLU) activation functions, are deployed to instill non-
linearity into the model, fostering its ability to delineate 
complex relationships within the data. Concluding the 
architecture is a single dense layer with a sigmoid activation 
function, culminating in binary classification. This layer 
computes the probability of an input sequence being classified 
as malware, lending the model its predictive capacity. The 
model compilation is executed meticulously, employing the 
Adam optimizer with a learning rate set at 0.001, while 
utilizing binary cross-entropy loss and accuracy as performance 
metrics. Hyperparameter tuning was carried out via 
GridSearchCV, optimizing parameters, such as learning rate, 
batch size, number of epochs, and optimizer. Following 
optimization, the model was trained on the training data and 
evaluated on the test set to assess its performance. Finally, the 
architecture for the optimized model was visualized deploying 
the plot_model function from TensorFlow.keras.utils. The 
model encompasses 74,881 trainable parameters, crucial for 
learning from input data and making precise predictions on 
new instances. Figure 5 portrayes the architecture of the LSTM 
model implemented. 

 

 
Fig. 5.  Architecture of the LSTM model used. 
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The second model was a sequential NN consisting of three 
layers: two dense interleaved with a dropout layer for 
regularization. The first dense layer contains 128 neurons, each 
activated by a ReLU function, which yields an output shape of 
(None, 128). This layer contributes 27,648 parameters to the 
model. Following the dense layer, a dropout layer is inserted, 
having the same output shape, which randomly deactivates 
neurons with a dropout rate of 0.3 to prevent overfitting. The 
second dense layer comprises 64 neurons activated by ReLU, 
resulting in an output shape of (None, 64), and contributing 
8,256 parameters. Another dropout layer follows with the same 
output shape, maintaining the dropout rate of 0.3. Lastly, a 
single neuron dense layer with a sigmoid activation function is 
appended for binary classification, producing an output shape 
of (None, 1) and adding 65 parameters. The total number of 
trainable parameters in the model amounts to 35,969, 
encompassing all the weights and biases across the layers, 
while there are no non-trainable parameters. Figure 6 illustrates 
the architecture of the NN model utilized. 

 

 
Fig. 6.  Architecture of the NN model used. 

D. Hyperparameter Tuning 

To ensure that the models work well and do not focus too 
much on the training data, GridSearchCV was used for 
hyperparameter tuning, as noticed in Table II. GridSearchCV 
was favored for hyperparameter tuning due to its exhaustive 
search capability, systematically evaluating all possible 
combinations of hyperparameter values. Its simplicity made it 
straightforward to implement and understand, while its 
integration with cross-validation techniques ensured robust 
evaluation across different data subsets, reducing overfitting. 
Despite its computational intensity, GridSearchCV's scalability 
allowed for parallelized evaluations, optimizing model 
performance by identifying the optimal hyperparameter values 
across various ML algorithms and libraries. 

E. Cross-Validation 

Cross-validation was deployed to evaluate model 
performance robustness and reduce overfitting. This provides a 

reliable estimate of the model's generalization ability by 
reviewing performance across multiple data subsets and 
enhancing predictive accuracy on unseen data. A 10-fold cross-
validation approach was employed. 

TABLE II.  HYPERPARAMETER TUNING FOR THE LSTM 
AND NN MODELS 

Hyperparameter Meaning Values 

units Number of units in the layer 10, 20, 30 

optimizer Optimization algorithm for training 
Adam, 

RMSprop 

epochs Number of training epochs 5, 10, 20 

batch_size Number of samples per gradient update 32, 64, 128 

 

IV. PERFORMANCE EVALUATION OF THE MODEL 

The performance of the LSTM and NN models was 
evaluated using four metrics: recall, F1-score, precision, and 
accuracy. Accuracy measures the proportion of the correctly 
identified malware applications out of all the applications 
classified as malware. Recall calculates the proportion of the 
correctly identified malware applications to the total actual 
malware samples, while precision measures the percentage of 
the correctly identified malware applications out of all the 
applications classified as malware. The formulas for accuracy, 
recall, and precision are detailed in (1)-(3). 

Accuracy �
�	
��

�	
�	
��
��
  (1) 

Precision �
�	

�	
�	
   (2) 

Recall �
�	

�	
�� 
   (3) 

where TN denotes true negatives, TP denotes true positives, FP 
denotes false positives, and FN denotes false negatives. The 
result for the F1-score was derived by (4) to assess the 
effectiveness of the models. 

F1 � score �
	��������
 ��!""  

	�������� #  ��!"" 
  (4) 

V. RESULTS AND DISCUSSIONS 

For class 0, representing benign samples, both NN and 
LSTM achieved high accuracy, precision, recall, and F1-score, 
all 0.99, indicating robust performance in correctly identifying 
benign samples. For class 1, representing malware samples, 
both models demonstrated high accuracy and F1-score, with 
slight variation in precision and recall. The NN model achieved 
a slightly higher precision score for class 1 compared to the 
LSTM model, 0.99 versus 0.98, suggesting its effectiveness in 
correctly identifying malware samples while maintaining high 
overall accuracy. Therefore, the NN model appears to perform 
slightly better in detecting malware samples in this Android 
malware detection task, as shown in Table III. Figures 7-12 
illustrate the accuracy and loss curves, confusion matrix, and 
ROC curves for both the LSTM and NN models. The ROC 
curve plots the TPR against the FPR, manifesting the 
classifier's discrimination ability. The AUC quantifies this 
performance by calculating the area under the ROC curve. 
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TABLE III.  PERFORMANCE OF PROPOSED LSTM AND NN 

Class Accuracy Precision Recall F1-Score Model 

0 0.99 0.99 0.99 0.99 
NN 

1 0.99 0.99 0.98 0.98 

0 0.99 0.99 0.99 0.98 
LSTM 

1 0.99 0.98 0.98 0.98 

 
This study used Tensor Processing Units (TPUs) v2.8, 

which are specialized circuits engineered by Google to 
accelerate training tasks in AI models. Featuring eight cores 
and 64 GB of memory, these TPUs accelerate the 
computational processes involved. Utilizing the TPU v2.8 
configuration, the LSTM model underwent training for 10 
epochs, completing the process in 23 s, which is significantly 
shorter compared to existing studies. In the future, there is a 
potential to integrate advanced DL architectures, including 
attention mechanisms or hybrid models that combine LSTM 
with convolutional layers. These integrations could improve 
model performance and adaptability, particularly to address 
evolving malware threats. Furthermore, exploring ensemble 
techniques, transfer learning approaches, or other ML 
approaches tested in different fields could be valuable in 
improving model generalization and scalability [15-18]. These 
avenues offer promising directions for extending the 
capabilities and robustness of malware detection systems. 

 

 
Fig. 7.  Confusion matrix for the LSTM model. 

 
Fig. 8.  Confusion matrix for the NN model. 

 
Fig. 9.  Accuracy and loss curve for the LSTM model. 

 
Fig. 10.  Accuracy and loss curve for the NN model. 

 
Fig. 11.  ROC curve for the LSTM model. 

 
Fig. 12.  ROC curve for the NN model. 
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VI. CONCLUSION 

This study explored the development and evaluation of DL 
models for malware detection, with a particular focus on the 
LSTM and NN architectures. The analysis commenced with 
comprehensive data preprocessing techniques, including 
handling missing values and feature engineering, to effectively 
prepare the dataset for model training. In particular, 
oversampling techniques such as SMOTE were employed to 
address class imbalance, ensuring a more representative 
training dataset. Subsequently, two LSTM and NN models 
were constructed with multiple layers, leveraging the network's 
ability to process sequential data, particularly Android 
application features, for accurate malware classification. The 
model architectures were refined through proper 
hyperparameter tuning utilizing techniques, such as 
GridSearchCV, enhancing its performance and robustness. The 
evaluation of the models using key metrics revealed impressive 
results, with the NN model achieving accuracy, precision, 
recall, and F1-score of 0.99 for class 0, whereas the LSTM 
model attained 0.99 accuracy, precision, and recall for the same 
class. Notably, both models demonstrated high precision and 
effectiveness in distinguishing between benign and malicious 
applications. Also, the study underscored the importance of 
employing cross-validation and rigorous evaluation methods to 
ensure the reliability and robustness of model assessment. 
Regarding future scope, further research could explore the 
integration of advanced deep learning architectures, such as 
attention mechanisms, or hybrid models combining LSTM with 
convolutional layers, to potentially improve model 
performance and adaptability to evolving malware threats. 
Finally, investigating the applicability of ML approaches in 
various fields could be a worthwhile avenue for exploration. 
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