
Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14552-14557 14552

www.etasr.com Alhussen: Advanced Android Malware Detection through Deep Learning Optimization

Advanced Android Malware Detection through

Deep Learning Optimization

Ahmed Alhussen

Department of Computer Engineering, College of Computer and Information Sciences, Majmaah

University, Saudi Arabia

aa.alhussen@mu.edu.sa (corresponding author)

Received: 9 April 2024 | Revised: 18 April 2024 | Accepted: 21 April 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.7443

ABSTRACT

Android stands out as one of the most prevalent mobile operating systems globally, due to its widespread

adoption and open-source nature. However, its susceptibility to malware attacks, facilitated by the ability

to install third-party applications without centralized control, poses significant security challenges. Despite
efforts to integrate security measures, the proliferation of malicious activities and vulnerabilities

emphasizes the need for advanced detection techniques. This study implemented and optimized Long

Short-Term Memory (LSTM) and Neural Network (NN) models for malware detection on the Android

platform. Leveraging meticulous hyperparameter tuning and robust data preprocessing techniques, this

study aimed to increase the efficacy of LSTM and NN models in identifying and mitigating various forms

of malware. The results demonstrate remarkable performance, with the LSTM model achieving an
accuracy of 99.24%, precision of 99.07%, recall of 98.79%, and F1-score of 98.93%, and the NN model

attaining an accuracy of 99.18%, precision of 99.02%, recall of 98.84%, and F1-score of 98.93%. By

addressing these challenges and achieving such high levels of accuracy and effectiveness, this study

contributes significantly to the ongoing endeavor to fortify defenses against cyber threats, thus fostering a
safer digital environment for users worldwide.

Keywords-LSTM; deep learning; hyperparameter tuning; Android malware

I. INTRODUCTION

In today's digital landscape, safeguarding computer systems
against cyber threats, particularly in the realm of malware
detection, is of paramount importance [1, 2]. The widespread
usage of mobile operating systems, such as Android, has
heightened the significance of this issue, given the platform's
susceptibility to various forms of malware. Despite efforts to
improve security measures, the persistent emergence of new
malware variants underscores the need for continuous
improvement in detection techniques. This necessitates a
deeper investigation of more advanced approaches that can
effectively identify and mitigate the evolving threats. This
study responds to the specific need by focusing on optimizing
the performance of LSTM models for malware detection on the
Android platform by refining its hyperparameters and
implementing proper data preprocessing techniques, aimed at
enhancing its ability to detect and counteract various types of
malware effectively.

This study used Deep Learning (DL) models for Android
malware detection, including Long Short-Term Memory
(LSTM) and Neural Networks (NN), instead of traditional
Machine Learning (ML) methods. LSTMs, a specialized type
of Recurrent Neural Networks (RNNs), were chosen for their
ability to handle long-term dependencies and capture complex
patterns in malware behavior. These DL models automatically
learn hierarchical representations from the data, reducing the

need for manual feature engineering and enhancing detection
accuracy. The main contribution of this study is that it takes
advantage of these advanced DL techniques to ameliorate the
accuracy and classification of Android malware signatures,
addressing the challenges of detecting complex and evolving
malware threats.

II. LITERATURE REVIEW

Table I depicts previous studies with various approaches to
malware detection. In [3], extensive datasets from both benign
and malicious apps were collected to evaluate DroidCollector,
which achieved a high detection rate of 98% through ML
algorithms. In [4], a deep NN achieved an impressive accuracy
of 93.4% on a dataset containing 23 attacks without
hyperparameter tuning. In [5], Android application and
network layer features were employed in ML models, resulting
in detection rates of 99 and 81%, respectively. In [6], static and
dynamic artifacts were utilized to classify Android applications
and address the challenge of ransomware, surpassing the
existing solutions. Meanwhile, other studies’ proposed models
and methods ranging from system permission features to
ensemble ML approaches, achieving accuracies between 94%
and 99% [7-12]. Despite their effectiveness, some approaches,
such as the Ensemble Deep Restricted Boltzmann Machine
[13], demonstrated accuracy below 80%. In [14], previous
limitations were addressed by implementing rigorous data
preprocessing and hyperparameter tuning using Gridsearch CV.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14552-14557 14553

www.etasr.com Alhussen: Advanced Android Malware Detection through Deep Learning Optimization

TABLE I. LITERATURE REVIEW DETAILS

Reference Summary

[3]

Collected substantial datasets from both benign and malicious

apps (11560). Applied ML algorithms on these datasets and

achieved a 98% average detection rate.

[4]

Used a Deep NN, achieving an accuracy of 93.4%. The

dataset encompasses 23 attacks. However, a significant

limitation was the absence of hyperparameter tuning.

[5]

Leveraged Android application and network layer features in

ML models to detect malware applications. The models

achieved detection rates of 99% and 81% on open datasets.

[6]

Implemented static and dynamic artifacts from ransomware to

classify Android applications as malicious or benign, using an

NN for static artifacts and an LGBMClassifier for network

traffic, surpassing current solutions.

[7]
Proposed a model utilizing Android system permissions

features for malware detection.

[8]

Employed an RNN model, demonstrating exceptional

efficiency in detecting potential threats with over 99%

accuracy, even with a reduced number of evaluated

networking features.

[9]

Introduced DREBIN, a lightweight method for Android

malware detection. By conducting extensive static analysis

and integrating features into a unified vector space, DREBIN

identified malware patterns with 94% accuracy.

[10]
Android malware detection with 96% accuracy using the

DREBIN dataset.

[11]

Presented DroidFusion, a fusion classification approach

utilizing a multilevel architecture for enhanced accuracy. By

training base classifiers and applying ranking-based

algorithms, DroidFusion achieved 98.74% accuracy on the

DREBIN dataset.

[12]

DCNN was employed for malware detection via binary

visualization. The combined approach of DCNN and TFDNN

achieved a classification accuracy of approximately 98%.

[13]

Presented an Ensemble Deep Restricted Boltzmann Machine

(EDRBM) to classify cybersecurity threats in large-scale

networks, particularly focusing on malware. While

simulations demonstrated its effectiveness against various

malware attacks, its accuracy remained below 80%.

This study

Addressed previous limitations by implementing rigorous

data preprocessing and hyperparameter tuning using

Gridsearch CV.

III. METHODOLOGY

Figure 1 shows the steps followed.

Fig. 1. The overall workflow of this study for malware detection.

A. Data Preprocessing

This investigation used the DREBIN-215 dataset, which is
a real Android malware dataset from [9, 11]. The DREBIN-215
dataset is a well-known dataset commonly implemented for
Android malware detection research. It comprises Android
applications, including both malware and benign applications,

collected from various sources. Each sample in the dataset is
represented by a feature vector containing a set of static
analysis features extracted from the app's APK file. The
features in the DREBIN-215 dataset capture various aspects of
Android applications, such as permissions requested, API calls
made, and other characteristics related to the app's behavior.
This rich feature set enables researchers to develop and
evaluate machine learning and deep learning models to detect
malicious Android apps effectively. A collection of feature
vectors comprising 215 attributes sourced from 15,036
applications was assembled. This compilation includes 5,560
instances of malware applications from the Drebin project and
9,476 benign applications. The dataset consisted of 15,036
rows and 216 columns. Each row represented an individual
application and each column represented a specific feature of
the application. The word cloud visualization technique was
followed to get a visually appealing representation of the
textual data, as observed in Figure 2, where the size of each
word corresponds to its frequency in the corpus.

Fig. 2. The word cloud of the DREBIN dataset used in this study.

Proceeding with the data preprocessing step, the first task
involved handling numerical features with missing values. To
identify such features, a list called numerical_nan was created,
comprising those numerical columns where the count of NaN
values exceeded one and the data type was not categorical.
Subsequently, the categorical features with missing values were
addressed. The dataset was transformed using one-hot encoding
to handle the categorical variables. Following this
transformation, the categorical features with missing values
were identified and stored in the list categorical_nan, where
each feature had a nonzero count of NaN values and a data type
of 'object'. An attempt was made to understand the
relationships between the features of the datasets using a
correlation heatmap, as spotted in Figure 3.

B. Class Balancing using SMOTE

Class balancing was employed to address the challenges
posed by an imbalanced dataset. Not performing class
balancing led to a biased model that favored the majority class,
resulting in reduced sensitivity and poor generalization to the
minority class. This imbalance also skewed performance
metrics, leading to misleading accuracy scores and an increased
risk of false negatives. Implementing class balancing
techniques aims to improve model robustness, sensitivity, and
overall performance in detecting both majority and minority

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14552-14557 14554

www.etasr.com Alhussen: Advanced Android Malware Detection through Deep Learning Optimization

class instances effectively. This study adopted the Synthetic
Minority Over-sampling Technique (SMOTE) to address the
class imbalance issue. SMOTE was chosen over other methods
due to its effectiveness in generating synthetic samples by
interpolating between existing minority class instances, thereby
increasing the representation of the minority class without
duplicating the existing samples. This approach helps to retain
the original distribution of the minority class and reduces the
risk of overfitting. The Drebin 215 dataset originally contained
5,560 instances of malware and 9,476 instances of benign
applications. Class imbalance poses a challenge for ML
algorithms, as they may become biased towards the majority
class, leading to suboptimal performance in detecting the
minority class. SMOTE was applied to augment minority-class
samples by generating synthetic instances that are similar to the
existing minority-class samples [14]. This process effectively
balanced the class distribution, resulting in an equal number of
instances for both malware and benign applications after
SMOTE, as shown in Figure 4. The balanced dataset enables
more accurate and reliable training of ML models for malware
detection, contributing to improved overall performance and
effectiveness in cybersecurity applications.

Fig. 3. Heatmap of the dataset features.

Fig. 4. Class distribution before and after implementing smote.

C. Implementation of the LSTM and NN models

The LSTM model was applied for Android malware
detection, featuring a series of layers optimized to process input
data and generate output predictions. The model architecture
begins with an input layer to accommodate sequential data,
structured as a 3-dimensional tensor. This initial layer
seamlessly transitions into an LSTM layer, strategically
engineered to capture and retain long-term dependencies
inherent in the input sequences, thereby enhancing the model's
capacity to discern intricate patterns indicative of malware
presence. To avoid overfitting, dropout layers are judiciously
integrated following the LSTM layer, serving to systematically
deactivate a portion of neural units during training iterations,
thereby fortifying the model's generalization capabilities. After
this, two dense layers, each utilizing Rectified Linear Unit
(ReLU) activation functions, are deployed to instill non-
linearity into the model, fostering its ability to delineate
complex relationships within the data. Concluding the
architecture is a single dense layer with a sigmoid activation
function, culminating in binary classification. This layer
computes the probability of an input sequence being classified
as malware, lending the model its predictive capacity. The
model compilation is executed meticulously, employing the
Adam optimizer with a learning rate set at 0.001, while
utilizing binary cross-entropy loss and accuracy as performance
metrics. Hyperparameter tuning was carried out via
GridSearchCV, optimizing parameters, such as learning rate,
batch size, number of epochs, and optimizer. Following
optimization, the model was trained on the training data and
evaluated on the test set to assess its performance. Finally, the
architecture for the optimized model was visualized deploying
the plot_model function from TensorFlow.keras.utils. The
model encompasses 74,881 trainable parameters, crucial for
learning from input data and making precise predictions on
new instances. Figure 5 portrayes the architecture of the LSTM
model implemented.

Fig. 5. Architecture of the LSTM model used.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14552-14557 14555

www.etasr.com Alhussen: Advanced Android Malware Detection through Deep Learning Optimization

The second model was a sequential NN consisting of three
layers: two dense interleaved with a dropout layer for
regularization. The first dense layer contains 128 neurons, each
activated by a ReLU function, which yields an output shape of
(None, 128). This layer contributes 27,648 parameters to the
model. Following the dense layer, a dropout layer is inserted,
having the same output shape, which randomly deactivates
neurons with a dropout rate of 0.3 to prevent overfitting. The
second dense layer comprises 64 neurons activated by ReLU,
resulting in an output shape of (None, 64), and contributing
8,256 parameters. Another dropout layer follows with the same
output shape, maintaining the dropout rate of 0.3. Lastly, a
single neuron dense layer with a sigmoid activation function is
appended for binary classification, producing an output shape
of (None, 1) and adding 65 parameters. The total number of
trainable parameters in the model amounts to 35,969,
encompassing all the weights and biases across the layers,
while there are no non-trainable parameters. Figure 6 illustrates
the architecture of the NN model utilized.

Fig. 6. Architecture of the NN model used.

D. Hyperparameter Tuning

To ensure that the models work well and do not focus too
much on the training data, GridSearchCV was used for
hyperparameter tuning, as noticed in Table II. GridSearchCV
was favored for hyperparameter tuning due to its exhaustive
search capability, systematically evaluating all possible
combinations of hyperparameter values. Its simplicity made it
straightforward to implement and understand, while its
integration with cross-validation techniques ensured robust
evaluation across different data subsets, reducing overfitting.
Despite its computational intensity, GridSearchCV's scalability
allowed for parallelized evaluations, optimizing model
performance by identifying the optimal hyperparameter values
across various ML algorithms and libraries.

E. Cross-Validation

Cross-validation was deployed to evaluate model
performance robustness and reduce overfitting. This provides a

reliable estimate of the model's generalization ability by
reviewing performance across multiple data subsets and
enhancing predictive accuracy on unseen data. A 10-fold cross-
validation approach was employed.

TABLE II. HYPERPARAMETER TUNING FOR THE LSTM
AND NN MODELS

Hyperparameter Meaning Values

units Number of units in the layer 10, 20, 30

optimizer Optimization algorithm for training
Adam,

RMSprop

epochs Number of training epochs 5, 10, 20

batch_size Number of samples per gradient update 32, 64, 128

IV. PERFORMANCE EVALUATION OF THE MODEL

The performance of the LSTM and NN models was
evaluated using four metrics: recall, F1-score, precision, and
accuracy. Accuracy measures the proportion of the correctly
identified malware applications out of all the applications
classified as malware. Recall calculates the proportion of the
correctly identified malware applications to the total actual
malware samples, while precision measures the percentage of
the correctly identified malware applications out of all the
applications classified as malware. The formulas for accuracy,
recall, and precision are detailed in (1)-(3).

Accuracy �
�	
��

�	
�	
��
��
 (1)

Precision �
�	

�	
�	
 (2)

Recall �
�	

�	
��
 (3)

where TN denotes true negatives, TP denotes true positives, FP
denotes false positives, and FN denotes false negatives. The
result for the F1-score was derived by (4) to assess the
effectiveness of the models.

F1 � score �
	��������
 ��!""

	�������� # ��!""
 (4)

V. RESULTS AND DISCUSSIONS

For class 0, representing benign samples, both NN and
LSTM achieved high accuracy, precision, recall, and F1-score,
all 0.99, indicating robust performance in correctly identifying
benign samples. For class 1, representing malware samples,
both models demonstrated high accuracy and F1-score, with
slight variation in precision and recall. The NN model achieved
a slightly higher precision score for class 1 compared to the
LSTM model, 0.99 versus 0.98, suggesting its effectiveness in
correctly identifying malware samples while maintaining high
overall accuracy. Therefore, the NN model appears to perform
slightly better in detecting malware samples in this Android
malware detection task, as shown in Table III. Figures 7-12
illustrate the accuracy and loss curves, confusion matrix, and
ROC curves for both the LSTM and NN models. The ROC
curve plots the TPR against the FPR, manifesting the
classifier's discrimination ability. The AUC quantifies this
performance by calculating the area under the ROC curve.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14552-14557 14556

www.etasr.com Alhussen: Advanced Android Malware Detection through Deep Learning Optimization

TABLE III. PERFORMANCE OF PROPOSED LSTM AND NN

Class Accuracy Precision Recall F1-Score Model

0 0.99 0.99 0.99 0.99
NN

1 0.99 0.99 0.98 0.98

0 0.99 0.99 0.99 0.98
LSTM

1 0.99 0.98 0.98 0.98

This study used Tensor Processing Units (TPUs) v2.8,

which are specialized circuits engineered by Google to
accelerate training tasks in AI models. Featuring eight cores
and 64 GB of memory, these TPUs accelerate the
computational processes involved. Utilizing the TPU v2.8
configuration, the LSTM model underwent training for 10
epochs, completing the process in 23 s, which is significantly
shorter compared to existing studies. In the future, there is a
potential to integrate advanced DL architectures, including
attention mechanisms or hybrid models that combine LSTM
with convolutional layers. These integrations could improve
model performance and adaptability, particularly to address
evolving malware threats. Furthermore, exploring ensemble
techniques, transfer learning approaches, or other ML
approaches tested in different fields could be valuable in
improving model generalization and scalability [15-18]. These
avenues offer promising directions for extending the
capabilities and robustness of malware detection systems.

Fig. 7. Confusion matrix for the LSTM model.

Fig. 8. Confusion matrix for the NN model.

Fig. 9. Accuracy and loss curve for the LSTM model.

Fig. 10. Accuracy and loss curve for the NN model.

Fig. 11. ROC curve for the LSTM model.

Fig. 12. ROC curve for the NN model.

Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 14552-14557 14557

www.etasr.com Alhussen: Advanced Android Malware Detection through Deep Learning Optimization

VI. CONCLUSION

This study explored the development and evaluation of DL
models for malware detection, with a particular focus on the
LSTM and NN architectures. The analysis commenced with
comprehensive data preprocessing techniques, including
handling missing values and feature engineering, to effectively
prepare the dataset for model training. In particular,
oversampling techniques such as SMOTE were employed to
address class imbalance, ensuring a more representative
training dataset. Subsequently, two LSTM and NN models
were constructed with multiple layers, leveraging the network's
ability to process sequential data, particularly Android
application features, for accurate malware classification. The
model architectures were refined through proper
hyperparameter tuning utilizing techniques, such as
GridSearchCV, enhancing its performance and robustness. The
evaluation of the models using key metrics revealed impressive
results, with the NN model achieving accuracy, precision,
recall, and F1-score of 0.99 for class 0, whereas the LSTM
model attained 0.99 accuracy, precision, and recall for the same
class. Notably, both models demonstrated high precision and
effectiveness in distinguishing between benign and malicious
applications. Also, the study underscored the importance of
employing cross-validation and rigorous evaluation methods to
ensure the reliability and robustness of model assessment.
Regarding future scope, further research could explore the
integration of advanced deep learning architectures, such as
attention mechanisms, or hybrid models combining LSTM with
convolutional layers, to potentially improve model
performance and adaptability to evolving malware threats.
Finally, investigating the applicability of ML approaches in
various fields could be a worthwhile avenue for exploration.

ACKNOWLEDGMENT

Ahmed Alhussen like to acknowledge the Deanship of
Postgraduate Studies and Scientific Research at Majmaah
University for supporting this work under Project No. R-2024-
1070.

REFERENCES

[1] C. S. Yadav et al., "Malware Analysis in IoT & Android Systems with

Defensive Mechanism," Electronics, vol. 11, no. 15, Jan. 2022, Art. no.
2354, https://doi.org/10.3390/electronics11152354.

[2] A. Al-Marghilani, "Comprehensive Analysis of IoT Malware Evasion

Techniques," Engineering, Technology & Applied Science Research,
vol. 11, no. 4, pp. 7495–7500, Aug. 2021, https://doi.org/10.48084/

etasr.4296.

[3] D. Cao et al., "DroidCollector: A High Performance Framework for

High Quality Android Traffic Collection," in 2016 IEEE

Trustcom/BigDataSE/ISPA, Tianjin, China, Aug. 2016, pp. 1753–1758,

https://doi.org/10.1109/TrustCom.2016.0269.

[4] T. Gueye, Y. Wang, M. Rehman, R. T. Mushtaq, and A. Hassan,
"Machine Learning for Control Systems Security of Industrial Robots: a

Post-covid-19 Overview." Sep. 06, 2022, https://doi.org/10.21203/
rs.3.rs-2022709/v1.

[5] C. C. U. López, J. S. D. Villarreal, A. F. P. Belalcazar, A. N. Cadavid,

and J. G. D. Cely, "Features to Detect Android Malware," in 2018 IEEE

Colombian Conference on Communications and Computing

(COLCOM), Medellin, Colombia, May 2018, pp. 1–6, https://doi.org/
10.1109/ColComCon.2018.8466715.

[6] L. Arora and K. Kumar, "Android Ransomware Detection Toolkit," in

2022 4th International Conference on Artificial Intelligence and Speech

Technology (AIST), Delhi, India, Dec. 2022, pp. 1–5,
https://doi.org/10.1109/AIST55798.2022.10064946.

[7] N. J. Ratyal, M. Khadam, and M. Aleem, "On the Evaluation of the

Machine Learning Based Hybrid Approach for Android Malware
Detection," in 2019 22nd International Multitopic Conference (INMIC),

Islamabad, Pakistan, Aug. 2019, pp. 1–8, https://doi.org/10.1109/
INMIC48123.2019.9022790.

[8] M. Woźniak, J. Siłka, M. Wieczorek, and M. Alrashoud, "Recurrent

Neural Network Model for IoT and Networking Malware Threat
Detection," IEEE Transactions on Industrial Informatics, vol. 17, no. 8,

pp. 5583–5594, Dec. 2021, https://doi.org/10.1109/TII.2020.3021689.

[9] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,

"Drebin: Effective and Explainable Detection of Android Malware in
Your Pocket," in Proceedings 2014 Network and Distributed System

Security Symposium, San Diego, CA, USA, 2014, https://doi.org/
10.14722/ndss.2014.23247.

[10] H. Zhang, S. Luo, Y. Zhang, and L. Pan, "An Efficient Android Malware

Detection System Based on Method-Level Behavioral Semantic
Analysis," IEEE Access, vol. 7, pp. 69246–69256, 2019,

https://doi.org/10.1109/ACCESS.2019.2919796.

[11] S. Y. Yerima and S. Sezer, "DroidFusion: A Novel Multilevel Classifier
Fusion Approach for Android Malware Detection," IEEE Transactions

on Cybernetics, vol. 49, no. 2, pp. 453–466, Oct. 2019,
https://doi.org/10.1109/TCYB.2017.2777960.

[12] K. Aldriwish, "A Deep Learning Approach for Malware and Software

Piracy Threat Detection," Engineering, Technology & Applied Science

Research, vol. 11, no. 6, pp. 7757–7762, Dec. 2021, https://doi.org/

10.48084/etasr.4412.

[13] J. Kumar and G. Ranganathan, "Malware Attack Detection in Large
Scale Networks using the Ensemble Deep Restricted Boltzmann

Machine," Engineering, Technology & Applied Science Research, vol.
13, no. 5, pp. 11773–11778, Oct. 2023, https://doi.org/10.48084/

etasr.6204.

[14] M. A. Haq, "Smotednn: A novel model for air pollution forecasting and
aqi classification," Computers, Materials and Continua, vol. 71, no. 1,

pp. 1403–1425, 2022, https://doi.org/10.32604/cmc.2022.021968.

[15] S. Merugu, K. Jain, A. Mittal, and B. Raman, "Sub-scene Target

Detection and Recognition Using Deep Learning Convolution Neural
Networks," in ICDSMLA 2019, 2020, pp. 1082–1101, https://doi.org/

10.1007/978-981-15-1420-3_119.

[16] A. Bathula, S. Muhuri, S. kr. Gupta, and S. Merugu, "Secure certificate
sharing based on Blockchain framework for online education,"

Multimedia Tools and Applications, vol. 82, no. 11, pp. 16479–16500,
May 2023, https://doi.org/10.1007/s11042-022-14126-x.

[17] M. Suresh, A. S. Shaik, B. Premalatha, V. A. Narayana, and G. Ghinea,

"Intelligent & Smart Navigation System for Visually Impaired Friends,"
in Advanced Computing, 2023, pp. 374–383, https://doi.org/10.1007/

978-3-031-35641-4_30.

[18] S. Merugu, M. C. S. Reddy, E. Goyal, and L. Piplani, "Text Message
Classification Using Supervised Machine Learning Algorithms," in

ICCCE 2018, 2019, pp. 141–150, https://doi.org/10.1007/978-981-13-
0212-1_15.

