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Abstract—In this paper a useful Lyapunov function for vector 
control of induction machines is introduced. To do this, some 
beneficial theorems are reviewed and by applying these theorems 
and state equations to a vector control drive, its candidate 
Lyapunov function is achieved. Range of set points such as 
reference speed, reference flux linkage values and speed 
controller gain is obtained for such a drive and therefore these 
values can be set offline to avoid unstable behavior. The 
simulated and experimental results are given in the last section of 
the paper to show the efficacy of the given Lyapunov function.  
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I. INTRODUCTION  

A linear system shows stable, unstable, or oscillated 
responses; however, in a nonlinear system other kinds of 
behaviors such as bifurcated, chaotic and sub harmonic may 
occur. Electric machines are highly nonlinear systems because 
they have mutual dynamics. In addition, electric drives, or 
other controller types, are implemented in electric machines to 
control their speed, torque and thus also result to a nonlinear 
behavior. These time responses are not acceptable except the 
stable cases from an application point of view. It is obvious that 
these nonlinear behaviors cause fluctuation in electromagnetic 
torque, speed of the rotor, current and voltage components, flux 
linkages, etc. Strange time responses in electric machines 
drives such as induction machines, synchronous reluctance 
machines, permanent magnet synchronous machines, DC 
machines, brushless DC machines , etc. has been reported in 
several paper [1-7].  

Nowadays vector control drives of induction machines are 
more suitable for a variety of applications such as trains, 
conveyer belts because of their dynamical behavior as well as 
for having a tough structure and cheap price. As mentioned, 
these drives may represent stable, unstable and chaotic 
responses. There are some researches that show the bifurcated 
and chaotic response of these drives caused by different 
reasons like inverter malfunction [8, 9], error in parameters' 
values like rotor and stator resistances [10-13] or even because 
of an inherent nonlinearity of the system [14].  

Some researchers used Poincare map to study these 
behaviors. The Poincare map is a powerful method to 

investigate the strange behaviors such as chaotic and bifurcated 
ones [14, 15]. This map is useful for power electronic systems 
such as DC-DC choppers. However, it is not useful and 
applicable enough to analyze the stability of other systems such 
as induction machine drives which are the case study of this 
paper. One of the most powerful methods to study the global 
stability of nonlinear systems is the Lyapunov method. Using a 
Lyapunov function is the main core of the method. Finding 
these functions for nonlinear systems is difficult. Suitable 
theorems to evaluate the stability of nonlinear systems are 
needed [14]. In this paper these theorems are used to achieve a 
useful Lyapunov function for vector control drives in induction 
machines.  

II. CANDIDATE LYAPUNOV FUNCTION FOR TRANSFORMED 

DYNAMICS  

Finding the Lyapunov function for a nonlinear system is 
very important, because stability analysis or controller design 
such as sliding mode controller, adaptive control, etc. are based 
on this function. According to the Lyapunov theory there is a 
nonlinear system such as: 

  nRXXFX                    (1) 

If a function such as RRV n :  with the following 
conditions exists then the origin ( 0X ) is a stable 
equilibrium state for this system:  
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The shortcoming of this theorem is that there is not a 
unique method to obtain a Lyapunov function. Sometimes this 
theorem is named Lyapunov direct method. There is another 
theorem based on linearized dynamical equations of a 
nonlinear system. It talks about local stability conditions for the 
equilibrium states of a system. This method is called indirect 
Lyapunov method in nonlinear system theory.  
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In [14], it was shown that if there exists a Lyapunov 
function like )(XV  for nonlinear system such as (1), then what 
can be concluded about the stability of a system such as: 

)(1 XFHX                     (3) 

This system is a transformed system and two theories are 
introduced in [16] to achieve its Lyapunov function. The origin 
will be stable equilibrium point for this system if there exists a 
positive function )(Xg that satisfies the following conditions. 

0)))(()(( 2  HdxXVXg T               (4) 

And )(Xg will exist if the following matrix be symmetric: 
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One of the most applicable Lyapunov functions is quadratic 
function. Its global form is: 

  PXXXV T                  (6) 

In this equation P is a positive matrix. By using the above 
method, if system (1) has a quadratic Lyapunov function and 
PH is positive and symmetric, its transformed system such as 
(2) has a quadratic Lyapunov function. Its Lyapunov function 
is :  

   PHdXXXW T          (7) 

It can be shown that dynamical equation of almost all 
rotational electric machines  is: 









































 

XNX

XNX

XNX

AXHX

n
T

T

T


 2

1

1             (8) 

X , 1H and A are originated from current components, 
inductance, moment of inertia, and resistance of machine. Also 
the other states ( XNX i

T ) are originated from rotational 
voltages. This dynamic system is a transformed system 
therefore the above mentioned method can be used to study its 
stability. If a quadratic function such as (5) is found in a way 
that PH is positive and symmetric and the following condition 
is satisfied: 
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Then (6) shows its Lyapunov function.  

III. ROTOR FIELD ORIENTED VECTOR CONTROL SYSTEM   

To investigate the stability of a system, first its model must 
be decided. The electrical model of squirrel cage induction 
machine in the synchronous reference oriented to the arbitrary 

g


flux linkage vector frame is shown in (10) [17].  
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In these equations, 
gsi 


, 

gri 


, 
gs


and 

gr


 are current and 

flux linkage vectors of stator and rotor, respectively which can 
be expressed according to direct and quadrature components of 
stator current ( sxi , syi ) and direct and quadrature components 

of rotor current ( rxi , ryi ).  
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Also 
gsu 


 is voltage vector of stator, g  and r  are angular 

speed of the frame and rotor respectively, which can be 
achieved by mechanical equation. 

  Lrsrm
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J

gg
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5.1         (12) 

In this equation   shows the vector product. Using this model, 
rotor field oriented vector control of induction machines can be 
achieved. Suppose the frame is oriented tor the rotor flux 
linkage so:  

grrx 


             (13) 

sy
r

m
ryry i

L

L
i  0          (14) 

The electrical equation of the rotor can be decoupled to the real 
and imaginary parts. 

  0 rxryrgrxr dt

d
ir             (15) 

  0 ryrxrgryr dt

d
ir            (16) 

Using (13), (14), (15), and (16) it can be written as: 
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0 rxrxr dt

d
ir               (17) 

 
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                 (18) 

The first equation shows rxi  is affected by direct component of 
rotor flux linkage, therefore when its variation is slow or even 
it is constant in the steady state, rxi becomes zero. As a result 
the motor torque can be written as: 

 rsme iiPLT
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 5.1               (19) 
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Equation (20) shows that rotor flux can be controlled by direct 
component of stator current and therefore from (19) the torque 
can be controlled by quadrature component of stator current. 
As a result the goal of the vector control is satisfied.  

To implement this control two problems remain. The first 
one is that the rotor flux linkage vector must be tracked. To do 
this, (18) can be used to produce: 
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The second one is that the direct and quadrature current 
components must be produced. If the voltage source inverter is 
used to produce these components, a control strategy will be 
needed to produce them. To do this, each component of stator 
voltages such as sxu  is divided into two components 

( dxxsx uuu  ). One of these components ( xu ) is used to 

control the same current component ( sxi ) and the other is 

supplied to control the other component ( syi ): 

sygsxsxsdxxsx dt

d
iruuu              (22) 

sxgsysysdyysy dt

d
iruuu             (23) 

sysgsygdx iLu               (24) 
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 is the stator transient 

inductance. By using reference values of current instead of 
their actual values, the voltage references for inverter are 
achieved. Flux linkage is controlled by reference direct current 
component, but reference quadrature current component is 
adjusted to control the speed because this component controls 
torque. Therefore reference current components are defined as: 
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A rotor flux oriented vector control model can be written 
according to the above discussion. 
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Figure (1) depicts a rotor field oriented vector control drive.  

 

 
Fig. 1.  Rotor field oriented vector control drive.  
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IV. STABILITY ANALYSIS OF THE SYSTEM  

To study the stability analysis of a rotor field oriented 
vector control at first the equilibrium point of (28) must be 
obtained. The zero state of the dynamical equation of the 
system must be transformed to the origin. When the speed 
controller is only proportional controller, the equilibrium point 
of this system is [14]: 
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But when the speed controller is proportional-integral, the 
equilibrium is [14]: 






i

sy
irefr

sxrefm

rL
ryry

m

r
syrxsxrefsx

k

i

iPL

BT
ii

L

L
iiii

*
**

*
*****

,

5.1
,,0,






(31) 

 For simplicity the proportional speed controller is 
considered. The new variables for the new system are chosen 
as: 
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Therefore dynamical equations of the new system are: 
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L is machine inductances given bellow: 
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 This system's equation is similar to equation (7). In this 
equation H and iN are given below: 
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According to (7) matrix P can be:  
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This matrix satisfies the conditions mentioned in 
section2.The Lyapunov function of the system is obtained 
according to (7): 
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      (37) 

Boundary of different parameters such as speed controllers 
values, the reference speed, or flux values to have stable 
response can be achieved using this Lyapunov function. To do 
this time derivation of this function must be negative. 

V. EXPERIMENTAL APPROACH  

An experimental prototype was prepared by the authors to 
verify the analysis. A laboratory 175 W and four pole three 
phase induction motor whose parameters and characteristics are 
shown in Table I is used. AT91SAM7S64 microcontroller is 
used to implement the rotor speed calculation and filtering, 
speed controller, and processing operation including the 
calculation of reference voltage values for inverter, pulse-
width-modulation (PWM), DC bus voltage control, reference 
values setting such as reference speed and reference flux 
linkage, etc.  

TABLE I.  INDUCTION MOTOR PARAMETERS  

Parameter Description Value 
rs stator resistor 43.1 Ω 
rr rotor resistor 72 Ω 
Ls stator inductance 1.995 H 
Lr rotor inductance 1.995 H 
Lm Mag. inductance 1.96 H 
J moment of inertia 0.0024 Kgm 
B friction coefficient 0.001 Kgm/s 
TL no-load torque 0.1 Nm 

 

This microcontroller can work with 55 MHz clock signal 
but it was used with 48 MHz clock and has ARM core 
therefore it can be used for this drive which needs high speed 
processing operation. To measure the speed of the rotor a 2000-

pulse/revolution speed encoder is connected to the shaft of 
rotor. Its pulses after a voltage level adjusting are used for 
counter of the microcontroller. Microcontroller gives the actual 
speed by calculating the speed and filtering it by an FIR 
filtering and a low-pass filter to neutralize the quantization 
error and noise. A logic operation board is designed to operate 
on PWM pulses produced by microcontroller. These pulses 
after high-speed optocouplers are delivered to the power 
section. An Inverter with IGBT switches, RC snubber circuit, 
and high-speed anti-parallel power diodes is designed to supply 
the motor.  

 

 
Fig. 2.  Experimental set-up diagram.  

 

 
Fig. 3.  Vector control response: (a) Flux linkage response, (b) Torque 

response 

PWM pulses are delivered to IGBT driver circuits to turn 
the IGBT switches on or off. Also a 530-volt DC bus voltage is 
designed using three phase voltages, rectifiers, NTC resistors, 
relay, capacitors, discharge circuit, etc. The output current is 

(a) 

(b)
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monitored using a shunt resistor and a digital oscilloscope. 
Figure (2) shows the block diagram of experimental setup. 
Figure (3) shows dynamical response of the system depicted in 
Figure (1). As illustrated in Figure (3a) when the value of flux 
reference is changed, electromagnetic torque of the motor does 
not affected. Also, as seen in Figure (3b) when the Load torque 
is changed, the value of flux fluctuates negligibly. 

TABLE II.  EQUILIBRIUM POINTS FOR THREE SET POINTS  

CASE ref  ref  pk  *
syi  *

rxi  *
ryi  *

r  *
i  

1 230 0.95 2 0.48 0.11 -0.11 230 1.18 
2 230 0.1 5 0.05 1.12 -1.12 230 1.12 
3 130 0.95 2 0.48 0.08 -0.08 130 0.82 

 

Table II shows three set point and speed controller values 
for rotor field oriented vector control drive and also their 
equilibrium states calculated by (30). Figures (4a) and (4b) 
illustrates dynamical responses of the system by changing the 
set points from case 1 to case 2 at t=6.98 sec. As shown in 
these figures, the system response is stable in case 1 and is 
unstable in case 2. These results are shown in [14] that the case 
2 has a chaotic response. Figure (5) portrays the Lyapunov time 
derivative for two cases. As shown in case 1, time derivation of 
the Lyapunov function becomes negative and remains until 
zero which shows that this set point is stable. When the set 
point changes to case 2, time derivative of Lyapunov function 
becomes positive and negative alternatively which shows that 
the system response converges to the equilibrium point and 
then diverges from it. 

 

 

 
Fig. 4.  Current responses of cases 1 and 2: (a) simulation,  (b) 

experimental 

 
Fig. 5.  Derivation value of Lyapunov function for cases 1 and 2. 

It is clear that there is a stable region in the phase plane. It 
is obtained numerically for both cases.  XW  for 

sradref /230 , Wbref 95.0 , 2pk   and 1.0ik   

is: 
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    (38) 

 Figures (6) shows the area in which the  XW  is negative 
for case 1 and 2, respectively. For these cases the other three 
states vary between -0.1 and 0.1. According to the Lyapunov 
theorem the case 1 is stable and the case 2 is not stable because 
in case 1 there is an area around the origin in which  XW  is 
negative. But in case 2 there is not such an area around the 
origin, so it is not stable. The phase plane trajectories for these 
cases are also shown in these figures. Note that these 
trajectories do not intersect with each other in the space. 

 

 

 
Fig. 6.  Area of negative Lyapunov time derivative. (a) stable area for case 
1. (b) stable area for case 2. (c) stable area for case 1 (magnified). (d) stable 
area for case 2 (magnified). 

As discussed above, the trajectories of the system cannot 
settle down to the origin in case 2 because the derivation of 
Lyapunov function is not negative even in a small area around 

(a) 

(b) 

(a) (b) 

(c) (d)
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the origin. Generally speaking, this fact can be used to 
determine whether or not a case has a stable condition. As an 
example, consider the following case (case 3). Figure (7) shows 
the area in which time derivative of Lyapunov function is 
negative. As it is obvious there is an area around the origin in 
which the time derivative of Lyapunov function is negative. 
Therefore this case is a stable case. Figures (8a) and (8b) 
illustrate the simulated and experimental response of the drive 
for case 3, respectively. The state space trajectory is given in 
Figure (7). 

 

 
Fig. 7.  Stable areas for case 3: (a) stable area for case 3, (b) stable area for 
case 3 (magnified). 

 

 
Fig. 8.  Current responses for case 3: (a) simulation (b) experimental  

This method can be used to find the range of speed 
controller's gain values, reference flux, reference speed, etc. for 
stable responses. The Figure (9a) and (9c) illustrate the area in 
which time derivative of the Lyapunov function is negative for 
different speed proportional controller gains. As shown, there is 
a range of this parameter which makes the system to be stable. 
Also Figure (9b) and (9d) show the areas for different reference 
flux linkages. Also in these cases there is a range of flux 
linkages which makes the system stable.  

 

 
Fig. 9.  Area of negative Lyapunov derivation for different parameters. (a) 
different kpω (b) different ψref (c) different kpω (magnified) (d) different ψref 
(magnified). 

VI. CONCLUSION  

In this paper a useful Lyapunov function is achieved for 
vector control drives of induction machines. Stable range of set 
points such as reference flux linkage, speed or other parameters 
of the system can be investigated using this function. By 
obtaining this stable condition for each drive, they can be set 
offline to avoid unstable response or chaotic behavior. 
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