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ABSTRACT 

Next-generation identity verification using biometric features is nearly foolproof with the right classifier. 

However, selecting the correct classifier poses a key challenge, particularly in the recognition of biometric 

patterns. High-potential projects may face delays due to a lack of the right recognition mechanism or the 

malfunction of the selected classifier. This could also result from not choosing the appropriate classifier 

that aligns with the project's patterns. This study aims to evaluate various classifiers with potential in 

biometric research and the capabilities of different machine learning algorithms. Several classifiers were 

experimentally evaluated in combination with dynamic algorithms. The ultimate objective was to identify a 

standard classifier suitable for general biometric pattern recognition. Using well-known biometric pattern 

datasets, multivariate algorithms, such as Principal Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA), were applied. These methods were combined with different classifiers, including SVM-L, 

MLP, KNN, etc. After analyzing the results obtained, the combination of LDA with MLP outperformed 

other approaches in terms of accuracy. 
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I. INTRODUCTION  

Biometric pattern recognition is a very popular and proven 
approach to identifying human identity. Today, researchers are 
concerned with robustness in the areas of methods, data 
selection, classifier selection, etc. Several different algorithms 
are available, but they are not equally suitable for applications 
in advanced identification systems. There are many arguments, 
such as effectiveness, applicability, algorithm or classifier 
structure, nature and objective of the system, etc. Eventually, 
with all these arguments, it is well established that classifiers, 
algorithms, and data quality are still essential. This is due to 
various reasons, as the success parameters or standards of a 
system differ from others. For instance, there was a time when 
researchers believed that around 90% and above would be good 
enough to rate a system as successful.  

Taking into account all potential aspects, this study 
performed a set of experiments to provide a clear direction in 
selecting a biometric pattern classifier to ensure robust 
identification to meet the needs of the national and 
international biometric security research communities. Several 
well-known classifiers, i.e., Sequential Minimal Optimization 
(SMO), Support Vector Machine (SVM), SVM-Poly, SVM-
RVF, SVM-Sigmoid, Bayesian Linear, Bayesian Quadratic, 
Multilayer Perceptron (MLP), KNN, J48, Naïve Bayes, etc. 
were examined and evaluated. The evaluation results clearly 
indicate that MLP is one of the most effective classifiers that 
were examined. 

II. BACKGROUND WITH APPLIED CLASSIFIERS 

Biometric pattern recognition is one of the key areas that 
the research community investigates to enhance robustness, 
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due to the increasing demand for robust biometric security 
systems. Many studies have highlighted the need for biometric 
security systems. Continuous research is carried out on 
different aspects of biometric-based security systems [2]. As 
researchers are moving forward, certain limitations and 
obstacles are coming up. In some cases, the classifier choice is 
one issue that poses challenges. This study focuses on 
biometric feature classifiers, investigating several classifiers for 
this purpose, along with their applicability, formation, 
usability, and effectiveness. 

A. SVM and SMO 

SVM and SMO operate similarly, as they share common 
principles in classification. SVM classifiers perform 
classification through a multidimensional approach that 
separates each data point into distinct class categories. This 
process typically involves the creation of hyperplanes during 
experimentation. An SVM constructs one or more hyperplanes 
in a high-dimensional or infinite-dimensional space, which can 
be applied for tasks such as subgrouping, reducing 
dimensionality, or similar operations. Effective separation is 
achieved by the hyperplane with the greatest distance to the 
nearest training data point of any class, referred to as the 
functional margin. This is due to the commonly applied 
principle that a greater margin size leads to reduced 
generalization errors for a specific classifier. However, in cases 
where the sets to be distinguished are not linearly separable in 
the original finite-dimensional space, SVM maps this space 
into a substantially higher-dimensional one, aiming to simplify 
separation. To maintain reasonable computational efficiency, 
SVM techniques intentionally design mappings that facilitate 
the computation of dot products in terms of the original space 
variables. This is achieved by defining these mappings in a 
kernel function chosen to be suitable for the problem at hand 
[3].  

On the other hand, Sequential Minimal Optimization 
(SMO) is a Support Vector Machine (SVM) classifier that 
utilizes sequential minimal optimization for learning. SMO 
breaks down the overall Quadratic Programming (QP) problem 
into smaller subproblems, ensuring convergence using Osuna's 
theorem [4]. Unlike other methods, SMO solves the smallest 
possible optimization problem at each step. The advantage of 
SMO lies in its ability to obtain analytical solutions for 
multiple-instance multipliers. Additionally, SMO does not 
require additional matrix storage. SMO comprises two main 
components: an analytical technique to determine the two 
Lagrange multipliers and an empirical method to select the 
optimal multipliers to achieve the best optimization [4]. 

�1 /=  �2 => �1 −  �2 =  
   (1) 

�1 =  �2 =>  �1 + �2 =  
   (2) 

Nevertheless, the multi-instance multipliers must satisfy all 
the constraints of the complete problem. Due to the linear 
equality constraint, these multipliers are restricted to lie on a 
diagonal line. Consequently, during an iteration of SMO, it 
becomes necessary to locate an optimal solution for the 
objective function along a diagonal line segment [4]. 

B. Bayesian Linear and Quadratic 

Both classifiers are quite old but still very effective in the 
biometric classification arena. Bayesian linear and quadratic 
discriminant classifiers use Bayesian decision rules to classify 
learned feature vectors. The linear classifier applies a unified 
covariance estimate when fitting multivariate normal densities 
for each group, whereas the quadratic discriminant classifier 
employs separate covariance estimates. Both methods rely on 
likelihood ratios to assign observations to their respective 
groups. These classifiers are effective tools for the 
classification of learned feature vectors, distinguished by 
covariance estimation, as the linear classifier assumes shared 
covariance and the quadratic classifier allows for distinct 
covariance estimates per group, offering flexibility in modeling 
complex data distributions [5]. The Bayesian decision rule 
states that when faced with a set of classes M, characterized by 
known parameters in model Ω, a collection of extracted feature 
vectors X is assigned to the class with the highest probability. 
This principle, encapsulated in (1), is widely known as the 
Bayesian decision rule. 

���|�̅� =
��̅|���×����

��̅�
    (3) 

The a-posterior probability is computed using the Bayesian 
law of statistics. Assuming that the features follow a normal 
distribution leads to the formulation of a quadratic classifier 
known as the Bayesian quadratic classifier. The model Ω 
includes the mean and covariance of the training vectors, and 
the likelihoods are evaluated based on the aforementioned 
approach. Furthermore, KNN [6] also works like Bayesian and 
looks for the nearest neighbor data point.  

C. J48 Classifier 

Also known as the C4.5 algorithm [7], this is a decision tree 
generation technique developed by Ross Quinlan, which is an 
evolution of his earlier ID3 algorithm. C4.5 is widely used to 
create decision trees, primarily for classification purposes, and 
is recognized as a statistical classifier. Like ID3, C4.5 builds 
decision trees from a training dataset utilizing the concept of 
information entropy. The J48 classifier exhibits high 
classification accuracy, particularly when combined with 
superior algorithms. The training data, denoted as a set 
� =  ��, �� , consist of pre-classified samples, where each 
sample �� = ��, �� represents a vector of attributes or features. 
Additionally, these data include a vector � =   �,  �, indicating 
the class membership of each sample [8]. At each node in the 
tree, the C4.5 algorithm selects the attribute that best divides 
the sample set into subsets, with each subset exhibiting a 
stronger presence of one class over others. The criterion for 
attribute selection is the normalized information gain, which 
quantifies the change in entropy resulting from using an 
attribute for data partitioning. The attribute with the highest 
normalized information gain is chosen to make the decision. 
The C4.5 algorithm is then applied recursively to the resulting 
smaller sublists [9]. 

D. Other Classifiers 

MLP is a well-known classifier in the same line of neural 
networks. An unsophisticated Bayes classifier is a simple 
probabilistic classifier that employs Bayes' theorem while 
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making the fundamental assumption of independence (often 
referred to as uninformed assumptions). A more complex 
representation of the underlying probability model is known as 
an independent feature model. In simpler terms, an uninformed 
Bayes classifier assumes that the presence or absence of a 
particular feature in a class is unrelated to the presence or 
absence of any other feature, given the class variable. In 
essence, it operates in a straightforward and easily 
understandable manner [8]. 

�!�"#$%!$ =
�&�'&×(�)*+�,''-

./�-*01*
   (4) 

All model parameters, including class priors and feature 
probability distributions, can be approximated using the 
relative frequencies observed in the training dataset, 
representing maximum likelihood probabilities. The class prior 
can be calculated by assuming equal probabilities for all 
classes, i.e., 2$%!$� =  1 / 3456#$ !7  89��#� , or by 
calculating the probability estimate for each class based on the 
number of samples in that class divided by the total number of 
samples. Estimating parameters for feature distributions 
requires assuming a specific distribution or generating 
nonparametric models based on observed features in the 
training set [8].  

III. METHODOLOGY 

The methods were carefully selected, considering the 
importance and sensitivity of the field. A variant of Principle 
Component Analysis (PCA), known as V-PCA, was employed 
[11]. V-PCA constitutes a fundamental technique in feature 
learning that enables the automated discovery of concise and 
meaningful data representations, without relying on intricate 
feature extraction methods or domain-specific expertise. It 
stands as a well-established approach for data de-correlation 
and dimensionality reduction. In particular, it effectively 
concentrates the primary variance of the initial data within a 
lower-dimensional subspace defined by eigenvectors and 
eigenvalues. By projecting the original data onto this subspace, 
the feature representation is obtained, and the optimal target 
dimensionality of the feature space is determined through 
automated analysis of the eigenvalue spectrum of the sample 
covariance. 

However, when input data lack proper normalization, the 
performance of PCA features [12] often fails to meet 
expectations. Blind-range normalization proves ineffective in 
addressing this issue, particularly when the components relate 
to various aspects of a phenomenon. This challenge is 
particularly pronounced in the context of gait recognition from 
multiple viewpoints. To overcome this obstacle, an alternative 
representation, rooted in the empirical cumulative distribution 
function is devised: ECDF [13] of the gait silhouette/contour 
(x, y) for each frame. This representation remains independent 
of absolute ranges while preserving essential structural 
information. In this process, the silhouettes for each frame 
within the gait image sequence are extracted using background 
subtraction, with the boundary contours serving as the gait 
silhouette. 

On the other hand, Deep Learning Feature (DLF) has 
emerged as a powerful tool in the field of biometric pattern 

recognition [14]. It stands as a robust method for semi-
supervised feature discovery, leveraging autoencoder networks 
designed to learn a lower-dimensional representation of input 
data while minimizing reconstruction errors. This approach 
incorporates feedforward neural networks characterized by a 
single input layer, an output layer, and an odd number of 
hidden layers. Each layer maintains full connectivity with its 
adjacent layers and is governed by a nonlinear activation 
function. During the training process, the primary objective is 
to reconstruct the input data in the output layer. As data 
traverses the network layers during encoding, the autoencoder 
gains proficiency in capturing nonlinear feature 
representations. 

To ensure robust training of the model, according to [15], 
the layers of the autoencoder network are systematically 
acquired using a bottom-up approach known as a greedy 
strategy. In this method, each consecutive pair of layers within 
the encoder is treated as if it were a Restricted Boltzmann 
Machine (RBM). An RBM, a two-layer graphical model 
characterized by full connectivity and a bipartite structure, can 
generatively model data. It trains a set of hidden stochastic 
binary units, which serve as detectors for low-level features. 
During the training of each successive layer pair, the activation 
probabilities of the feature detectors from one RBM are 
employed as input data for the subsequent RBM in the 
sequence. 

In RBMs, different techniques are applied to represent real-
valued input units. In the initial RBM layer, Gaussian visible 
units are employed to activate binary stochastic feature 
detectors, creating a Gaussian-binary configuration. As moved 
to subsequent layers, the standard binary-binary RBM 
configuration is used, and the final layer utilizes a binary linear 
RBM, which essentially carries out a linear projection. The 
training procedure involves processing data samples in batches, 
with the aim of ideally including samples from all classes that 
are part of the training dataset. In particular, RBMs are trained 
in an unsupervised manner, meaning that class-related 
information is not a mandatory part of the training process. 

To assess the efficacy of feature learning methods, 
including V-PCA and DLF features, for gait-based human 
identity recognition, a series of experiments were conducted 
using various data subsets sourced from the UCMG database 
[16], which is one of the largest biometric security research 
databases in the world. For baseline comparisons, standard 
PCA and LDA features were also extracted. The performance 
of these features, combined with the proposed classifiers, 
underwent a comprehensive evaluation. 

IV. EXPERIMENTS AND ANALYSIS 

A total of three sets of experiments were conducted using 
various subsets of the UCMG dataset [16]. Tables I, II, and III 
and Figures 1, 2, and 3, present the performance results for 
each set of experiments. These results are measured in terms of 
recognition accuracy and various statistically significant 
performance metrics, including True Positive Rate (TPR), 
False Positive Rate (FPR), recall, precision, and F-score. 
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TABLE I.  PERFORMANCE OF MLP CLASSIFIER 

Algorithm/Classifier Correct identification (%) 

vPCA-MLP 51.57 

DLF-MLP 78.4 

LDA-MLP 100 

 

 
Fig. 1.  Performance of the MLP classifier. 

Using feature learning techniques, namely LDA, V-PCA, 
and DLF, the gait feature vectors were extracted from 
silhouette images that portrayed individuals walking in each 
video sequence. Identification experiments were carried out in 
two modes: a single mode and a multimodal fusion mode. To 
assess feature performance in less cooperative camera 
conditions, a variety of views were used for both training and 
testing. To achieve this, a fused training template was created 
by combining features from different views, while the test data 
were sourced from a view that was not utilized in constructing 
the fused training template. This approach was imperative to 
avoid a significant increase in error when training data from 
one view and test data from another. For further investigation 
on the use of biometric pattern recognition, studies in [17-19] 
can be used. 

In all experiments, a reduced dataset encompassing 10 
classes (representing 10 individuals) and 20 features 
(comprising PCA, V-PCA, LDA, and DLF) were employed. 
Initial experimentation revealed that approximately 95% of 
variations could be effectively captured with around 10 
features, and expanding the dimensionality did not yield 
substantial performance enhancements. Both LDA and DLF 
exhibited outstanding performance. Furthermore, a subsequent 
set of experiments was carried out to assess whether alternative 
established classifiers employing different kernels would yield 
improved results, as demonstrated in Table III. Remarkably, for 
both datasets, the straightforward NB classifier surpassed more 
complex SVM classifiers across various kernel types, possibly 
due to to the superior learning capability of DLF features. 

TABLE II.  PERFORMANCE OF N-BAYES AND SVM-L 

Classifier Database 
Accuracy 

(%) 
TP FP Precision Recall F-score 

NB UCMG 92.25 0.92 0 0.93 0.92 0.92 

SVM-L UCMG 78.75 0.78 0 0.81 0.79 0.78 

TABLE III.  PREFERENCE OF FUSION IN LDA AND DLF 

Classifier Database Accuracy (%) 

NN UCMG 78.75 

MLP UCMG 100% 

SVM-L UCMG 27.63 

 

 

Fig. 2.  Preference of fusion in LDA and DLF. 

 

Fig. 3.  Performance of Naïve Bayes and SVM-L classifiers. 

Fusion with LDA and DLF showed a significant 
improvement. As shown in Table III, NN achieved relatively 
poor results compared to MLP, which achieved 100% detection 
accuracy. In addition, SVM-L showed very poor accuracy 
compared to NB and MLP. After a close view of all 
experiments using the stated algorithms and classifiers, it 
seems that the dataset from the UCMG database is working 
extremely well in detecting or classifying people from a 
distance using low-resolution videos or images. Likewise, it is 
also clear that the combination of LDA-MLP achieved the 
maximum detection accuracy rate. 

V. CONCLUSION  

This study used V-PCA, LDA, and DLF for dimensionality 
reduction and feature extraction. A variety of different 
classifiers was applied to identify a person from the extracted 
features. MLP consistently showed high effectiveness and 
provided excellent accuracy for correct identification/detection, 
including both true and false positives. Furthermore, to 
compare accuracy and robustness, a full set of experiments was 
carried out in different dimensions with various well-known 
classifiers. All experiments were carried out using identified 
data from the UCMG database. Initially, the results were 
relatively poor, compared to the final results, due to the feature 
extraction algorithm. The results show that LDA and MLP is 
the best combination for identifying a person from low-
resolution surveillance video. Future work will involve further 
experiments for practical implementation in public spaces, even 
with low-resolution surveillance videos or images. 
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